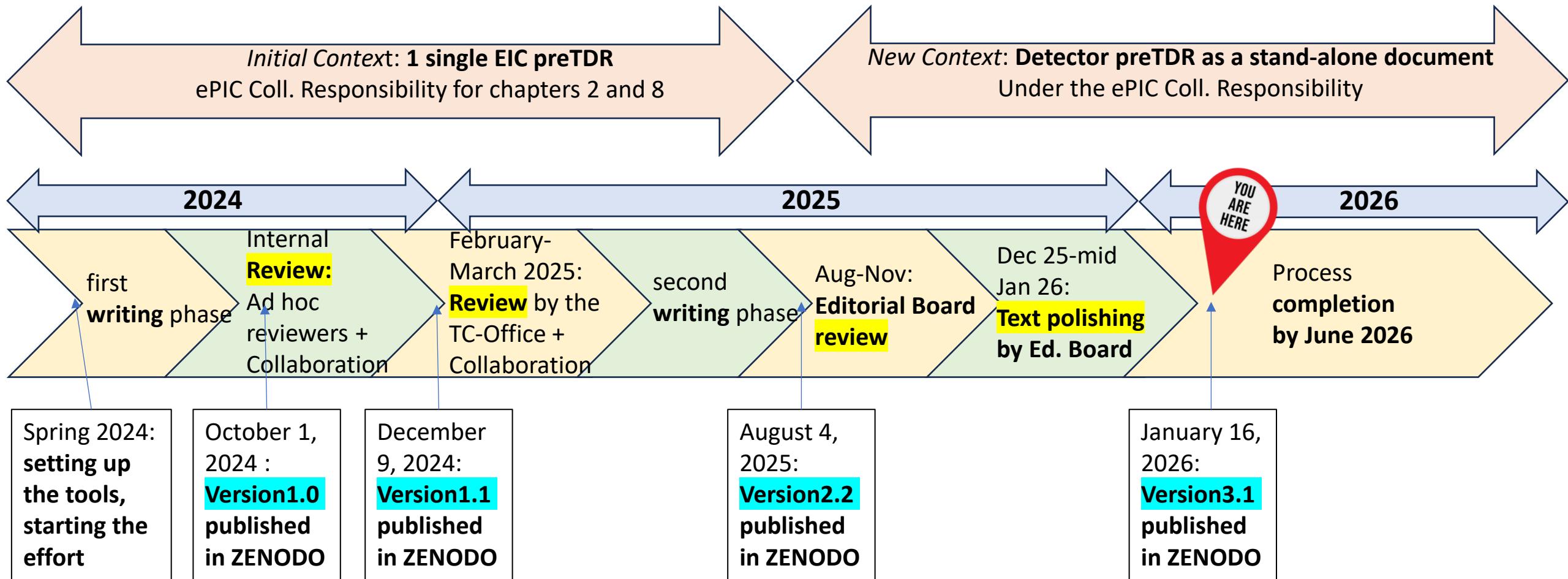
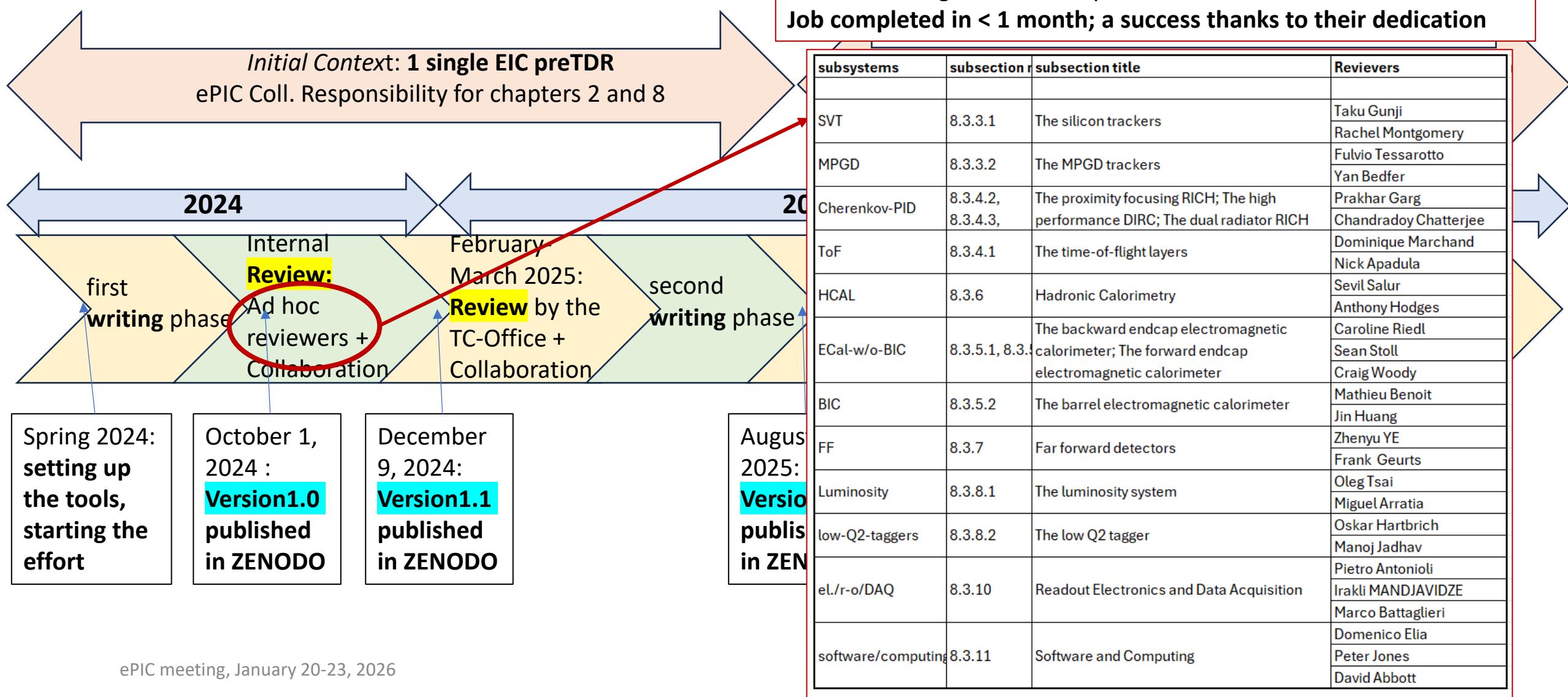


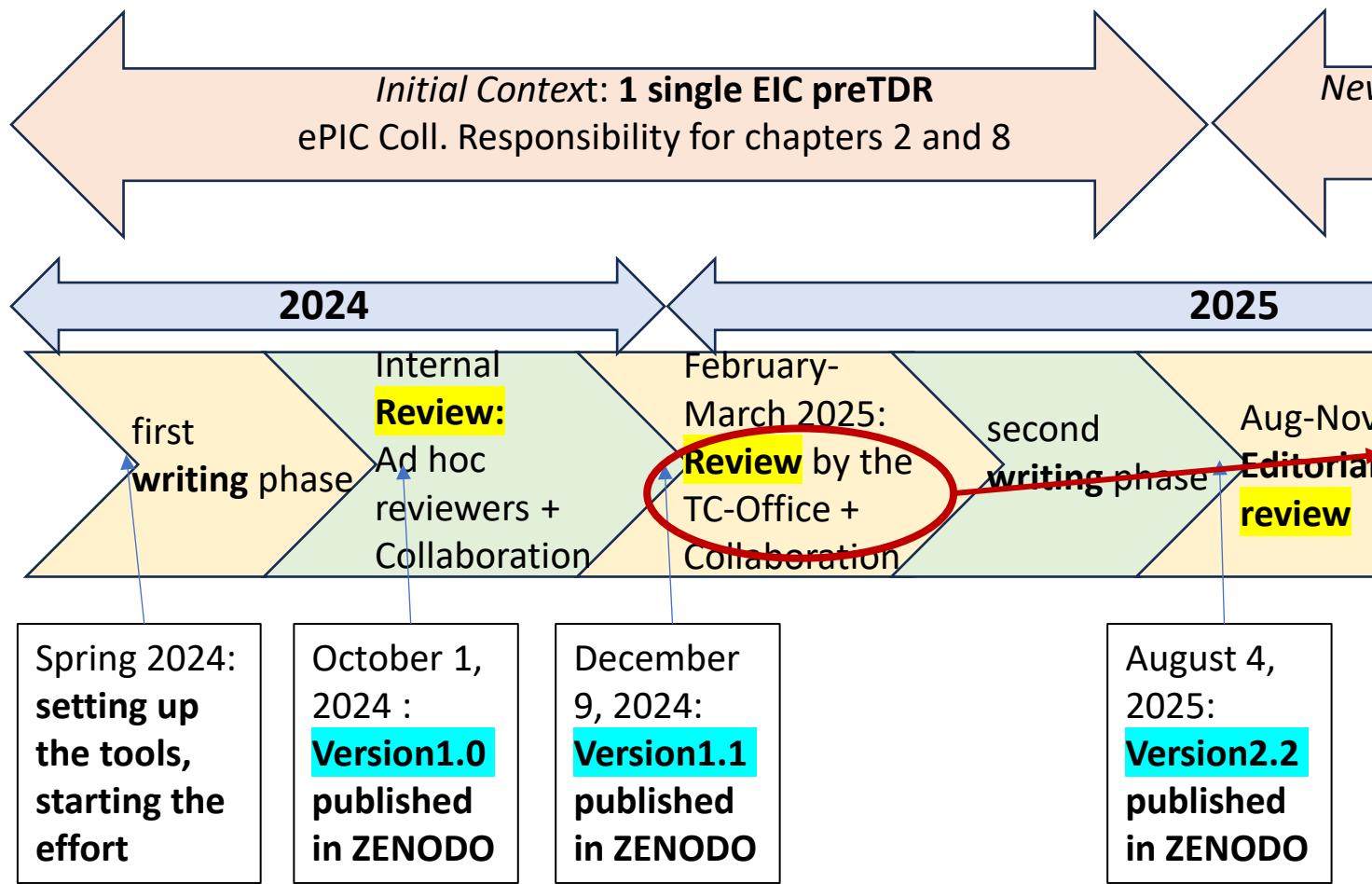
Status of the preTDR and Plans for CD-2


Silvia Dalla Torre, John Haggerty

ePIC meeting
BNL, January 20-23, 2026

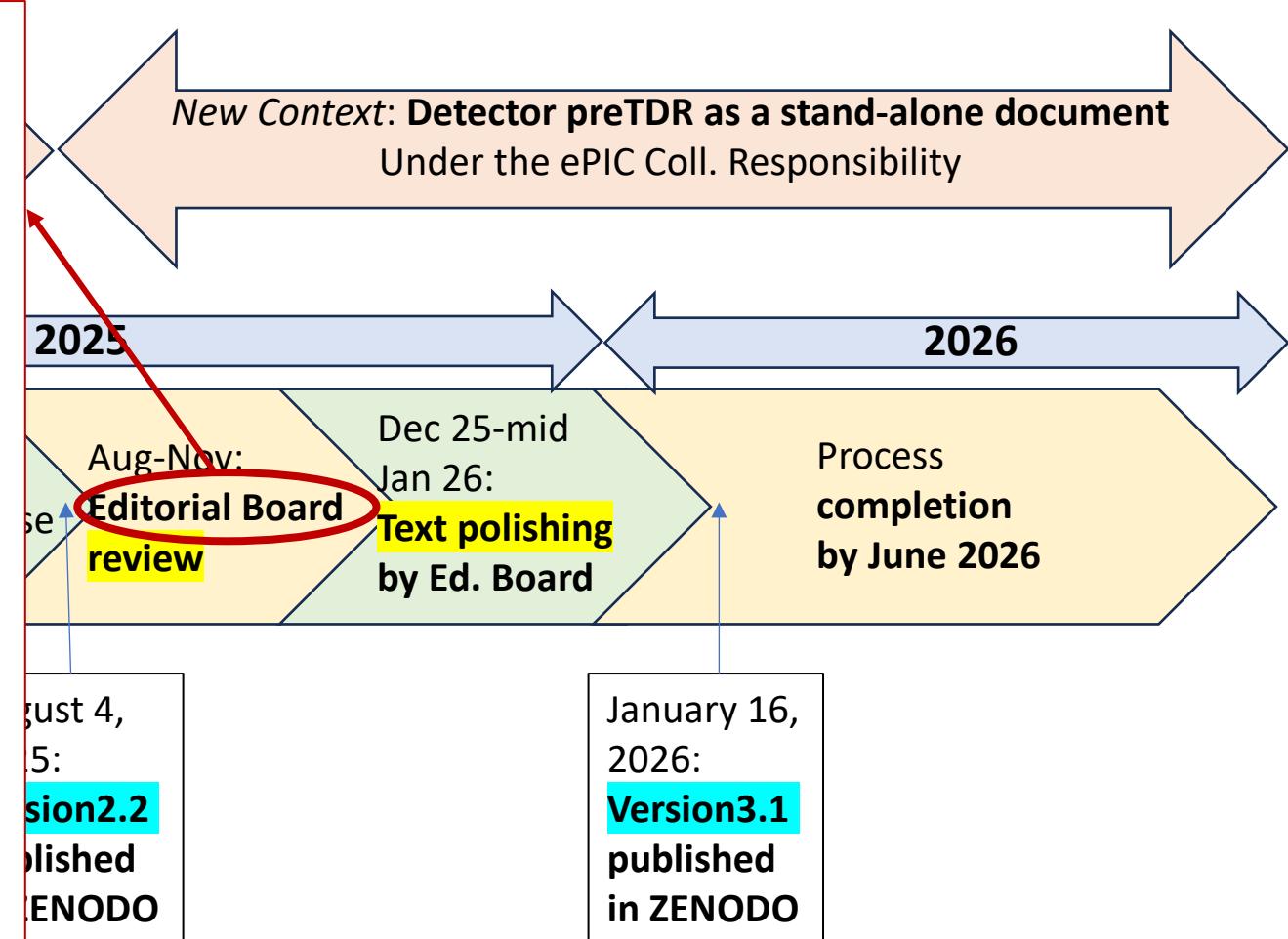

BASIC CONSIDERATION

- **Reaching the Detector Readiness level for CD2 and Completing the preTDR are highly correlated efforts: two sides of the same coin**
- **In fact, the preTDR documents the Detector Readiness**
- In the following, the matter is discussed in term of preTDR status and progress; this is largely equivalent to discuss it in term of progressing in the Detector Readiness level


preTDR STEPS

preTDR steps, complementary information and acknowledgements

preTDR steps, complementary information and acknowledgements


	chapter	section	subsection	sub-subsection	title	TC-office review
ePIC responsibility	8				Experimental Systems	in charge
		8.1			Experimental Equipment Requirements Summary	
		8.2			General Detector Considerations and Operations Challenges	
Project responsibility		8.2.1			General Design Considerations	Prakhar
		8.2.2			Backgrounds and Rates	Prakhar
		8.2.3			Radiation Level	Prakhar
Joint responsibility		8.3			The ePIC Detector	
		8.3.1			Introduction	Oskar
		8.3.2			Magnet	
		8.3.3			Tracking	Silvia
			8.3.3.1		The silicon trackers	Silvia
			8.3.3.2		The MPGD trackers	Silvia
		8.3.4			Particle identification	Oskar
			8.3.4.1		The time-of-flight layers	Matt
			8.3.4.2		The proximity focusing RICH	Oskar
			8.3.4.3		The high performance DIRC	Oskar
			8.3.4.4		The dual radiator RICH	Oskar
		8.3.5			Electromagnetic Calorimetry	Prakhar
			8.3.5.1		The backward endcap electromagnetic calorimeter	Prakhar
			8.3.5.2		The barrel electromagnetic calorimeter	all, done
			8.3.5.3		The forward endcap electromagnetic calorimeter	Prakhar
		8.3.6			Hadronic Calorimetry	Matt
			8.3.6.1		The backward endcap hadronic calorimeter	Oskar
			8.3.6.2		The barrel hadronic calorimeter	Matt
			8.3.6.3		The forward endcap hadronic calorimeter	Matt
		8.3.7			Far forward detectors	Matt
			8.3.7.1		The detectors in the B0 bending magnet	Matt
			8.3.7.2		The roman pots and the off-momentum detectors	Matt
			8.3.7.3		The zero degree calorimeter	Matt
		8.3.8			Far backward detectors	Oskar
			8.3.8.1		The luminosity system	Oskar
			8.3.8.2		The low Q2 taggers	Oskar
		8.3.9			Polarimeters	
			8.3.9.1		The electron polarimeters	
			8.3.9.2		The proton polarimeters	
		8.4			Readout Electronics and Data Acquisition	Oskar
			8.4.1		Software and Computing	Silvia
			8.4.1		Detector Integration	
			8.4.2		Installation and Maintenance	
		8.5			Detector Commissioning and Pre-Operations	

preTDR steps, complementary information and acknowledgements

The preTDR Editorial Board formed by the SP-Office

- Editorial Board composition
 - Board co-chairs: Silvia Dalla Torre and John Haggerty
 - Ex-officio members: Spokesperson, CC Chair and Deputy, PM Representative in the TIC
 - Members:
 - Olga Evdokimov
 - Yulia Fullertova
 - Peter Jones (*)
 - Yongsun Kim (*)
 - Rosario Turrisi
 - Zhenyu Ye
 - (*) later they had to step back

Thanks to them all for serving ePIC within this demanding task!

Detector preTDR, document layout

- **Executive Summary**
- **CHAPTER 1 – Introduction**
 - The EIC project and the accelerator complex (high level approach)
- **CHAPTER 2 – Requirements**
 - Present requirements resulting as the evolution of the YR ones
- **CHAPTER 3 – Experimental Systems**
 - Presenting the detector subsystems matching the requirements (mainly individual performance)
- **CHAPTER 4 – Detector Performance for the EIC physics program**
 - Presenting the holistic detector performance by the performance for key physics measurements
- **CHAPTER 5 – Detector-Accelerator interfaces**
 - Integration into the facility

Advanced version
in Version 3.1

Detector preTDR, document layout

- **Executive Summary**
- **CHAPTER 1 – Introduction**
 - The EIC project and the accelerator complex
- **CHAPTER 2 – Requirements**
 - Present requirements resulting as the evolution of the YR approach
- **CHAPTER 3 – Experimental Systems**
 - Presenting the detector subsystems matching the requirements
- **CHAPTER 4 – Detector Performance for the EIC physics program**
 - Presenting the holistic detector performance by the performance for key physics measurements
- **CHAPTER 5 – Detector-Accelerator interfaces**
 - Integration into the facility

Important note:

This layout changes the scope of the chapter dedicated to physics (now chapter 4)

- *No longer extracting “Requirements” from physics studies (old YR approach)*
- *Requirement are given as educated evolution of YR findings and Requirements*
- *match the Project requirements*
- *Physics studies prove in a holistic approach the detector capabilities with subsystems matching the Requirements*

Detector preTDR, Version3.1

[https://zenodo.org/records/18271602/files/ePIC Preliminary Design Report 3.1.pdf?download=1](https://zenodo.org/records/18271602/files/ePIC%20Preliminary%20Design%20Report%203.1.pdf?download=1)

DRAFT
ePIC PDR
January 16, 2026

The ePIC Detector Preliminary Technical Design Report

Version 3.1 also to be posted in the pre-brief
material for the coming
Director's Review of the EIC Detector (ePIC)
Subproject to Assess Baseline Readiness

ePIC meeting, January 20-23, 2026

Requirements

Contents

Executive Summary

1 Introduction

2 Detector Requirements

2.1 Experimental Requirements Summary and Physics Motivation

2.1.1 Requirements of Tracking and Momentum Measurement in the Central Detector

2.1.2 Electromagnetic Calorimetry

2.1.3 Hadronic Calorimetry

2.1.4 Particle Identification (PID)

2.1.5 Forward and Per-Backward Detectors

3 Experimental Systems

3.1 Introduction

3.1.1 The Context

3.1.2 The Detector

3.1.3 Technological Synergistic Aspects of the Detector Design

3.2 ePIC Detector

3.2.1 Detector Overview

3.2.1.1 Introduction to Detector Operation Challenges

3.2.1.2 Backgrounds and Rates

3.2.1.3 Radiation Level

3.2.1.4 Dose and fluence from e-p minimum-bias events

3.2.1.5 Dose and fluence from hadron-hadron collisions

3.2.1.6 Dose and fluence from electron beam interactions

3.2.2 Magnet

3.2.2.1 Introduction

3.2.2.2 Requirements

3.2.2.3 Overview of the Yoke

3.2.2.4 Description of the magnet

3.2.2.5 Magnetic Design

3.2.2.6 Nominal Design

3.2.2.7 Fault Summary

3.2.2.8 Conductor Design

3.2.2.9 Mechanical Design

3.2.2.10 A: Material properties and cold pack homogenization

3.2.2.11 B: 3D model assumptions

3.2.2.12 C: Acceptance criteria

3.2.2.13 D: System Analysis and Chamber Protection

3.2.2.14 E: Ramp-up and ramp-down

3.2.2.15 F: Heat sinks

3.2.2.16 G: Quench protection

3.2.2.17 H: Quench & valve for the nominal case currents

3.2.2.18 Cryptogen Design

3.2.2.19 A: The thermal shield

3.2.2.20 B: The thermal shield

3.2.2.21 C: The thermal shield

3.2.2.22 D: Heat sinks

3.2.2.23 E: Instrumentation & Control

3.2.2.24 A: Voltage Taps

3.2.2.25 B: Cryogenic Instrumentation

3.2.2.26 C: Material sensors

3.2.2.27 Summary

3.2.3 Tracking

3.2.3.1 The silicon trackers

3.2.3.2 Requirements

3.2.3.3 Justifications

3.2.3.4 Implementation

3.2.3.5 The MPD tracker

3.2.3.6 Requirements

3.2.3.7 Justifications

3.2.3.8 Implementation

3.2.4 Particle Identification

3.2.4.1 The time-of-flight layers

3.2.4.2 Requirements

3.2.4.3 Justifications

3.2.4.4 Implementation

3.2.4.5 The particle-identification RICH

3.2.4.6 Requirements

3.2.4.7 Justifications

3.2.4.8 Implementation

3.2.4.9 The dual radiator RICH

3.2.4.10 Requirements

3.2.4.11 Justifications

3.2.4.12 Implementation

3.2.5 Electromagnetic Calorimetry

3.2.5.1 The backward endcap electromagnetic calorimeter

3.2.5.2 Requirements

3.2.5.3 Justifications

3.2.5.4 Implementation

3.2.5.5 The barrel electromagnetic calorimeter

3.2.5.6 Requirements

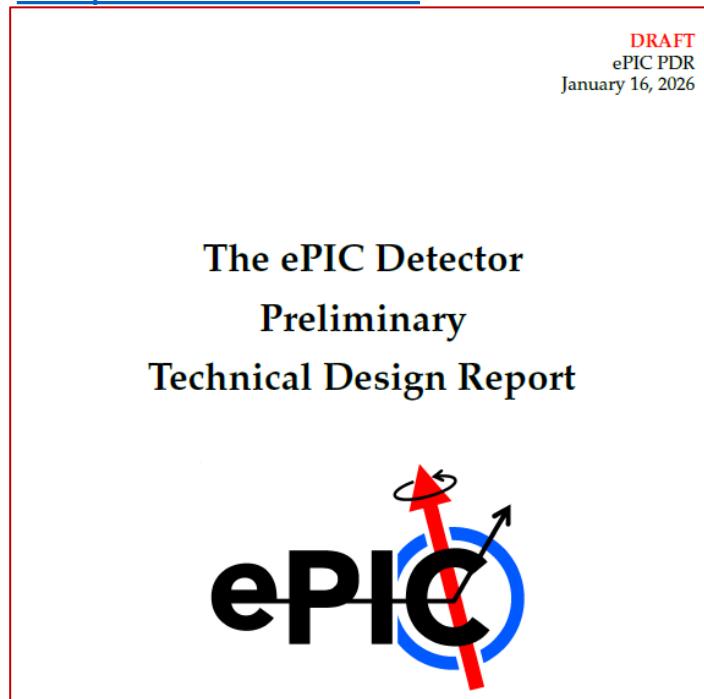
3.2.5.7 Justifications

3.2.5.8 Implementation

Experimental Systems

3.2.5.9 The forward endcap electromagnetic calorimeter	251
3.2.6 Hadronic Calorimetry	251
3.2.6.1 The barrel and endcap hadronic calorimeter	251
Requirements	251
Justifications	251
Implementation	251
3.2.6.2 The barrel hadronic calorimeter	251
Requirements	251
Justifications	251
Implementation	251
3.2.6.3 The forward endcap hadronic calorimeter	251
Requirements	251
Justifications	251
Implementation	251
3.2.7 Forward detectors	261
3.2.7.1 The muon arms and the off-momentum detectors	261
Requirements	261
Justifications	261
Implementation	261
3.2.7.2 The forward detectors	261
Requirements	261
Justifications	261
Implementation	261
3.2.8 Per-backward detectors	261
3.2.8.1 The luminosity system	261
Introduction	261
Requirements	261
Justifications	261
Implementation	261
3.2.8.2 The zero degree calorimeter	261
Requirements	261
Justifications	261
Implementation	261
3.2.8.3 Per-backward detectors	261
Requirements	261
Justifications	261
Implementation	261
3.2.9 Polarimeters	261
3.2.9.1 The silicon polarimeters	261
Requirements	261
Justifications	261
Implementation	261
3.2.9.2 Hadron polarimeters	261
Requirements	261
Justifications	261
Implementation	261
3.2.10 Readout and Data Acquisition	261
3.2.10.1 Requirements	261
3.2.10.1.1 Requirements from Physics	261
3.2.10.1.2 Requirements from Radiation Hardness	261
3.2.10.1.3 Requirements from Data Rates	261
3.2.10.2 Do-to-Canister Readout, Follow-on Readout	261
3.2.10.3 Subsystem Description (Components)	261
3.2.10.3.1 ASICs and digitization PCBs	261
3.2.10.3.2 FEE	261
3.2.10.3.3 DAQ	261
3.2.10.3.4 DQM - Data Aggregation and Management Hardware	261
3.2.10.3.5 GPU - Global Timing Unit	261
3.2.10.3.6 Protocols	261
3.2.10.3.7 DAQ/Online Computing - Echoskin 0	261
3.2.10.3.8 Slow Controls	261
3.2.10.3.9 Trigger and Readout Electronics	261
3.2.10.3.10 Status and Error Reporting	261
3.2.10.3.11 Environmental, Safety and Health (ES&H)	261
3.2.10.3.12 Quality Assessment (QA) Planning	261
3.2.10.3.13 Construction and assembly planning	261
3.2.11 Computing	261
3.2.11.1 Computing Use Cases	261
3.2.11.2 Computing Resources	261
3.2.11.3 Distributed Computing	261
3.2.11.4 Paper Organization and Collaboration	261
3.2.11.5 Long-term Software and Computing Plan	261
3.2.12 Detectors Integration	261
Facilities	261
Platforms	261
Movement, Alignment and Adjustment	261
Data Path and Support Structures	261
Services	261
3.2.13 Installation and Maintenance	261
Chronograph	261
Installation Sequence	261
Detector Commissioning and Pre-Operations	261
Non-Beam Commissioning	261

3.2.14 Web-Beam Commissioning	261
4 Detector Commissioning and EIC Physics	261
4.1 eIC and the Science Case of the EIC	261
4.1.1 Connecting the Physics Precision to the NASA Science Pillars	261
4.2 Global Performance Considerations	261
4.2.1 Electron Identification	261
4.2.2 Photon Identification	261
4.2.3 Photon Energy Measurements	261
4.2.4 Photon Position Measurements	261
4.2.5 π^0/γ discrimination	261
4.2.6 π^0/γ discrimination with Barrel Imaging Calorimeter	261
4.2.7 Hadron Identification	261
4.2.8 Muon Identification	261
4.2.9 Incorporation of Beam Backgrounds in the Studies	261
4.3 Physics Simulation and Detector Performance	261
4.3.1 Inclusive Physics	261
4.3.1.1 Reconstruction of Inclusive Events	261
4.3.1.2 Key Inclusive Physics Measurements using Full Detector Simulation	261
4.3.1.3 Inference of beam Background on Inclusive measurements	261
4.3.2 Signal Reconstruction	261
4.3.2.1 Method and Reconstruction of SLDs kinematics	261
4.3.2.2 Key Semi-Inclusive Physics Measurements using Full Detector Simulation	261
4.3.3 Inference of Beam Background on SLDs measurements	261
4.3.4 Inference of Beam Background on Inclusive and Diffractive Inclusive	261
4.3.4.1 Key Inclusive and Diffractive Physics Measurements using Full Detector Simulation	261
4.3.4.2 DVCS Studies	261
4.3.4.3 π^0 Background in DVCS	261
4.3.4.4 Upcoming Simulation	261
4.3.4.5 Gluon Substrates	261
4.3.4.6 π^0 Double Tagging	261
4.3.4.7 Double Compton Scattering (DCS)	261
4.3.4.8 Sullivan Process	261
4.4 Hard Interactions	261
4.4.1 Heavy Flavor	261
4.4.1.1 Displaced vertex resolution and tracking	261
4.4.1.2 Key Heavy Flavor Physics Measurements using Full Detector Simulation	261
4.4.1.3 Inference of beam Background on Heavy Flavor measurements	261
4.4.1.4 Inference of beam Background on Heavy Flavor measurements using a Hard Probe	261
4.4.1.5 Key Jet Physics Measurements using Full Detector Simulation	261
4.4.1.6 Inference of beam Background on Heavy Flavor measurements for a Hard Probe	261
5 Detector-Accelerator Interface	261
List of Figures	261
List of Tables	261
Glossary	261
References	261


- 395 figures
- 96 tables
- 553 pages

TC-office

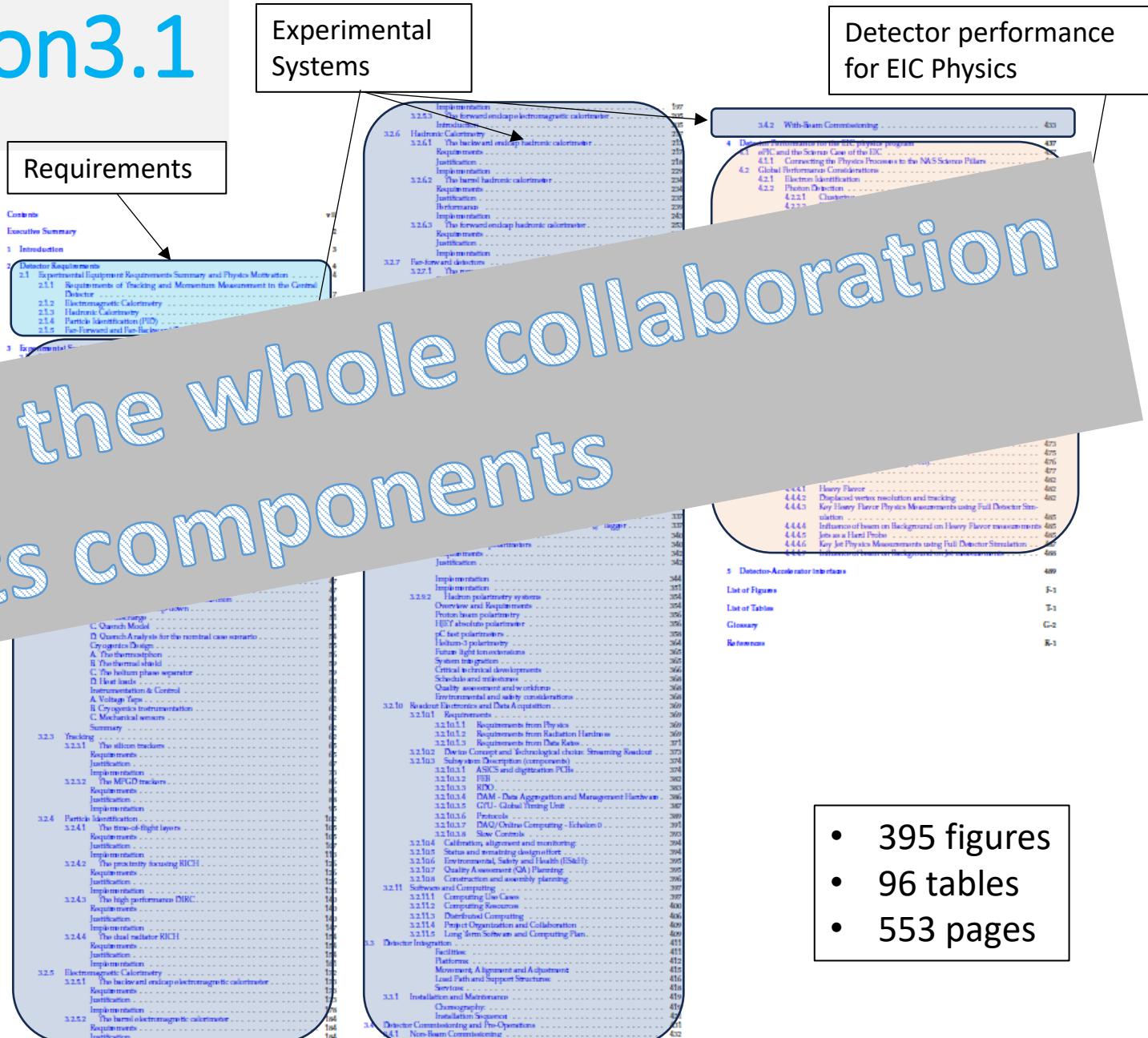
9

Detector preTDR, Version3.1

[https://zenodo.org/records/18271602/
files/ePIC_Preliminary_Design_Report_3.1.pdf?download=1](https://zenodo.org/records/18271602/files/ePIC_Preliminary_Design_Report_3.1.pdf?download=1)

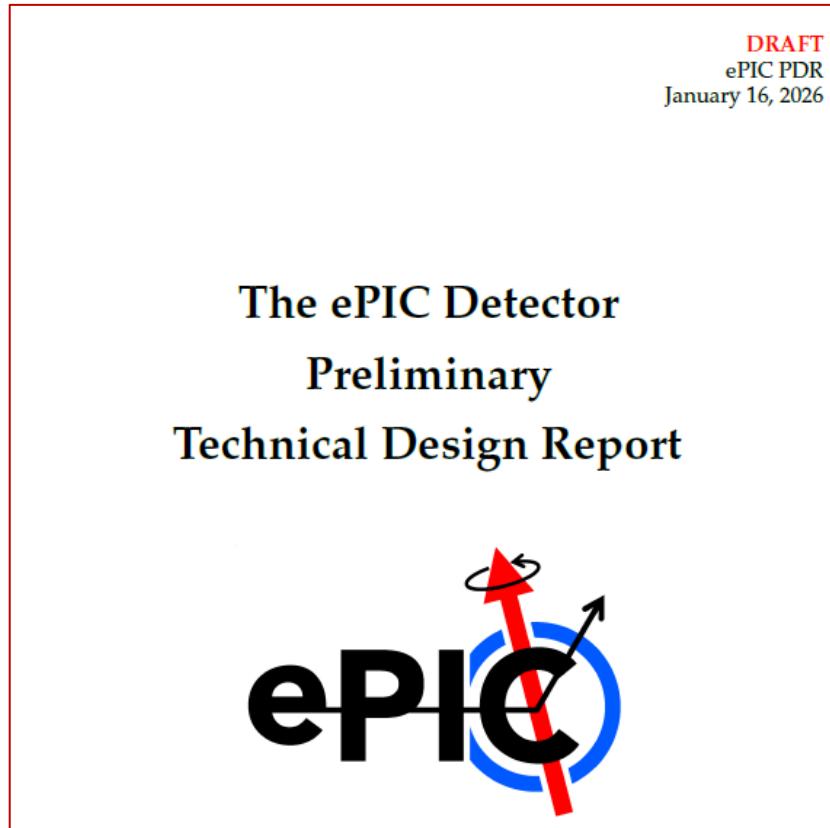
Some more relevant parameters:

- **Technical consolidation of the document** (John H, Dave M.)
 - All latex errors cured
 - Compilation messages are now limited to warnings, also been fixed
- **Plots**
 - 48% accompanied by the requested metadata
 - Need to improve !


Detector preTDR, Version3.1

https://zenodo.org/records/18271602/files/ePIC_Preliminary_Design_Report_3.1.pdf?download=1

DRAFT
ePIC PDR
January 16, 2026


Version 3.1 also to be posted in the pre-brief material for the coming Director's Review of the EIC Detector (ePIC) Subproject to Assess Baseline Readiness

- 395 figures
- 96 tables
- 553 pages

Detector preTDR, Version3.1, a note

https://zenodo.org/records/18271602/files/ePIC_Preliminary_Design_Report_3.1.pdf?download=1

The inclusion of an author's list is an **element of robustness** of the preTDR.

The author's list is a **DRAFT**.

It was extracted from the ePIC phonebook on January 6th, 2026. The analysis of the 2026 SoS is ongoing and the phonebook is being correspondingly updated.

The intent is that the ePIC preTDR is a work of the collaboration and should reflect **collaboration authorship**.

Due to the nature of the preTDR there is a **need to recognize contributions that are not from ePIC Collaborators** (engineers, etc.) A process needs to be defined to capture and recognize these contributions. (CC working with the Publications Committee).

Complete the document adding the missing texts:

- ***Executive Summary***
- ***Chapter 1 – Introduction***
- ***Chapter 5 – Detector-Accelerator interfaces***

Needed to have a self-consistent document

- **Executive Summary**
- **CHAPTER 1 – Introduction**
 - The EIC project and the accelerator complex (high level approach)
- **CHAPTER 2 – Requirements**
 - Present requirements resulting as the evolution of the YR ones
- **CHAPTER 3 – Experimental Systems**
 - Presenting the detector subsystems matching the requirements (mainly individual performance)
- **CHAPTER 4 – Detector Performance for the EIC physics program**
 - Presenting the holistic detector performance by the performance for key physics measurements
- **CHAPTER 5 – Detector-Accelerator interfaces**
 - Integration into the facility

Advanced version
in Version 3.1

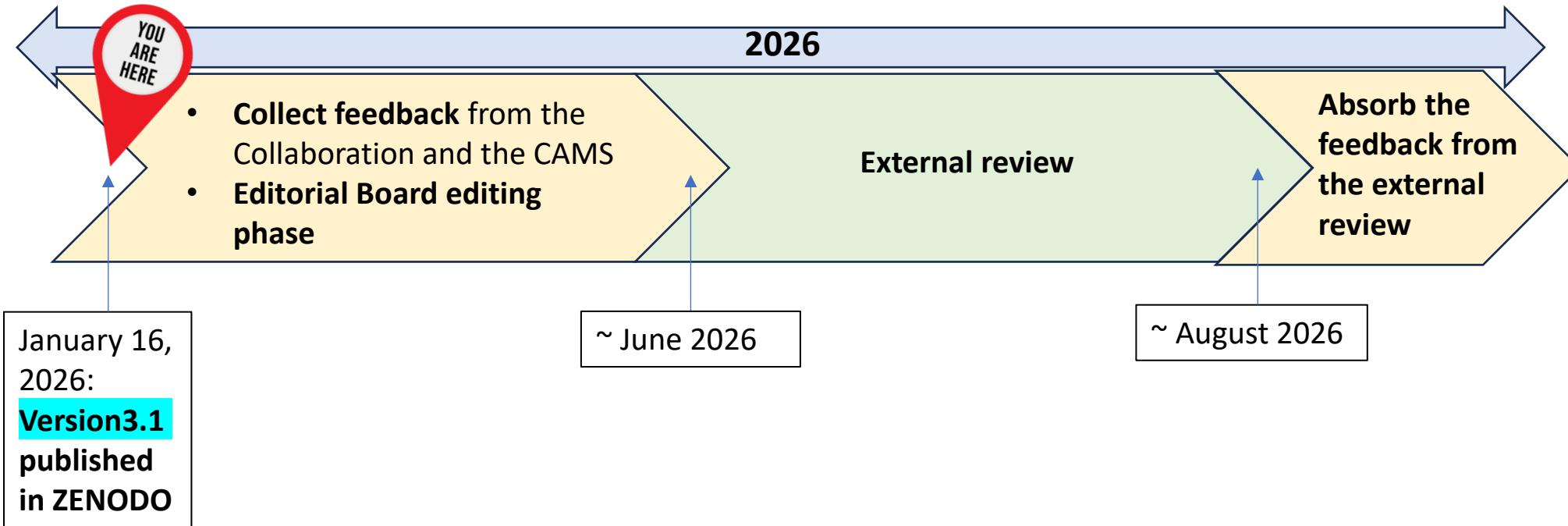
Internal feedback to Version3.1

- ***Collect the comments from the collaboration via a google form at:***
<https://forms.gle/83NY4BYo5FARViD29>
 - ***Comments to be analyzed and answered / valid suggestions to be implemented***
 - ***The list of received input as wells as feedback to them can be found at:***
https://docs.google.com/spreadsheets/d/1DPnkMLDAyGt_M8LixKvIS6YEBEfFpB9lfDtMUpxWTk/edit?usp=sharing
- ***About the Experimental Systems (Chapter 3), collect the feedback from the CAMs***
 - ***Please, confirm that the preTDR is in line with the project***
 - ***Any further comment more than welcome***

Editorial Board editing phase

- *So far, Ed. Board has mainly engaged in*
 - *Reviewing*
 - *Basic text polishing*
- *A true editing effort will start now*
 - *The editorial privileges will be restricted to the Ed. Board*
- *The availability of the Editorial Board members to continue has to be checked*
 - *enlarging the team (when needed)*

Aspects needing consolidation

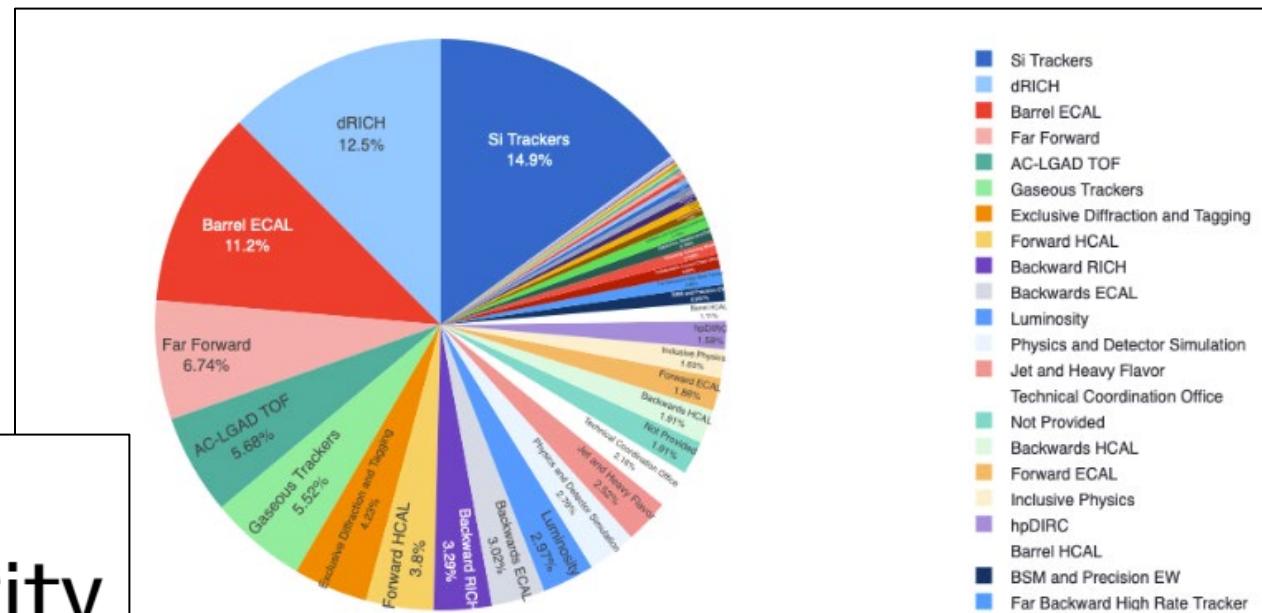

- **Subsystem performance** extracted
 - With consolidated detector parameters
 - In the context of the overall detector (= within EICRecon);
 - Using physics events (not only particle guns)
 - Including background
 - *At present, different status for the various subsystems, goal have all of them aligned with the above list*
- **Detector holistic performance** studying key physics channels
 - Move the weight from studies without background complement by a preliminary exploration of the results obtained with background to **making the studies with background the backbone of chapter 4**

All this requires coordination with simulation campaigns

External Review

- By a set of qualified external experts
 - An option: DAC members

preTDR, what next? Summarizing


Parallel to the preTDR process by the ePIC management

More to be written:

- *The Editorial Board has asked the DSC to remove from their text:*
“Collaborators and their role, resources and workforce”
 - There was obvious non-homogeneity in the provided information for this CRITICAL item
 - **A dedicated document envisaged, based on the SoS_2026 survey and under the responsibility of ePIC management**

2025 SoS preliminary Distribution by ePIC entity

This slide shown at the yesterday CC meeting indicates that the raw survey data do not offer a fully consistent picture ... more work needed

Thank you