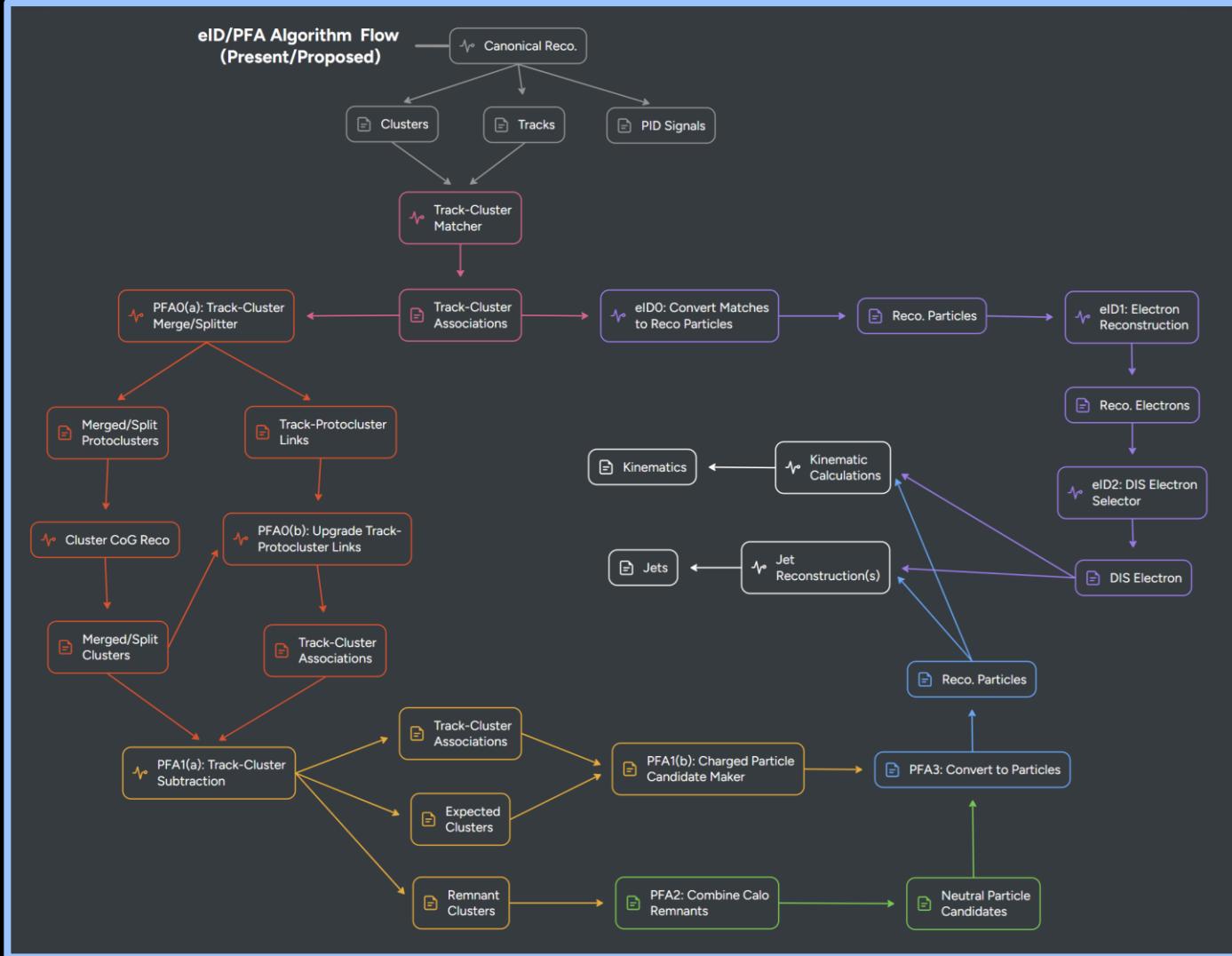


Particle Flow Status & Outlook

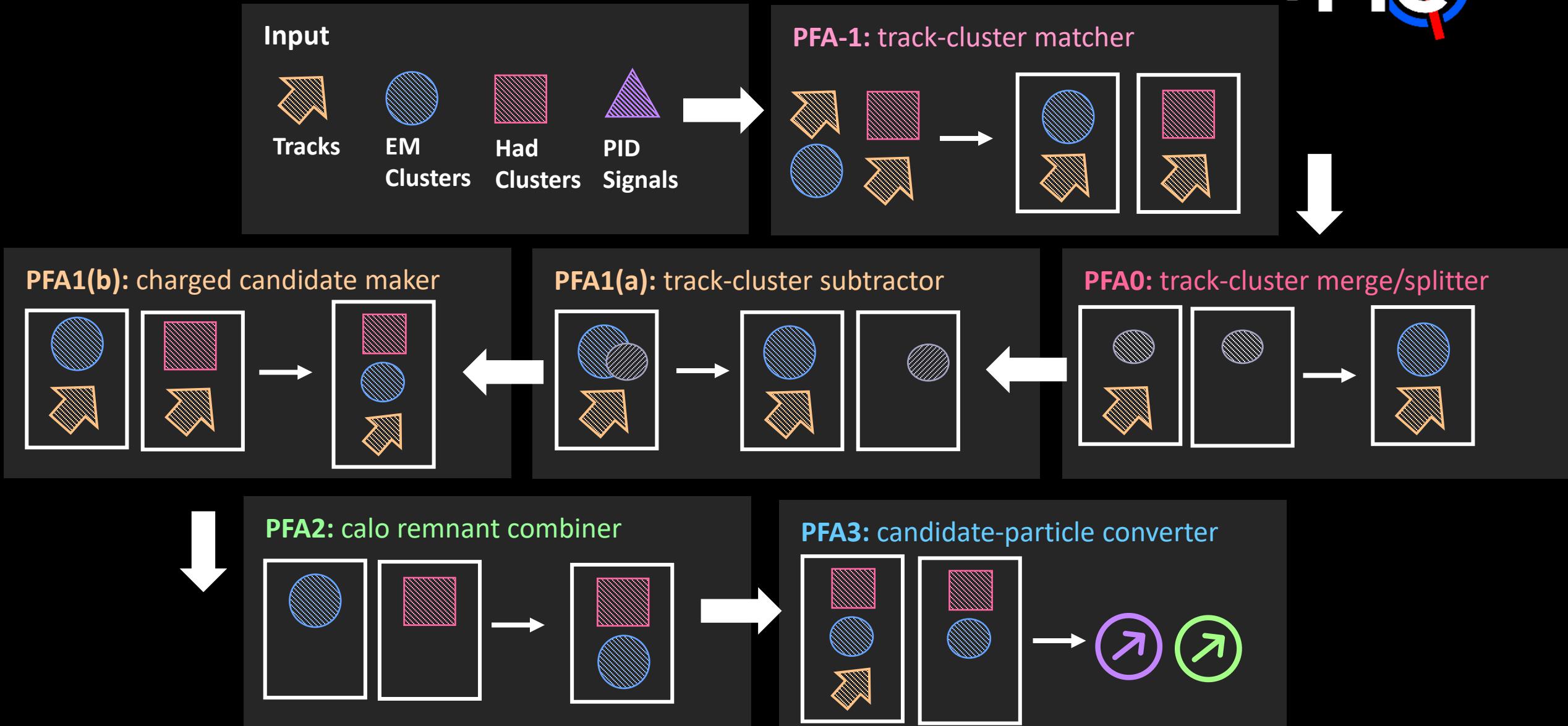
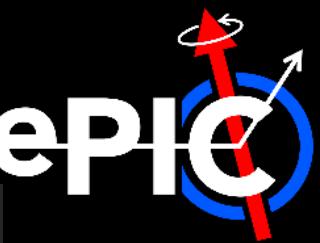
ePIC Collaboration Meeting 2026

Derek Anderson
Jefferson Lab

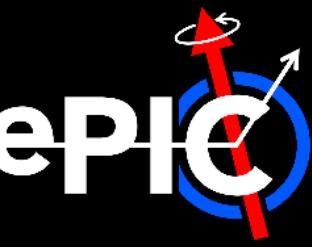
Introduction | Particle Flow Priority Task



- **PF Reconstruction Task:** improve jet reconstruction using particle flow (PF) info
 - Also touches many aspects of holistic reco beyond jets
 - eg. Neutral reco benefits greatly from PF techniques

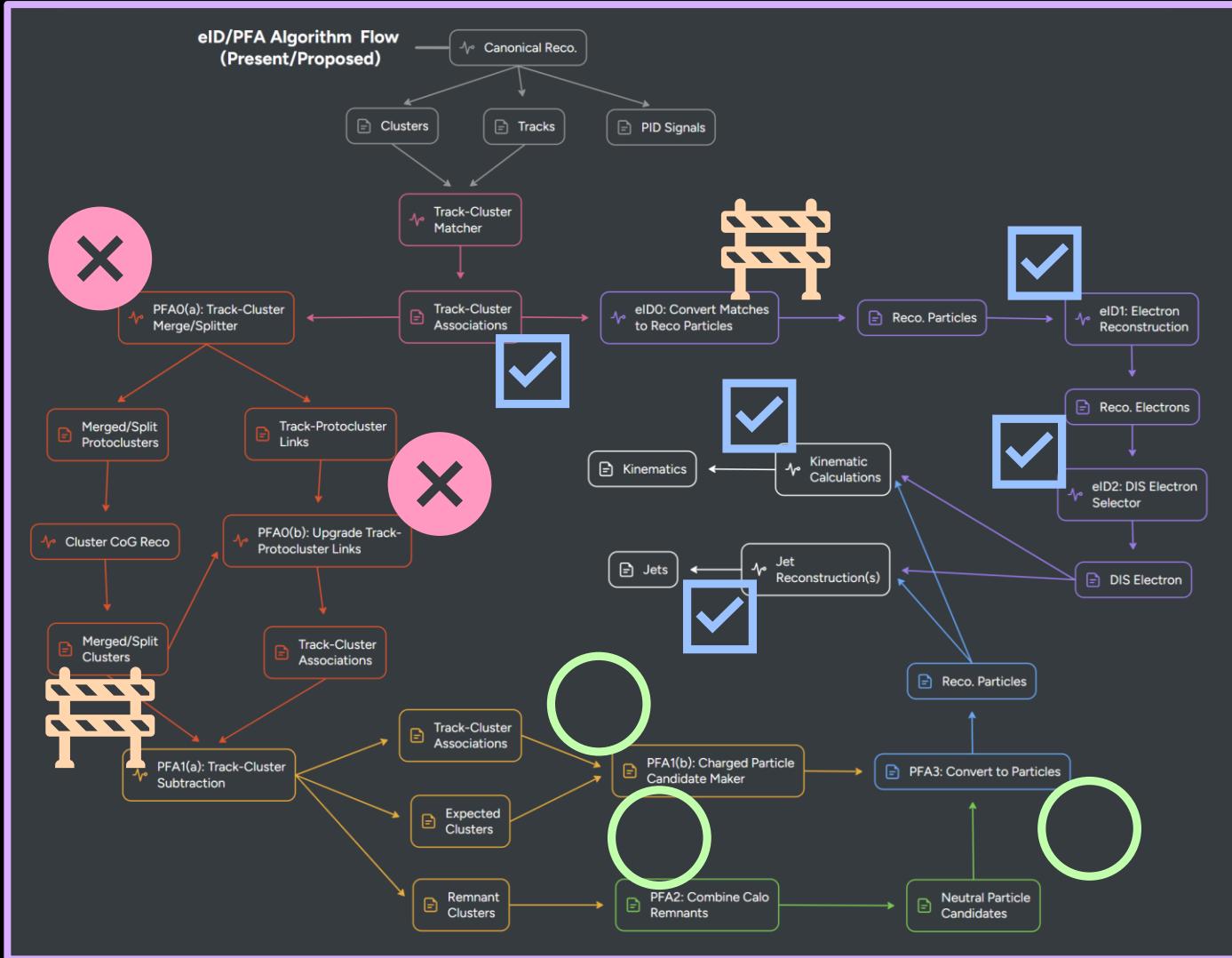


⇒ **Task Goal:** implementation of *PFA α* , a (relatively) simple PF baseline to gauge further developments

- **Right:** schematic of algorithm flow of PFA α
- Aiming to ensure modularity of overall algorithm

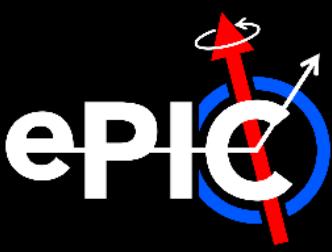

- **Note:** PFA X = “PFA α stage X”
 - Flow is split up into major stages of the overall algorithm

Introduction | Baseline Overview

PF Status | Status as of Physics Readiness WS


- **PFA0 stages were blocked**
 - Introduction of track-protocluster links exposed bug in our JANA2 extensions
 - Required patch from JANA2 2.4.3 (which had breaking changes)
 - But substantial work done on PFA0(a) already...
- **PFA1(a) was in progress**
 - PFA1(b), PFA2, & PFA3 stages all were to-do...

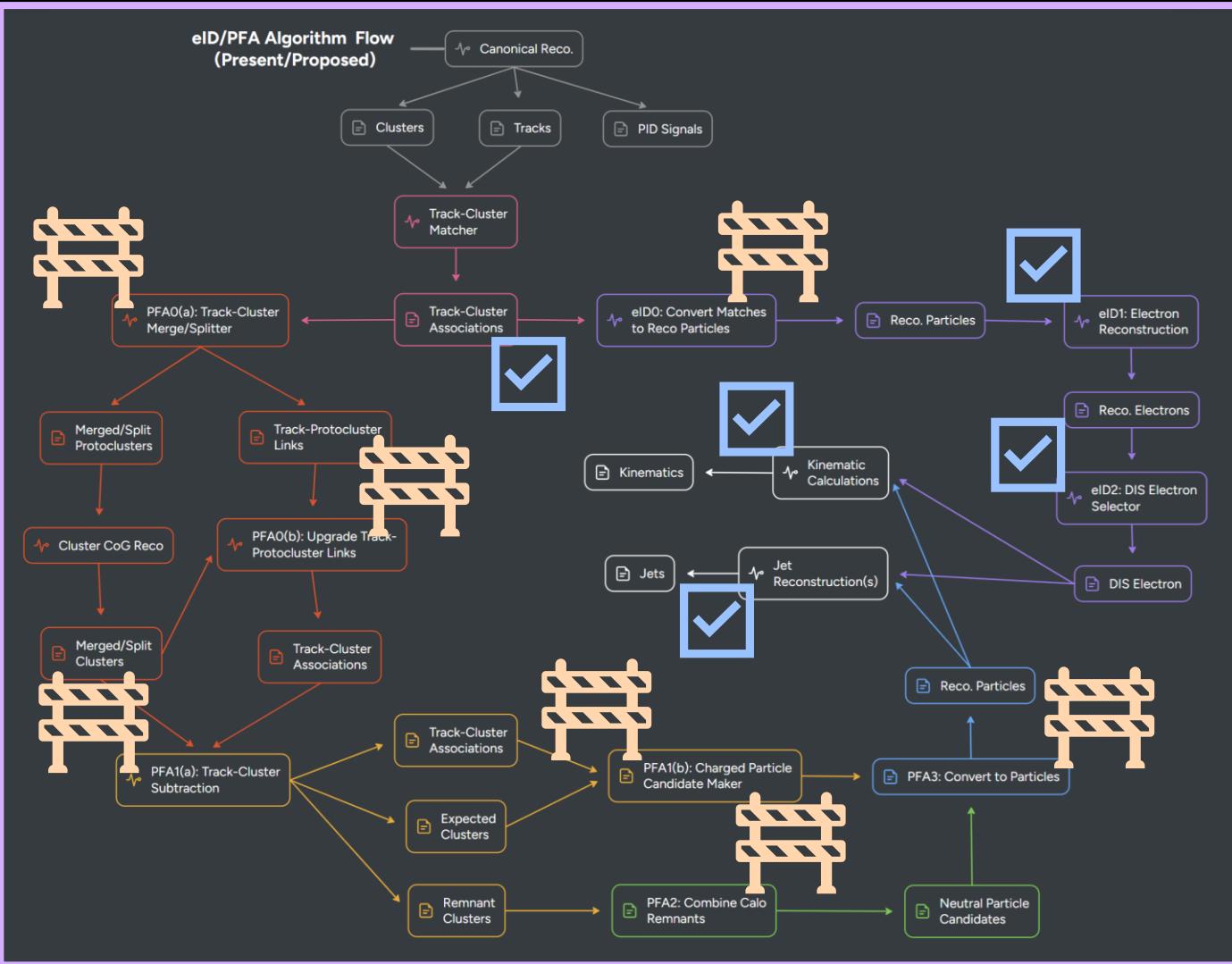
○ = To-do

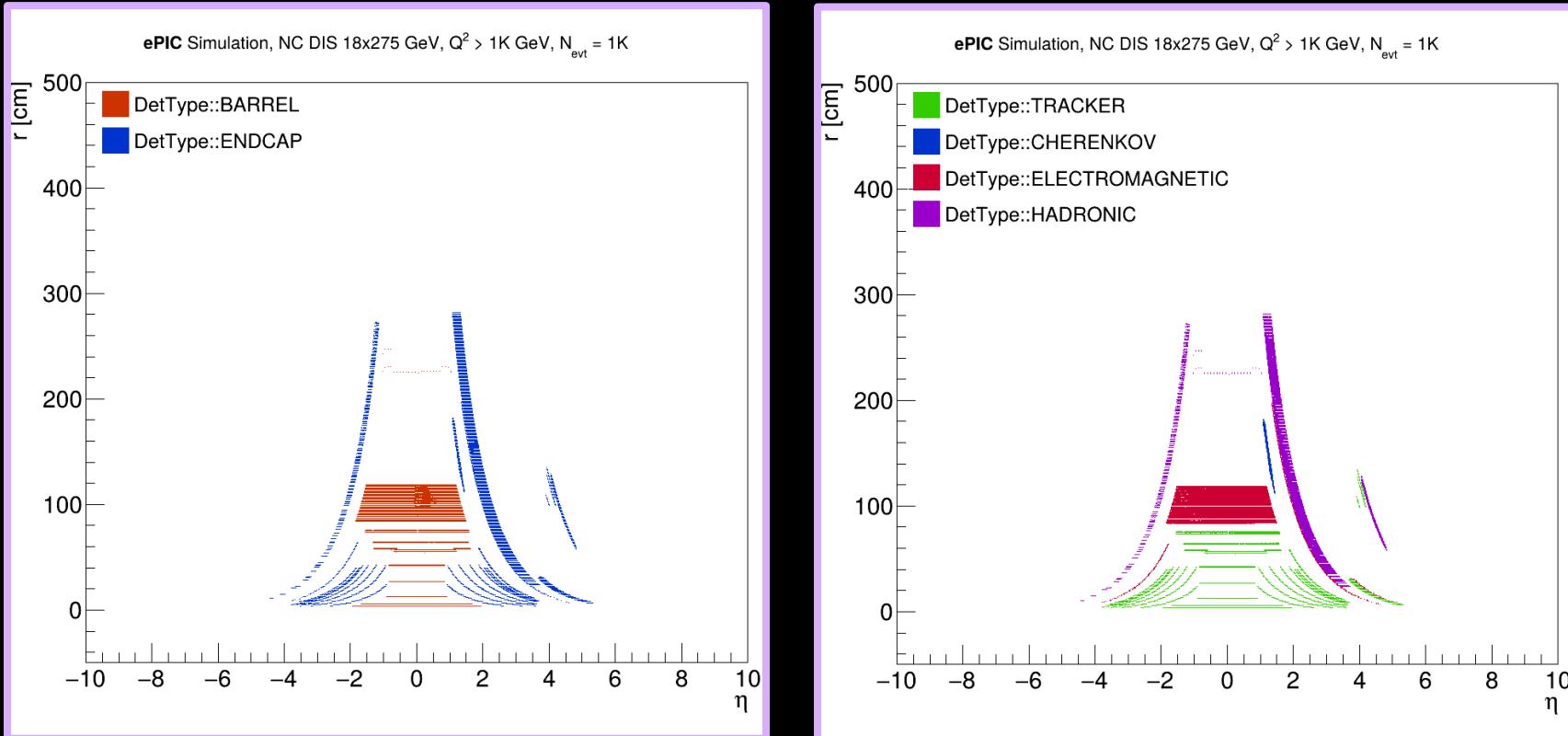

🚧 = In progress

✓ = Done/already in ElCrecon

✗ = Blocked

PF Status | As of Today


- **PFA0 now unblocked!**
 - Introduced track-cluster associations, [EDM4eic#130](#)
 - Resolved bug with patch for JANA2 bug, [eic-spack#794](#)
- Now ***ALL*** stages have PRs ready for review or are in progress!
 - ☞ Huge thanks to **Subhadip Pal (CTU)** & **Esteban Molina (UMich)** for helping out!


○ = To-do

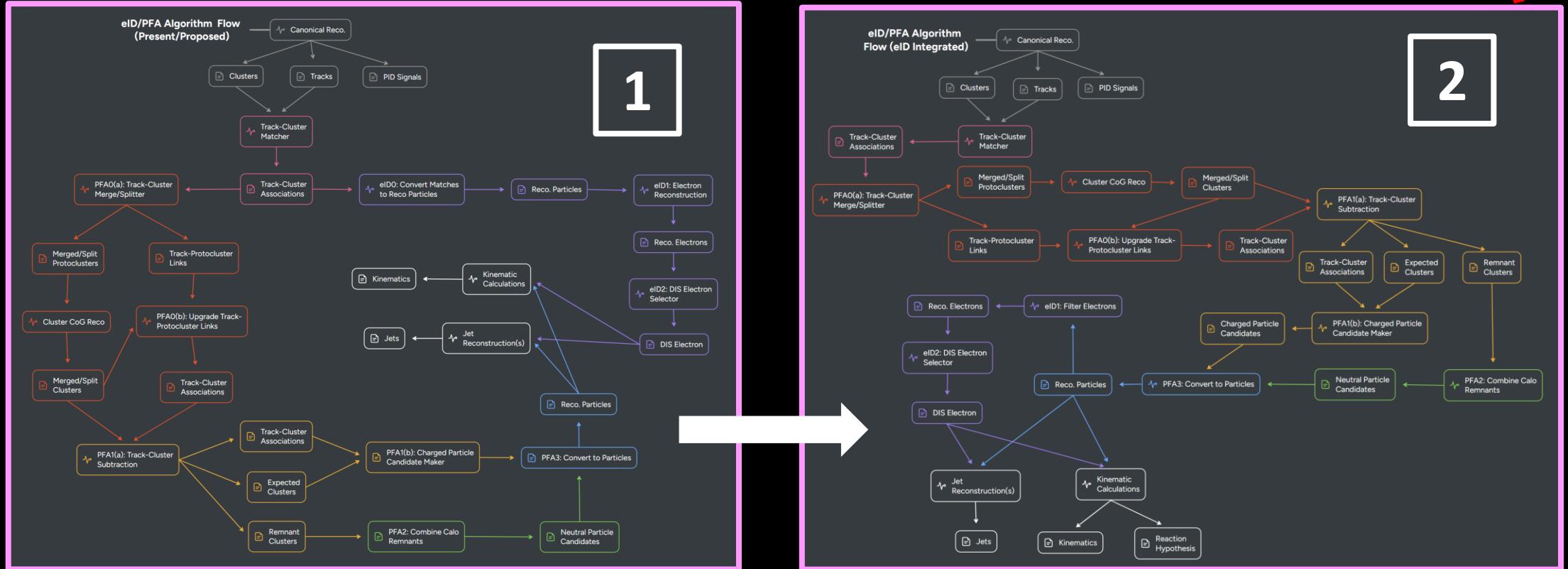
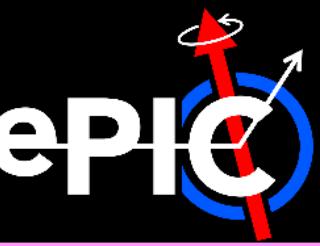
🚧 = In progress

= Done/already in EICrecon

✖ = Blocked

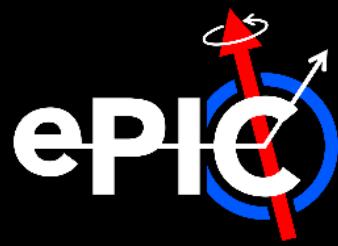
- **Not listed on previous slide:** need to distinguish EMCal vs. HCal clusters *generically*
 - DD4hep has tools to do this, via DetTypes
 - [epic#994](#) applies missing types to (most) subsystems
- Example of how to extract DetTypes in analysis found [here in snippets](#)
- **Above:** DetTypes for hits in 18x275 NC DIS events

Task	Description	Issue/PR	Notes	Assignees
PFA-1	Deprecate MatchClusters, replace w/ pure reco equivalent	EICrecon#1956		Tristan
PFA0(a)	Complete merge/splitter update	EICrecon#1699	PR open	Derek
PFA0(b)	Implement track-protocluster link promotion algorithm	EICrecon#2293	Needs unit test	Derek
PFA1(a)	Revive and finish track-cluster subtractor	EICrecon#1627	PR open	Derek
PFA1(b)	Track-cluster converter (synergy w/ PFA-1)	EICrecon#2124	PR open	Derek
EDM0	Flagging ecal vs. hcal clusters	epic#994	PR open	Derek
PFA2	Implement calo remnant combiner	EICrecon#2195	PR open	Subhadip
PFA3	Implement particle regressor/convertor	EICrecon#2130		Esteban



- Missed goal to have implementation in by CM. But on track to have in by end of **CY26.Q1**
 - After individual stages merged, need PR to tie all together into 1 workflow
- **But:** tuning & benchmarking *still needed for each stage*
 - ☞ This is something **WE STILL NEED HELP WITH**
 - (Task details in backup)

Electron Finder: Proposed Development Plan

ePIC Collaboration Meeting 2026
(Inclusive PWG) Stephen, Win
(Reco WG) Chandra, Derek, Shujie

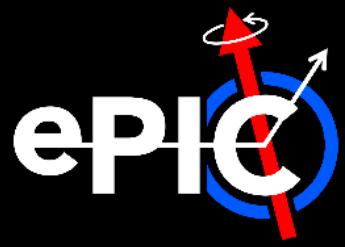

eID Tasks | Context and Milestones

- **Building on Physics Readiness WS discussion:** inclusive+reco convenors met to start planning work on ElCrecon e⁻ finder
 - ⇒ **Goal:** propagate vetted prototype developments, integrate w/ PF

- Identified initial task list, broad strokes of program, and 2 milestones:
 - 1) Existing eID workflow w/o truth info + prototype developments
 - 2) Integration w/ PF

eID Tasks | Toward Milestone 1

Task	Description	Notes	Assignees
eID0	Resolve missing EMCal-track associations		Barak, Win, Help
eID1	Resolve issues with boost.h	EICon#2331	Win
eID2	Add isolation cut to ElectronReconstruction	EICon#2332	Help
eID3/PFA-1	Deprecate MatchClusters, replace with pure reco equivalent	EICon#1956	Tristan
eID4	Wire reco DIS electrons into kinematic calculations (step 1)	EICon#2333	Help


Milestone 1: there are well-defined steps to bring EICon e⁻-finder to next level, meaning that

1. Updates are integrated from Inclusive PWG's prototype code, and
2. Use of truth information is removed.

ETA: end of CY26.Q1 (*cond. on workforce*)

- **Help** indicates where additional workforce is needed
- Tasks are decoupled and can proceed independently
- **eID4** has synergy with **Event Kinematics** reconstruction priority
- **Note:** reco kinematics *do not* have to be made default until collaboration is ready

eID Tasks | Toward Milestone 2

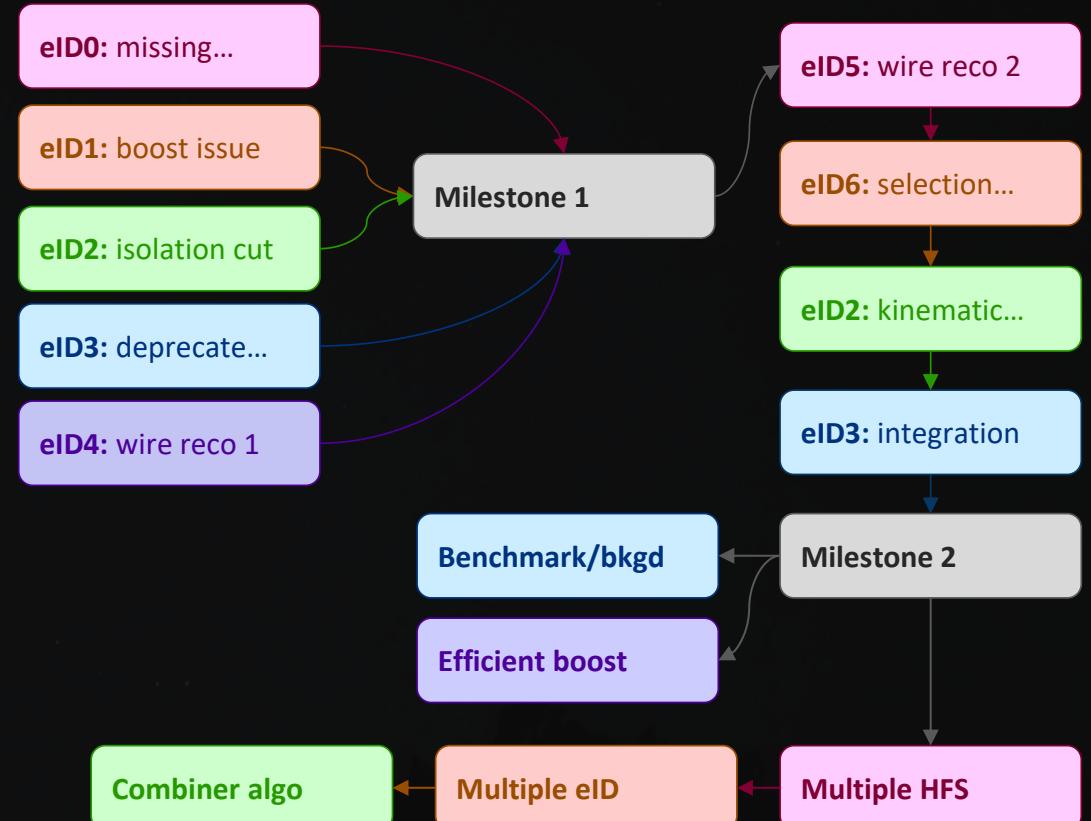
Task	Description	Notes	Assignees
eID5	Wire reco DIS electrons into kinematic calculations (step 2)	EICrecon#2333	Help
eID6	Improve DIS selection (adding p_T ranking, etc.)		TBD
eID7	Improve kinematic calculations (handling different beams)		TBD
eID8/PFA4	Integrating PFAlpha + eID		TBD

Milestone 2: tasks still require elaboration. But can identify high-level steps towards next major milestone, which will be partly defined by integrating PF and eID.

ETA: end of CY26.Q3 (*again cond. on workforce*)

- **TBD** indicates task needs elaboration
- **eID7** has synergy with **Event Kinematics** reconstruction priority
- These tasks might be better done sequentially to assess impact
- **Note:** PFAlpha aiming for implementation + tuning by end of CY26.Q1

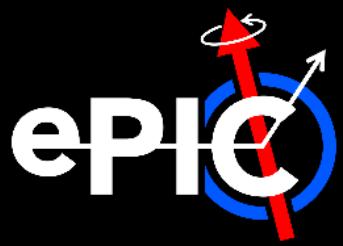
eID Tasks | Longer Term



- Several longer term topics to think about:
 - **Handling multiple HFS***
 - › Multiple e^- candidates means multiple HFS need to be checked
 - **Handling multiple eID algorithms***
 - › Each will have a HFS + kinematic set attached
 - › Doing calculations in ElCrecon can help with combinatorics downstream
 - **Algorithm to combine multiple kinematics, HFS***
 - › Ideally would have algorithm to integrate over combinatorics, provide default values
 - **Standardized benchmarks + assessing backgrounds**
 - › Critical for performance eval.
- Long term (cont.)
 - **More efficient boost calculation**
 - › Boost to CoM really only needs to be calculated once per beam setting
 - **Settling boundary between reconstruction, analysis**
 - › Broader question which touches on every PWG
 - › Where do analysis tools like [RAD](#) fit in?
- **Lastly:** e^- finder is important *for everyone*, so *everyone* is open to help here!
 - These tasks are a great way to learn about both DIS physics and our software framework!

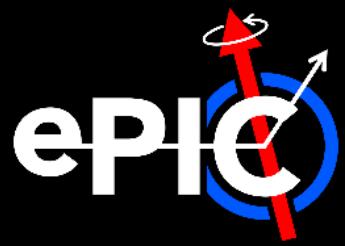
* **Note:** synergy w/ event reco priority

Summary


- **Particle Flow**
 - Made strong progress between Physics Readiness WS and now
 - › Implementation by end CY26.Q1 feasible
 - But tuning + benchmarking still to be done
 - › ***We need help with this!!***
- **e⁻ Finder Development**
 - Planning started to develop EICrecon eID
 - › ***Help needed here, too!***
 - › Several defined tasks to contribute to
 - **Right:** flowchart of tasks for EICrecon eID development

Thanks!
Questions/Comments?

Backup | Benchmark Task List (1/2)


Tasks	Issue/PR/Note	Est. labor time*	Assignee
PFA-1 Benchmark - input: Sum eClust, sum pTrk, nClust, nTrk, E/p matched clusters, sum eGenPar, eGenPar, nGenPar - output: Sum eRecPar, eRecPar, ePar, nRecPar, nPar, PES/R of reco pars	To-do	1 week	OPEN
PFA0 Benchmark - input: Sum eClust, eClust, pTrk, nTrk, nClust, E/p matched clusters - output: Sum eSMClust, eSMClust, nSMClust, E/p SM clust, dRct SM	Some work done	1 week	BLOCKED
PFA1 Benchmark - input: Sum eClust, eClust, sum pTrk, pTrk, nTrk, nClust, E/p matched clusters, sum pChrgPar, pChrgPar, nChrgPar - output (expected): sum eEXClust, eEXClust, nEXClust, E/p EX clust, dRct EX - output (remnant): sum eREClust, eREClust, nREClust - output: sum eEXClust + eREClust	To-do	1 week	OPEN

* Assuming 50% FTE, including code review time

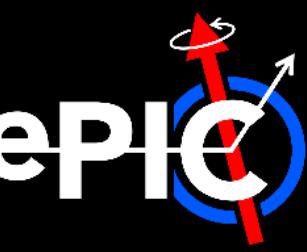
○ Notes:

- PES/R = Particle Energy Scale/Resolution
- SM = Split/Merge, EX = Expected, RE = Remnant
- dRct = distance b/n cluster & matched track

Backup | Benchmark Task List (2/2)

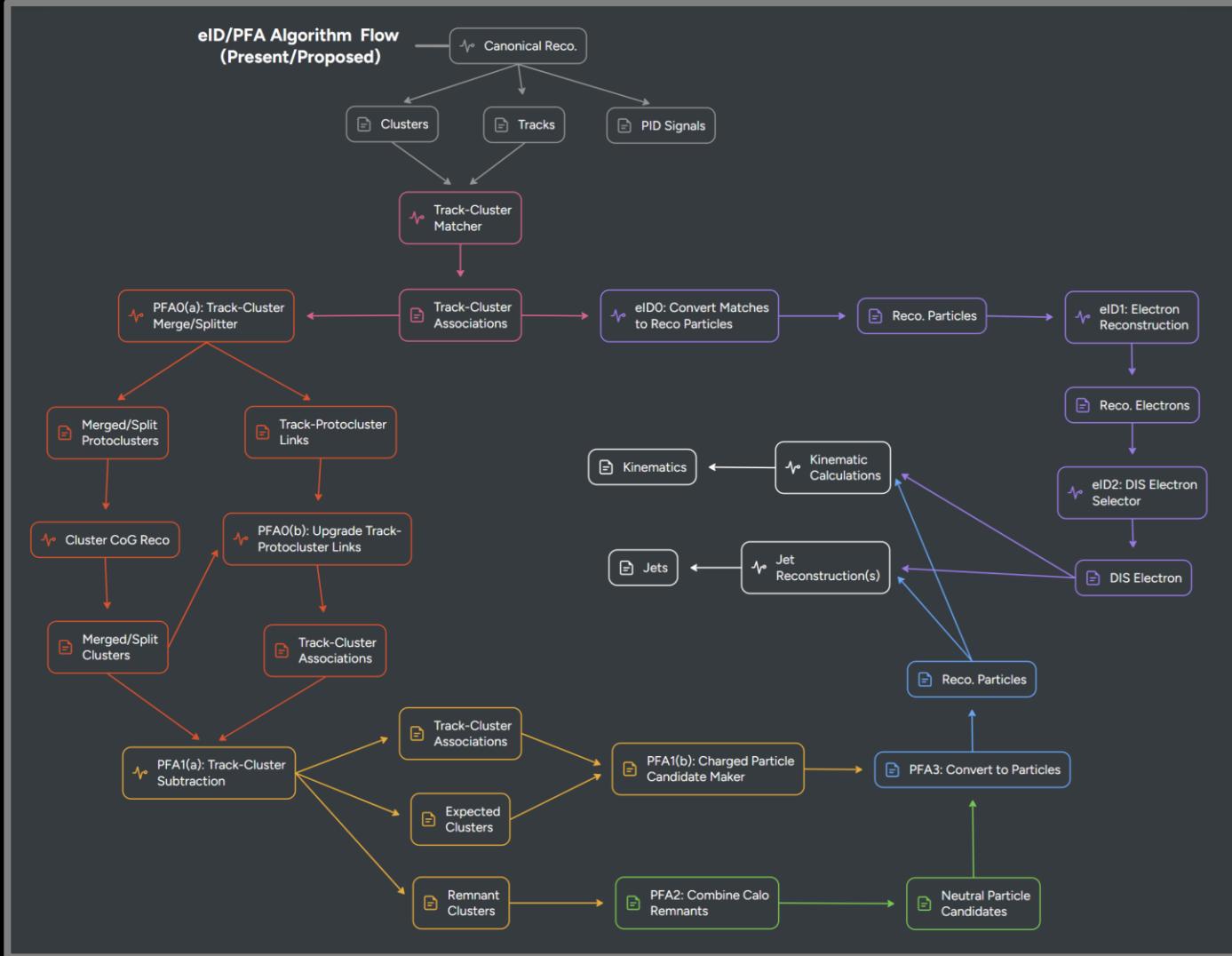
Tasks	Issue/PR/Note	Est. labor time*	Assignee
PFA2 Benchmark - input: sum eREClust (EM, H), eREClust (EM, H), nREClust (EM, H), sum eNeuPar, eNeuPar, nNeuPar - output: sum eRecPar, nRecPar	To-do	1 week	OPEN
PFA3: - input: Sum eClust, sum pTrk, nClust, nTrk, E/p matched clusters, sum eGenPar, eGenPar, nGenPar - output: Sum eRecPar, eRecPar, ePar, nRecPar, nPar, PES/R of reco pars	To-do	1 week	OPEN
PHYS Benchmark: JES/R	To-do (just need wiring)	3 days	Dener
PHYS Benchmark^(a,b): Jets - E, mass, FFs (jt, z), Substructure (dRcst, angularity, EECs)	To-do	1 week	Dener
PHYS Benchmark^(a): Events - TEECs, NECs	NECs in progress (see here)	3 weeks	Derek (NECs)

* Assuming 50% FTE, including code review time


a) Desirable, but not required

b) Could do inclusive, HF-tagged, etc.

○ Notes:


- EM = “Electromagnetic”, H = “Hadronic”
- dRcst = constituent delta-R

Backup | Baseline Overview

- In broad strokes: the overall algorithm is

- 1) **[PFA-1]** Match tracks to EMCAL, HCal clusters
- 2) **[PFA0]** Merge clusters based on track E/p in a cone of size R_0
 - › Split merged clusters between matched tracks
- 3) **[PFA1a]** Subtract expected track energy from merged clusters
 - › Split into tracks + expected energy, and remnant clusters (leftover energy)
- 4) **[PFA1b]** Convert tracks + expected energy to particle candidates
- 5) **[PFA2]** Combine remnant EMCAL, HCal clusters in a cone of size R_1 , convert to particle candidate
- 6) **[PFA3]** Convert candidates to reconstructed particles

- **Track-Cluster Match Converter:** [MatchClusters](#) (current source of `ReconstructedParticles`) is one of biggest truth info leaks in reconstruction
 - But with track-cluster matches, we can now patch it (see [EICrecon#1956](#))
 - Intended to supersede MatchClusters while PFAlpha develops
- **The algorithm:** is identical to MatchClusters, but with track-cluster matches rather than truth info
 - 1) Build map of tracks onto matched clusters, and set of clusters
 - 2) For each track:
 - a) Remove matched cluster from cluster set
 - b) Copy associated charged particle of track into output
 - 3) For each remaining cluster in set:
 - Create a reconstructed particle with mass and PDG of 0

Inputs:

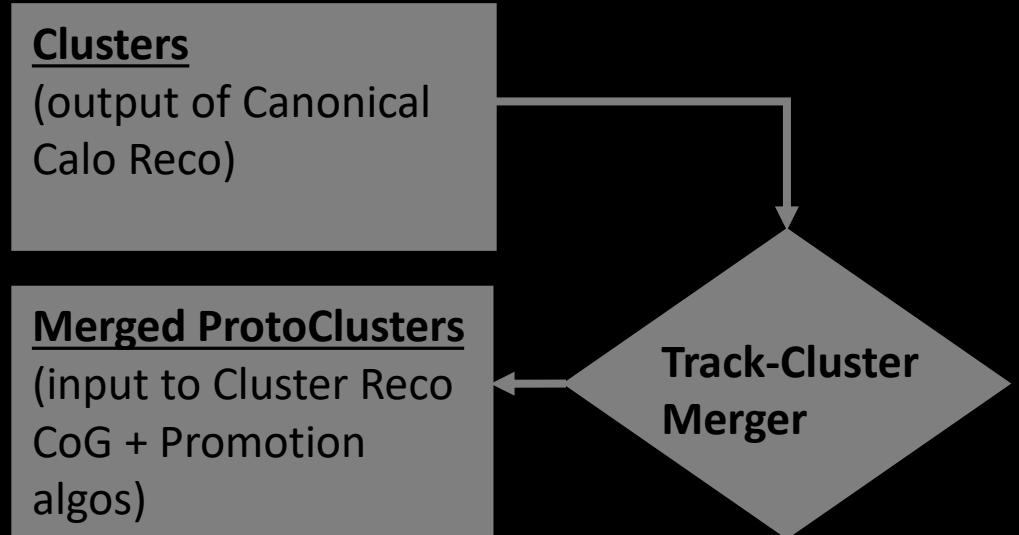
- Track-cluster matches
- Reconstructed charged particles
- Clusters
 - › Planned on only using EMCal clusters (like MatchClusters)
 - › But *could* add in HCal's

Outputs:

- Reconstructed particles

Parameters:

- None (if using only EMCal clusters)

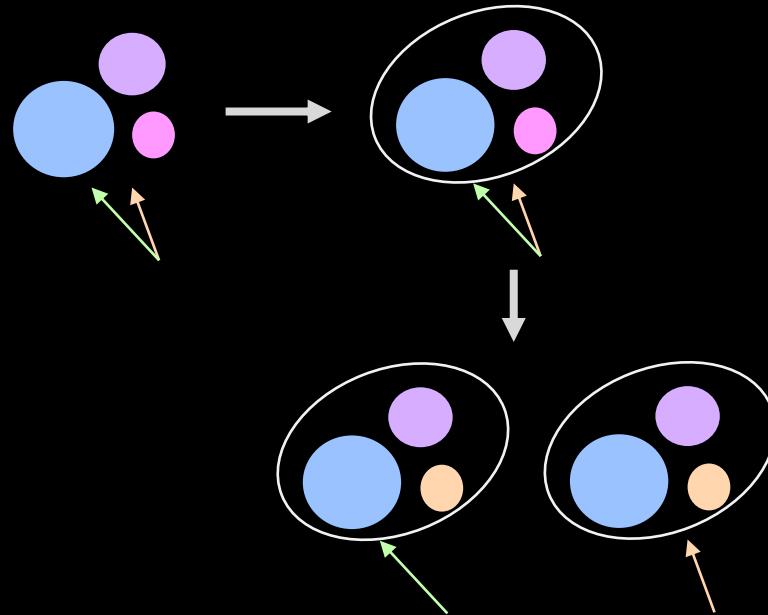

- **Track-Cluster Merging:** implemented to address in pTDR need (cluster merging)
 - Algorithm outline based on ATLAS's split recovery procedure
 - › c.f. [Eur. Phys. J. C \(2017\) 77:466](#)
 - Implemented in [EICrecon#1406](#)

- **The algorithm**

- 1) Match track projection to cluster
- 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$

- 3) If $S < S_{cut}$, add clusters inside Δr_{add}
- 4) If multiple tracks pointing to merged cluster:
 - Split into one cluster for each track & reweight transverse shape by p_{trk}



Parameters:

- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- S_{cut} : Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting

- **Track-Cluster Merging:** implemented to address in pTDR need (cluster merging)
 - Algorithm outline based on ATLAS's split recovery procedure
 - › c.f. [Eur. Phys. J. C \(2017\) 77:466](#)
 - Implemented in [ElCrecon#1406](#)

- **The algorithm**
 - 1) Match track projection to cluster
 - 2) If matched, calculate significance b/n E_{clust} energy & expected E_{dep} :

$$S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$$
 - 3) If $S < S_{cut}$, add clusters inside Δr_{add}
 - 4) If multiple tracks pointing to merged cluster:
 - Split into one cluster for each track & reweight transverse shape by p_{trk}

Parameters:

- $\langle E/p \rangle$: Average E/p
- $\sigma(E_{dep})$: Spread of dep. energy
- S_{cut} : Threshold to run split-recovery
- Δr_{add} : Window to add clusters
- σ_{trk} : scale for transverse shape reweighting

- **Track-Cluster Subtractor:** subtracts momentum of matched track(s) from cluster
 - In progress at [EICrecon#1627](#)

- **The algorithm:**
 - 1) Build map of clusters onto *all* matched tracks
 - 2) For each cluster:
 - a) Sum energy of matched tracks:
$$E_{trk} = \sum p_{trk}(S_{use}) \oplus m_{trk}$$
 - b) Subtract sum: $E_{sub} = E_{clust} - f_{sub}E_{trk}$
 - c) If NOT consistent w/ 0,
 - Create remnant cluster w/ E_{sub}
 - Set expected cluster energy to $E_{clust} - E_{sub}$
 - d) Create an association for each track matched to expected cluster

Inputs:

- Track-cluster matches
- Clusters
- Track projections

Outputs:

- Remnant clusters ($E_{sub} = E_{clust} - E_{trk}$)
- Expected clusters ($E_{clust} - E_{sub}$)
- Track-expected cluster association

Parameters:

- f_{sub} : fraction of track energy to subtract
- $m_{default}$: default mass to use for track energy
- S_{use} : surface to evaluate track momentum at
- $k_{do\ n\sigma?}$: turn on/off checking against resolutions
- $n\sigma_{cut}$: max no. of sigmas to be consistent w/ 0
- σ_{trk} : tracking resolution to use in n-sigma cut
- σ_{cal} : calo resolution not use in n-sigma cut

- **Track-Cluster Subtractor:** subtracts momentum of matched track(s) from cluster
 - In progress at [EICrecon#1627](#)

- **The algorithm:**

- 1) Build map of clusters onto *all* matched tracks
- 2) For each cluster:
 - a) Sum energy of matched tracks:

$$E_{trk} = \sum p_{trk}(S_{use}) \oplus m_{trk}$$

- b) Subtract sum: $E_{sub} = E_{clust} - f_{sub}E_{trk}$
- c) If NOT consistent w/ 0,
 - Create remnant cluster w/ E_{sub}
 - Set expected cluster energy to $E_{clust} - E_{sub}$
- d) Create an association for each track matched to expected cluster

Sub-routine: is E_{sub} consistent w/ zero?

- 1) **If** $E_{sub} < 0$, **YES**
- 2) **Else if** $k_{do} n\sigma$?
 - a) Calculate $n\sigma$

$$n\sigma = \frac{E_{sub}}{\sigma_{trk} \oplus \sigma_{cal}}$$
 - b) **If** $n\sigma < n\sigma_{cut}$, **YES**
- 3) **Else**
 - a) **If** $E_{sub} < \epsilon$, **YES**

Note: epsilon here is
`std::numeric_limits<double>::epsilon()`

- **Track-Cluster Subtractor:** subtracts momentum of matched track(s) from cluster
 - In progress at [EICrecon#1627](#)

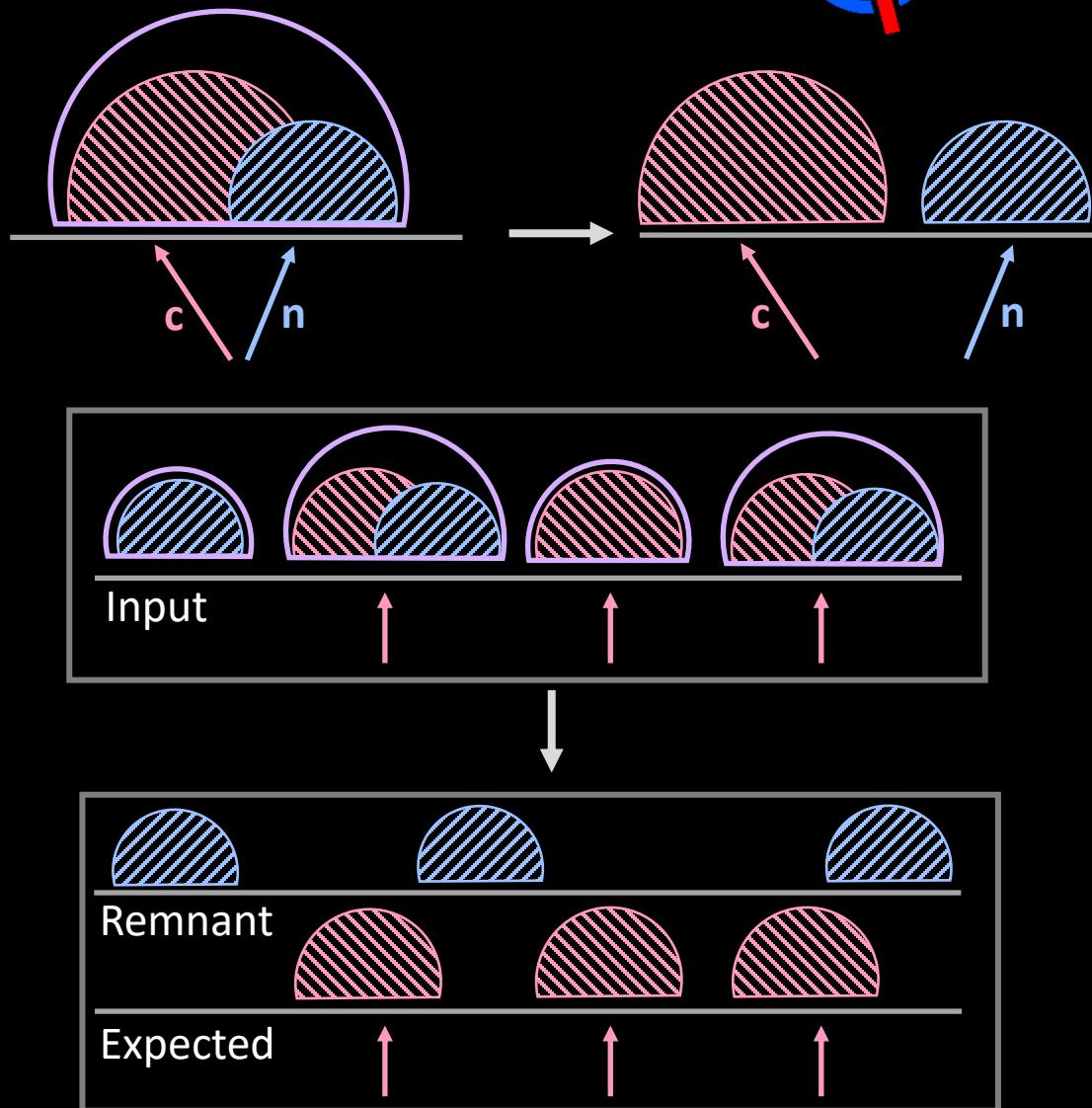
- **The algorithm:**

- 1) Build map of clusters onto *all* matched tracks

- 2) For each cluster:

- a) Sum energy of matched tracks:

$$E_{trk} = \sum p_{trk}(S_{use}) \oplus m_{trk}$$


- b) Subtract sum: $E_{sub} = E_{clust} - f_{sub}E_{trk}$

- c) If NOT consistent w/ 0,

- Create remnant cluster w/ E_{sub}

- Set expected cluster energy to $E_{clust} - E_{sub}$

- d) Create an association for each track matched to expected cluster

- **Charged Candidate Maker:** forms track-cluster matches into a charged particle candidate
 - To-do

- **The algorithm:**

- 1) Build map of tracks onto *all matched clusters*
- 2) For each track:
 - a) For each matched cluster:
 - i. Identify if in an ECal or an HCal by checking system ID
 - ii. Select relevant weight
 - iii. Add to relevant members
 - b) Add to relevant member

Inputs:

- Track-cluster matches

Outputs:

- Charged particle candidates

Parameters:

- $\{\text{ID}_{\text{ecal}}\}$: IDs of ECals to look for
- $\{\text{ID}_{\text{hcal}}\}$: IDs of HCals to look for
- $\{w_e\}$: weights of ECals to use (runs parallel to $\{\text{Id}_{\text{ecal}}\}$)
- $\{w_h\}$: weights of HCals to use (runs parallel to $\{\text{Id}_{\text{hcal}}\}$)

- **Calo Remnant Combiner:** combines remnant clusters from subtractor into neutral particle candidates
 - Still to-do!

- **The algorithm:**

- 1) Combine nearby ECal, HCal clusters
 - a) Identify seed ECal cluster
 - b) Merge all ECal, HCal clusters in Δr_{add}^{em} , Δr_{add}^h of seed and create neutral candidate
 - c) Repeat until no ECal clusters are left
- 2) Combine remaining HCal clusters
 - a) Identify seed HCal cluster
 - b) Add all HCal clusters in Δr_{add}^h of seed and create neutral candidate
 - c) Repeat until no HCal clusters are left

Inputs:

- Remnant ECal clusters
- Remnant HCal clusters

Outputs:

- Neutral particle candidates

Note: maybe make inputs vectors of collections?

Parameters:

- Δr_{add}^{em} : window to add ECal clusters
- Δr_{add}^h : window to add HCal clusters
- $\{w_{em}\}$: weights (or weight) of ECals to use
- $\{w_h\}$: weights (or weight) of HCals to use

- **Particle Converter:** takes candidate particles and turns them into reconstructed particles
 - Still to-do!

- **The algorithm:**

- 1) Assign preliminary PID based on what info is available (e.g. no hcal clusters → electron, photon, or pi0)
- 2) Calculate track energy

$$E_{trk} = p_{trk} \oplus m_{pid}$$
- 3) Calculate calorimeter energy

$$E_{cal} = N_{cal} \left(\sum w_{em} E_{em} + \sum w_h E_h \right)$$
- 4) If charged particle and $k_{use \sigma?}$, calculate resolution-weighted average of E_{cal} and E_{trk}
- 5) Calculate remaining kinematics and create reconstructed particle

Inputs:

- Candidate charged/neutral particles
- Primary vertices (for neutral candidates)

Outputs:

- Reconstructed particles

Parameters:

- $k_{use \sigma?}$: turn on/off using resolution in energy calculation for charged candidates
- N_{cal} : normalization of calo energy
- σ_{trk} : tracking resolution to use in energy calc
- σ_{cal} : calo resolution to use in energy calc

- **PFAAlpha:** initial stab in [EICrecon#1186](#) (now closed)
 - Initial implementation aimed for just a single algorithm
 - Initially even aimed to handle all 3 regions of central detector in one algorithm...
- **The gist:**
 - 1) Project tracks through calos
 - 2) Associate all calo clusters in cone of size R around track
 - 3) Sum all calo energy in cone and subtract expected track energy from sum
 - 4) Merge leftover clusters in cones of size R
 - 5) **Return PFObjects (reco. particles)**
 - Tracks
 - Subtracted, merged cluster
- **Clear Drawbacks!**
 - ☒ Monolithic by definition
 - ☒ Hard to maintain, evolve
 - ☒ Wiring in new PF algorithms means rewriting lots of code

Parameters

- $R_{sum}^{E\text{Cal}}$: radius in (η, φ) in which to combine ECal clusters
- $R_{sum}^{H\text{Cal}}$: same but for HCal
- $f_{sub}^{E\text{Cal}}$: fraction of track energy to subtract from ECal clusters
- $f_{sub}^{H\text{Cal}}$: same but for HCal

PFA-1

- 1) Subtract projected E_{trk} from ECal, HCal clusters
 - a) Identify seed (highest p_{trk}) track projection at inner face of ECal
 - b) Sum E_{trk} of all projections in $R_{sum}^{E\text{Cal}}$, $R_{sum}^{H\text{Cal}}$ of seed
 - c) Sum E_{clust} of all ECal, HCal clusters in $R_{sum}^{E\text{Cal}}$, $R_{sum}^{H\text{Cal}}$ respectively
 - d) If $\sum E_{trk}^{E\text{Cal},H\text{Cal}} < \sum E_{clust}^{E\text{Cal},H\text{Cal}}$
 - i. Subtract $f_{trk}^{E\text{Cal},H\text{Cal}} \times E_{trk}^{E\text{Cal},H\text{Cal}}$ of nearest projection from each cluster
 - ii. Pass subtracted clusters onto step 2
 - e) Repeat 1(a) – 1(d)(ii) until all projections have been used

PFA1(a)

PFA2

- 2) Combine remaining ECal, HCal clusters into topo-clusters
 - a) Combine nearby ECal, HCal clusters
 - i. Identify seed (highest E_{clust}) ECal cluster
 - ii. Merge all ECal, HCal clusters in $R_{sum}^{E\text{Cal}}$, $R_{sum}^{H\text{Cal}}$ of seed
 - iii. Repeat 2(a)(i) – 2(a)(iii) until no ECal clusters are left
 - b) Combine remaining HCal clusters
 - i. Identify seed HCal cluster
 - ii. Add all HCal clusters in $R_{sum}^{H\text{Cal}}$ of seed
 - iii. Repeat 2(b)(i) – 2(b)(iii) until no HCal clusters left

3) Return PFObjects

PFA1(b)/PFA3

- Note: new approach *also* splits up PFA0 - 2 into separate calorimeters/eta regions