

C. Muñoz**ePIC Collaboration Meeting**

Goal: coordinate French community and prioritize physics

- Location: IJCLab, Orsay
- Dates: 1–3 December 2025
- ~70 Participants: theorists, phenomenologists, detector experts
- Activities: presentations, discussions, ePIC software tutorial
- <https://indico.in2p3.fr/e/EIC-FRANCE-2025>

14:00	Update of the national roadmap for research infrastructures Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Stefano Matthias Panebianco	14:00 - 14:25
	ePIC and EIC project update Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	John Lajole	14:30 - 14:55
15:00	Early physics running at EIC Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Salvatore Fazio	15:00 - 15:25
	Group photo Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay 15:30 - 15:40	Coffee break Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay 15:30 - 16:00	
16:00	EIC-Canada Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Wouter Deconinck	16:00 - 16:15
	Outreach Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Silvia Niccolai	16:20 - 16:30
	Event generators for eA and ep Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Raphaël DUPRE	16:35 - 17:00
17:00	Discussion: the future EIC-France Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay		17:05 - 17:35

Agenda

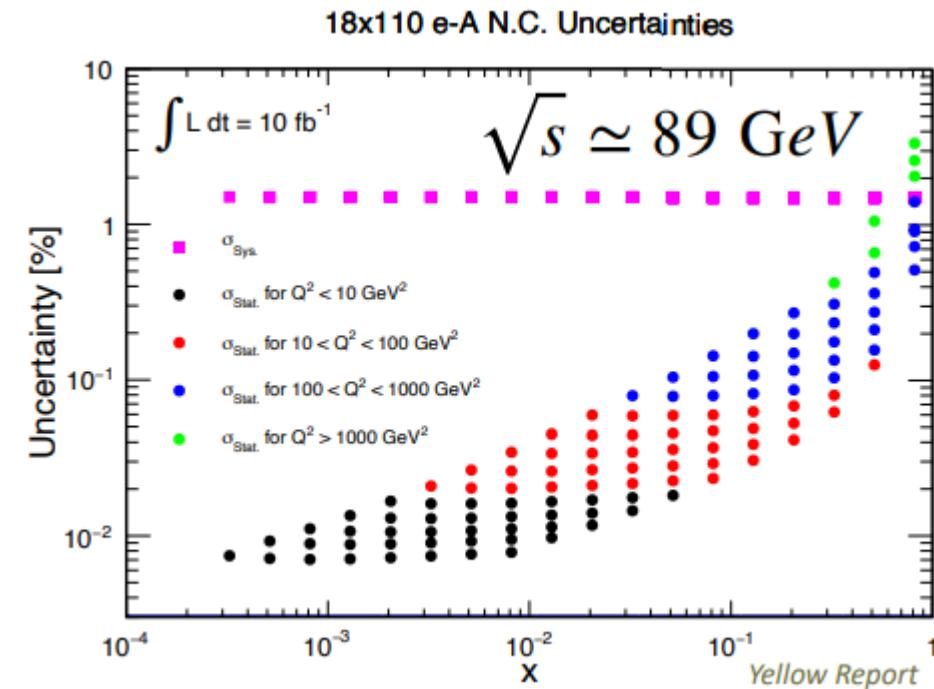
09:00	Inclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Ingo Schienbein 09:00 - 09:20
	Diffraction Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Cyrille Marquet 09:30 - 09:50
10:00	Semi-Inclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Valerio Bertone 10:00 - 10:20
	Coffee break Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	10:30 - 11:00
11:00	Exclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Samuel Wallon 11:00 - 11:20
	Quarkonia and open heavy flavor Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Jean-Philippe Lansberg 11:30 - 11:50
12:00	Discussion Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	12:00 - 12:30

14:00	CyMBal: MPGDs for the ePIC detector Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Audrey Francisco 14:00 - 14:20
	ePIC backward ECal Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Afnan SHATAT 14:25 - 14:45
15:00	The Longitudinal Forward Hadronic Calorimeter (LFHCal) Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Friderike Bock 14:50 - 15:05
	CALOROC Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Pedro Dumas Zehlmann 15:10 - 15:30
	Coffee break Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	15:35 - 16:00
16:00	Roman Pots Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Dominique Marchand 16:00 - 16:20
	Status of EICROC and future plans Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Adrien Verplancke 16:25 - 16:45
	Architecture proposal of the final 32x32 EICROC chip Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Alexandre SOULIER 16:50 - 17:00
17:00	SALSA Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Beatrice Guenego 17:05 - 17:25
	Magnets Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Valerio Calvelli 17:30 - 17:55

Led by S. Gardner (Glasgow) and C. Van Hulsen (Alcala)

09:00	Introduction	Simon Gardner	Charlotte VAN HULSE et al.
	A015 (Building 100), IJCLab	09:00 - 10:00	
10:00	Detector geometry (1/2)	Simon Gardner	
	A015 (Building 100), IJCLab	10:00 - 10:45	
	Coffee break		
11:00	A015 (Building 100), IJCLab	10:45 - 11:15	
	Detector geometry (2/2)	Simon Gardner	
	A015 (Building 100), IJCLab	11:15 - 12:00	
12:00	Event generation and visualization	Simon Gardner	
	A015 (Building 100), IJCLab	12:00 - 13:00	
			14:30 - 16:00
			16:00 - 16:30
			16:30 - 18:00
			Charlotte VAN HULSE et al.

10 participants, mostly PhD students and postdocs

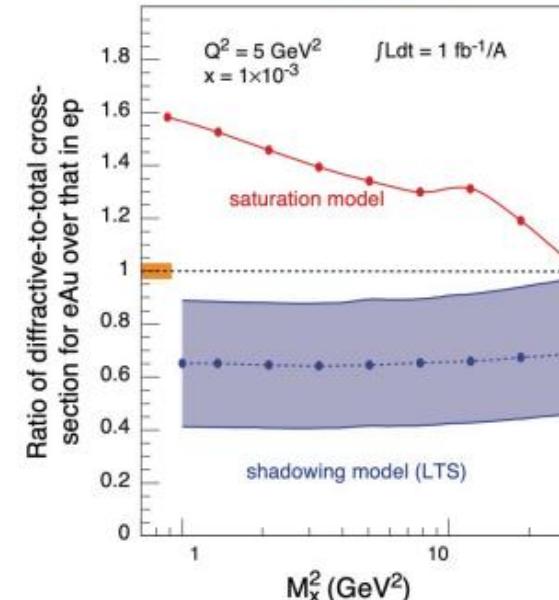

- 5 overview talks: Inclusive DIS, small-x physics, SIDIS, exclusive processes, heavy flavor
- Highlights of flagships/golden measurements
- Focus on expertise/interest by the French community (theory/exp)
- Priority to early-physics opportunities and long-term measurements

09:00	Inclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Ingo Schleinbein 09:00 - 09:20
10:00	Diffraction Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Cyrille Marquet 09:30 - 09:50
11:00	Semi-Inclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Valerio Bertone 10:00 - 10:20
12:00	Coffee break Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	10:30 - 11:00
11:00	Exclusive physics Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Samuel Wallon 11:00 - 11:20
	Quarkonia and open heavy flavor Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	Jean-Philippe Lansberg 11:30 - 11:50
	Discussion Auditorium Joliot Curie, Bât. 100, IJCLab, Orsay	12:00 - 12:30

Lively discussion:

- Cross-checking with ongoing analysis in the ePIC collaboration
- Identifying impactful, yet under-study channels/measurements

- Precision mapping of **nuclear PDFs** over wide $x-Q^2$ range
- Sensitivity to shadowing, antishadowing, EMC effect, and small- x dynamics
- Structure functions F_2 and F_L provide direct access to nuclear gluons
- Heavy-flavor production probes gluons via photon–gluon fusion
- Strong reduction of uncertainties on nuclear gluons and sea quarks
- Tests of nPDF universality and essential input for RHIC and LHC heavy-ion physics
- Polarized DIS enables precision measurements of g_1 and A_1
- Access to polarized gluons and sea quarks at small x
- Improved understanding of the **proton spin decomposition**



French community working on these topics is relatively small

- Small- x physics and gluon saturation are core objectives of EIC
- Rapid growth of gluon densities at low x requires non-linear QCD descriptions
- The Color Glass Condensate provides an effective theory framework
- Inclusive, diffractive, and exclusive measurements probe saturation dynamics
- Key signatures: geometric scaling and **modified diffractive observables**
- Sensitivity to transverse spatial gluon distributions
- Strong recent theoretical progress in small- x evolution
- EIC will establish the existence and properties of gluon saturation
- Mapping of the transition from dilute to dense QCD matter

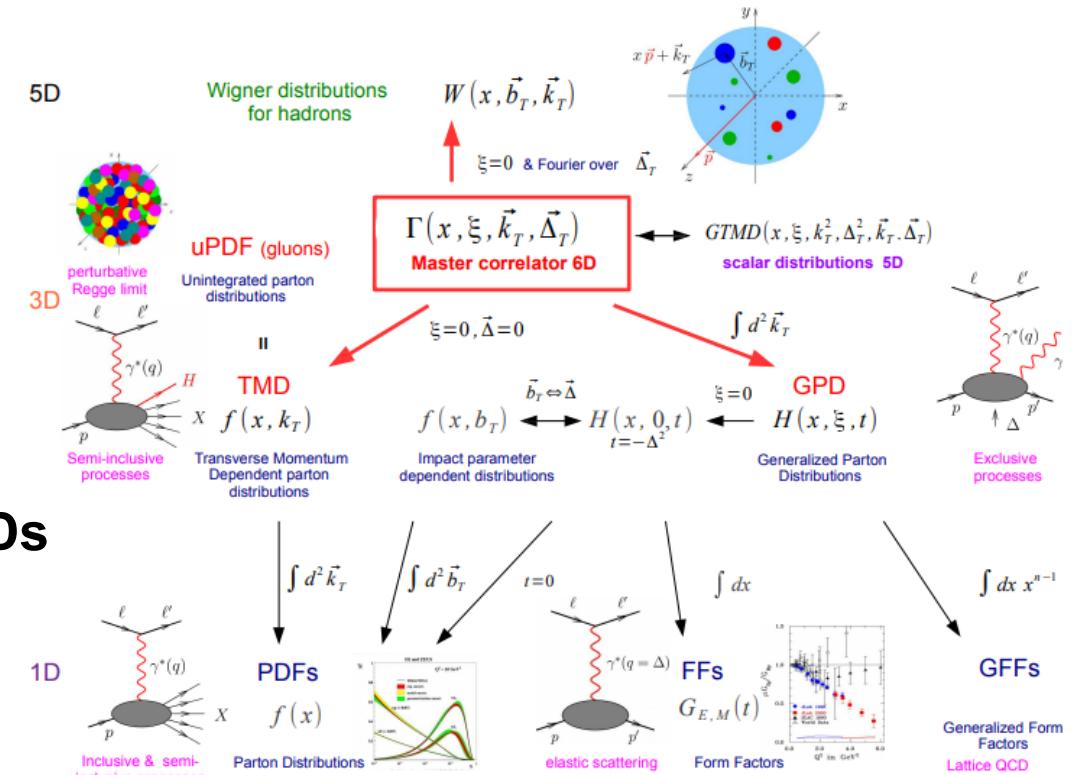
The golden measurement

EIC White paper (2016)

clean and unambiguous signal of saturation

Strong expertise and *theory*
interest in France

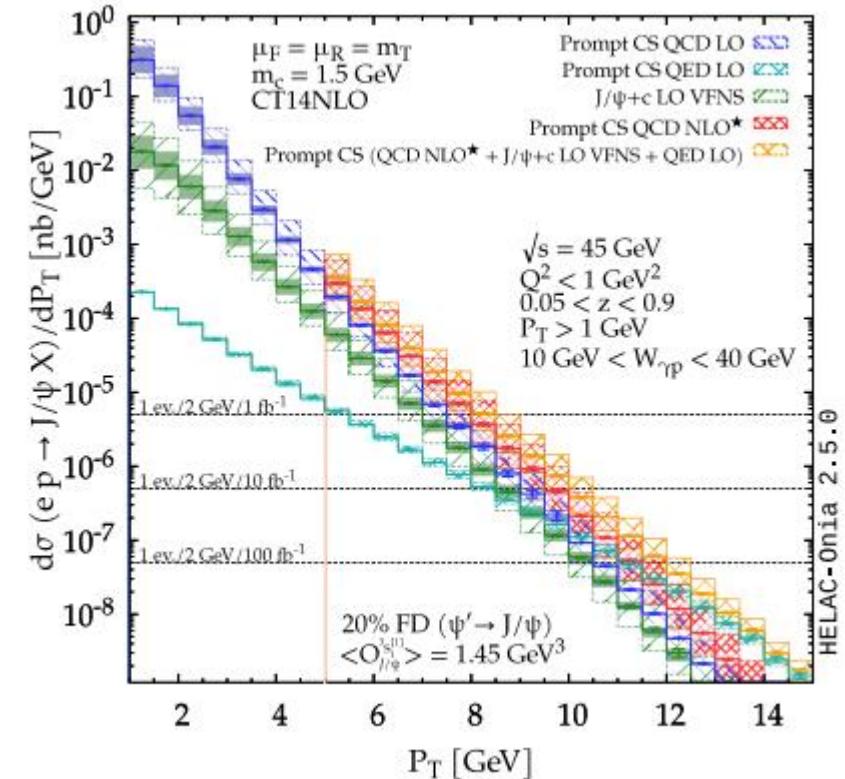
Proposal for the EIC


- In order to shed light on this puzzle, the proposal is that the EIC measures **SIDIS absolute cross sections**, *i.e.*:

$$\frac{d\sigma^{\ell P \rightarrow \ell h X}}{dxdQ^2 dz dq_T} \quad \text{or} \quad \frac{d\sigma^{\ell P \rightarrow \ell h X}}{dxdydz dq_T}$$

- This observable would greatly benefit TMD extractions towards a more solid determination of **TMD FFs**:
 - more direct handle on TMD distributions than multiplicities,
 - it would help us pin down the normalisation problem.
 - cross sections differential in q_T (vector-boson transverse momentum), rather than P_{hT} (produced hadron transverse momentum), better match TMD factorisation helping us devise better cut strategies.

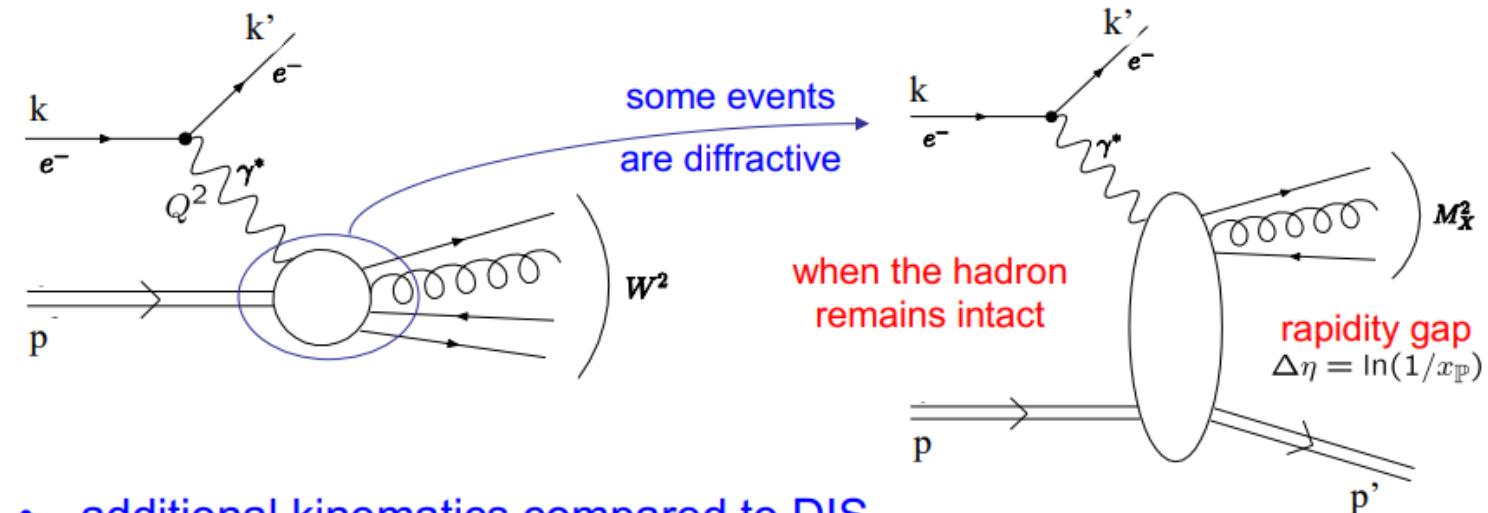
Some expertise/interest in France
from both theory/experiment


- Exclusive processes at the EIC probe **GPDs**
- DVCS and exclusive vector-meson production as benchmarks
- **Two-body final states connect PDFs, TMDs, and GPDs**
- High luminosity + variable energies separate longitudinal/transverse contributions
- Angular modulations provide 3D nucleon imaging
- Precision measurements reduce uncertainties at small/intermediate x

Strong expertise/interest in France
from both theory/experiment

- Quarkonia (J/ψ , Υ) probe gluon dynamics across wide x
- Photon–gluon fusion dominates production at the EIC
- Precise measurements in photo- and electroproduction
- Channels include $J/\psi + c$ and C-even states (η_c , χ_c)
- Constrains **nuclear gluons, intrinsic charm, gluon GPDs, TMDs, and GTMDs**
- Complementary to LHC ultra-peripheral collisions

Predictions for the $J/\psi p_T$ distribution in inclusive quarkonium production at the EIC



<https://arxiv.org/pdf/2009.08264>

Some expertise/interest in France
from the theory side

- Workshop participants identified **two particularly promising early measurements** at the EIC:
 - **Inclusive diffraction**
 - **Inclusive quarkonium production**
- These channels have **clean experimental signatures** and are theoretically well understood
- They directly address central EIC goals:
 - Mapping **gluon dynamics at small- x**
 - Probing the **onset of non-linear QCD / saturation effects**
- They also constrain **heavy-quark production mechanisms**
- Both measurements align with areas of **French theoretical expertise**, including:
 - small- x physics and gluon saturation (CGC)
 - quarkonium production theory and heavy-flavour phenomenology
- This theoretical strength, combined with physics relevance, positions the French community to:
 - contribute predictive frameworks
 - develop simulation tools
 - design analysis strategies
- As a result, these topics were **prioritized for early French involvement** in the EIC program

- Inclusive diffraction at small $x \rightarrow$ probe of **gluon saturation**
- Large rapidity gap signals diffractive DIS (target intact or low-mass dissociation)
- Significant fraction of small- x DIS cross section
- **EIC advantages:** precision measurement on **protons & nuclei**, rapidity gap detection, leading hadron measurement
- Test **CGC predictions** and map **gluon transverse spatial distributions**

- additional kinematics compared to DIS

diffractive mass	momentum transfer
$M_X^2 = (q+p-p')^2$	$t = (p-p')^2 < 0$

$$\beta = \frac{Q^2}{2(p-p') \cdot q} = \frac{Q^2}{M_X^2 - t + Q^2}$$

~ momentum fraction of the struck parton with respect to the exchanged object (Pomeron)

$$x_{\mathbb{P}} = x/\beta$$

momentum fraction of the Pomeron with respect to the hadron

- Inclusive J/ψ & Υ → probe **gluon PDFs** via photon–gluon fusion
- EIC advantages: high **luminosity, heavy-flavor tagging**, photoproduction & electroproduction
- Explore **perturbative vs. non-perturbative mechanisms** (color-singlet vs. octet, feed-down)
- Nuclear targets → constrain **gluon shadowing** & intrinsic heavy quarks
- Connect **pQCD dynamics** to **quarkonium formation**

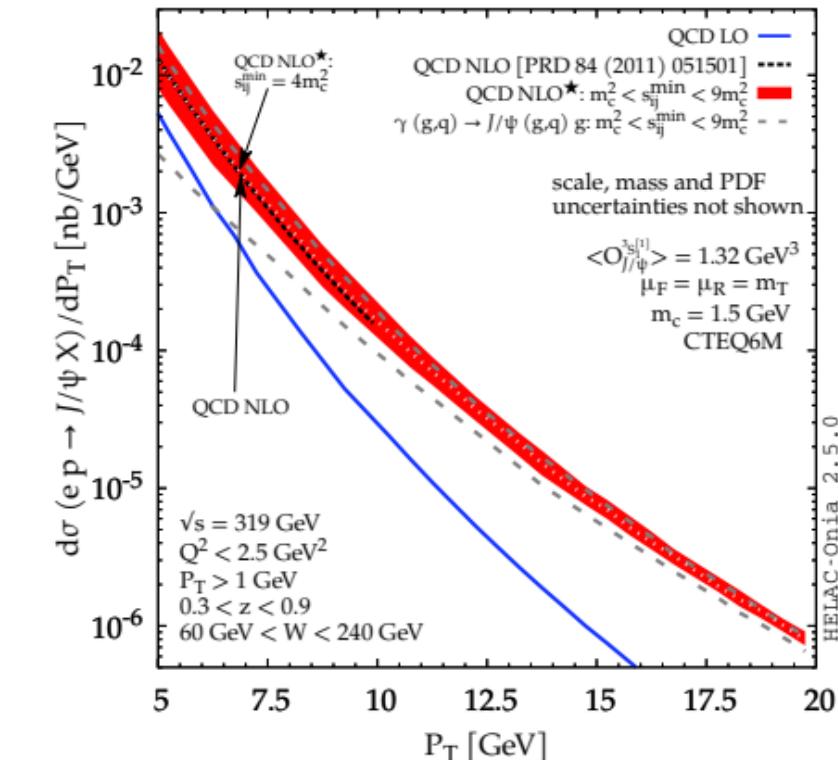


Figure 2: Comparison between our NLO* (red band) and a complete NLO [43] (dashed black line) calculations. The red band results from a variation of the IR cut-off, s_{ij}^{\min} , specific to the NLO* approximation. The dashed grey curves refers to the contributions appearing at $\alpha\alpha_s^3$ for a similar variation of s_{ij}^{\min} and the blue at $\alpha\alpha_s^2$ (LO).

<https://arxiv.org/pdf/2009.08264>

- Beyond early-phase measurements, the EIC enables a rich longer-term physics program
- Focus on processes requiring full EIC performance and maturity
- Depend on extended forward detector coverage
- Require high integrated luminosity
- Exploit the flexibility of beam energies and species
- Offer strong synergies with French theory expertise
- Two main directions highlighted by the workshop:
 - **Sullivan process:** access to the pion's three-dimensional structure
 - **Exclusive three-body final states:** new probes of QCD dynamics

- Unique long-term opportunity at the EIC to study the pion's internal structure
- Access provided via the **Sullivan process**, where the electron scatters from the nucleon's meson cloud
- Pion exchange effectively creates a **virtual pion target**
- Technique previously used to measure the pion form factor and structure function
- EIC enables extension to **exclusive processes**, such as DVCS off virtual pions
- Provides access to **pion GPDs**
- Broad kinematic reach opens regimes inaccessible to previous experiments
- State-of-the-art theory predicts measurable cross sections and asymmetries at the EIC
- Sensitivity to both **quark and gluon contributions** in the pion

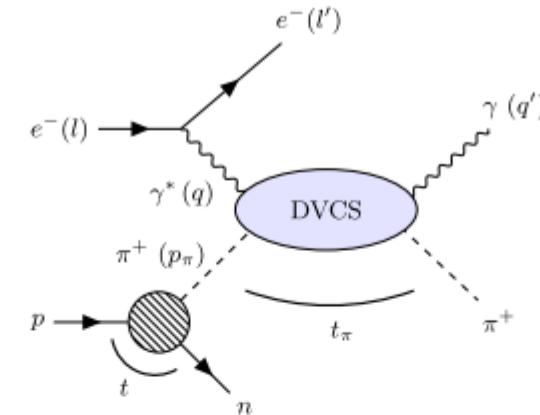
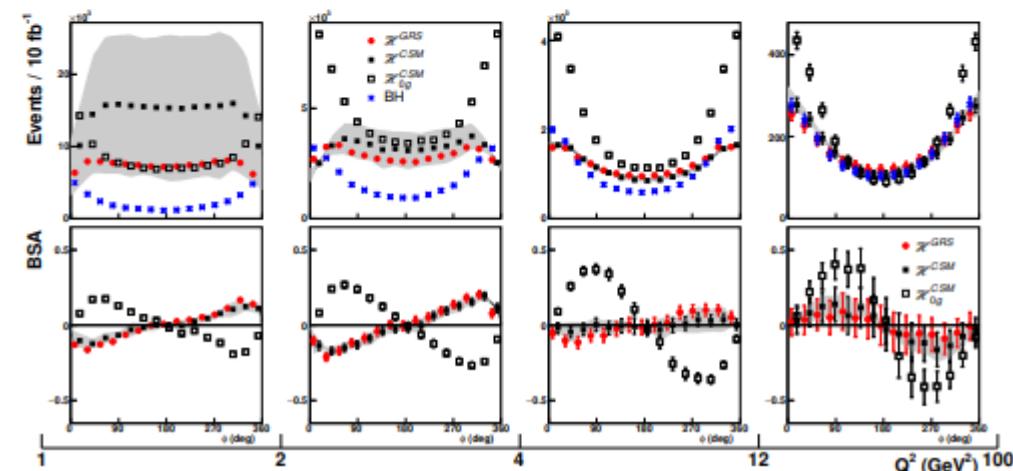
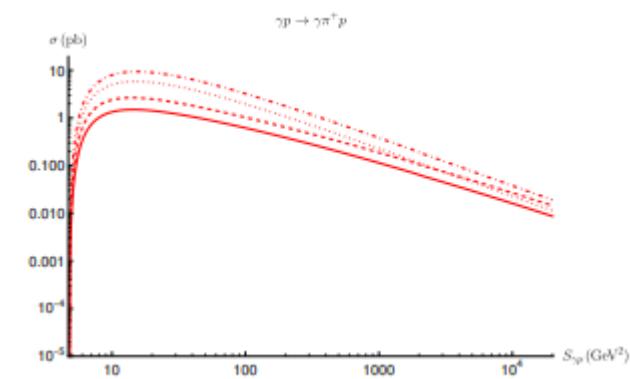
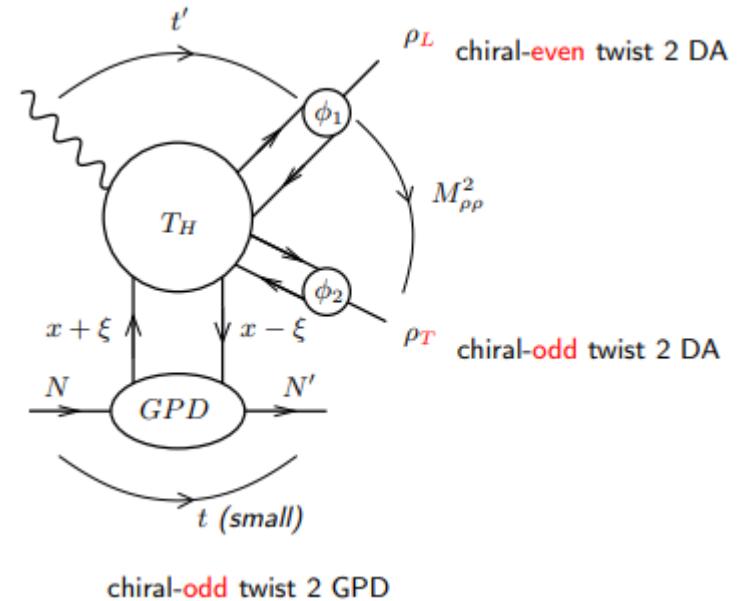





Figure 1: Diagrammatic representation of the Sullivan DVCS process.

Laboratoire de Physique
des 2 Infinis

- Involves processes such as:
 - Exclusive vector-meson pairs
 - Meson–baryon and two-hadron final states
- Provide a clean laboratory to study **QCD factorization mechanisms**
- Different theoretical descriptions depending on the channel:
 - **Collinear factorization** → GPDs (DVCS, DVMP)
 - **Transition distribution amplitudes (TDAs)** → meson–baryon production
 - **k_T -factorization** → very high-energy regime
- Sensitivity to **hard scales**, chiral-even and chiral-odd dynamics
- Enable multidimensional scans in:
 - photon virtuality Q^2
 - momentum transfer t
 - invariant mass of the produced hadron pair
- Connect partonic imaging, diffraction, and the emergence of hadronic degrees of freedom

- The **2nd EIC-France Workshop** provided a coherent overview of French theory engagement in EIC physics
- Strong complementarity identified between early EIC capabilities and high-impact physics channels
- Inclusive diffraction and inclusive quarkonium production emerged as top priorities for early physics
 - Clean experimental signatures
 - Strong theoretical control
 - Unique sensitivity to small- x gluon dynamics
- Longer-term opportunities will expand with full luminosity and detector performance
- Key examples include:
 - Pion structure via the Sullivan process
 - Exclusive multi-hadron final states
- These programs connect partonic imaging with emergent QCD phenomena
- They align closely with French leadership in small- x physics, GPDs, TDAs, and non-perturbative QCD
- Overall, the French community shows strong readiness, motivation, and capability to play a leading role in the EIC physics program