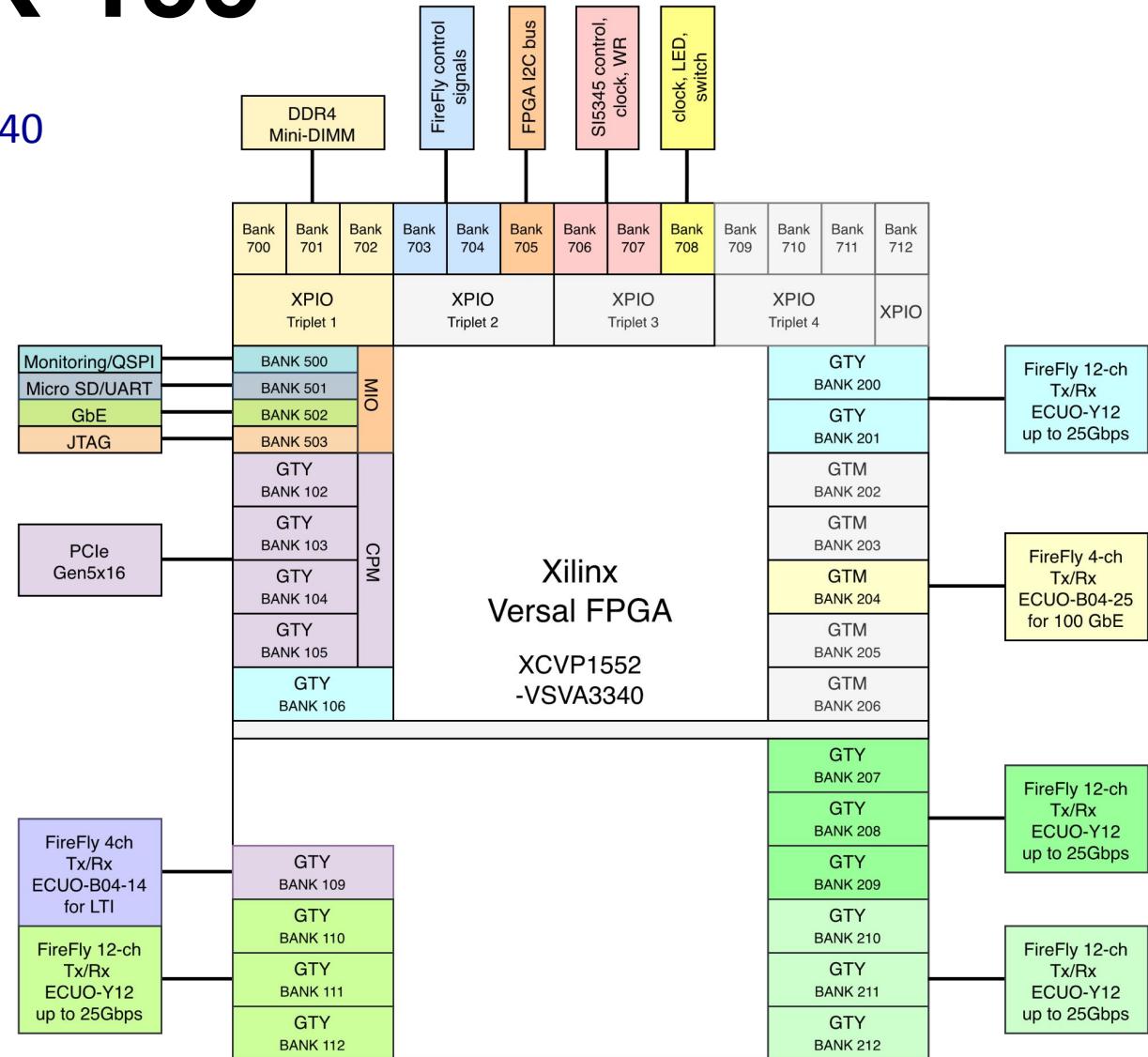


Status of FLX-155

Hao Xu
On behalf of BNL FELIX team

ePIC Collaboration Meeting
January 21, 2026

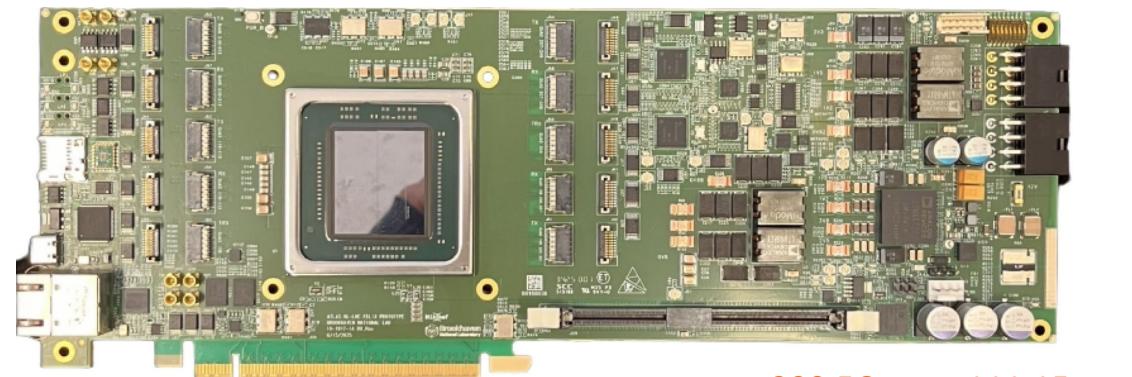


Outline

- FLX-155A: Revision of FLX-155
- Test Results of FLX-155A
- Summary

Main Features of FLX-155

- AMD Versal Premium FPGA: XCVP1552-2MSEVSA3340
- PCIe Gen4 x16 / PCIe Gen5 2x8
- 56 FireFly optical links
 - 48 GTYP:4*12 Y12 FF; 4 GTYP:B04 FF, 4 GTM:B04 FF
 - Compatible with various options
 - Default configuration for ATLAS
 - 48 data links up to 25 Gb/s
 - 4 links for LTI
 - 4 links up to 25 Gb/s for data or 100GbE
- Electrical IOs
- 1 DDR4 Mini-UDIMM
- USB-C JTAG/UART/I2C
- SD3.0/QSPI
- GbE



FLX-155 Revision

- Board revision
 - Board size: board length reduced by ~11.5mm, to fit some candidate servers
 - Stack-up: increased from 24 layers to 28 layers for routing and large current power rails
 - Power modules: to use modules with PMBUS for monitoring and protection, and small packages to reduce the board length
 - DDR4 signals routing optimized
 - GTYP/GTM signals routing optimized
- Status update
 - PCB received on Oct. 21
 - First assembled board delivered on Nov. 18

Picture of assembled FLX-155

Picture of assembled FLX-155A

Board Bring-Up

- 2 LTM4681 and 1 LTM4673 with PMBus are used for intelligent management and high integration to save space
- ADM1266 PDIO pins are used to control the enable signals on power modules. Those pins default to a $20\text{ k}\Omega$ pull-down resistor at power-up. Thus, there's no pull-down resistor on enable signal on FLX-155A
- The internal pull-down works for all power modules we used except LTM4673. Outputs of LTM4673 will be on during power-up, before ADM1266 sequence gets started
- Change LTM4673 configuration to use 'control is active low', and change ADM1266 to set associated PDIOs 'enable as low' as well
- Pull-down resistors will be added to enable signals on final minor revision

FPGA Boot

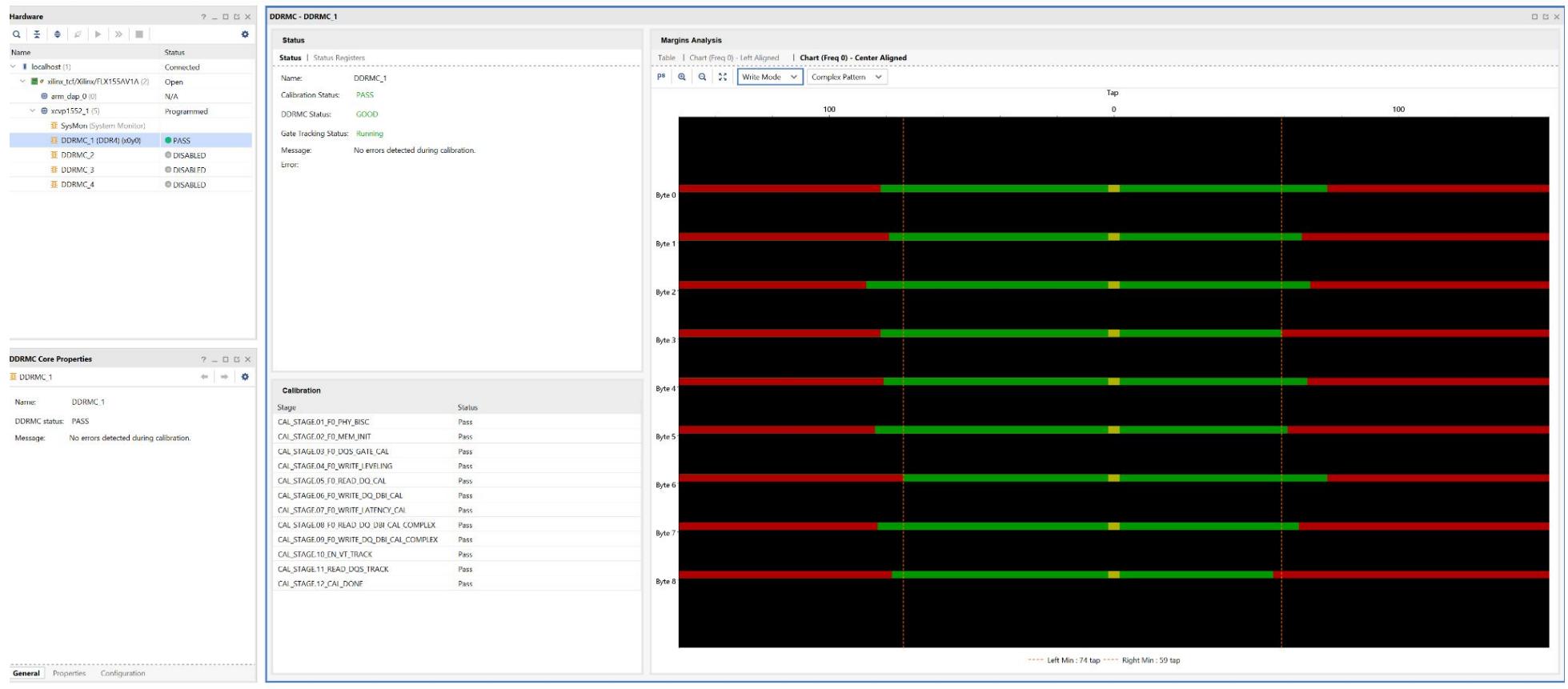
- FPGA can be programmed in multiple ways
 - JTAG from USB-C connector on the front panel
 - QSPI
 - SD card
- PetaLinux could boot and run properly
- BIST (not full functions) can also run correctly

FLX155 System Monitor Rev 3_1b | ID 0x14d34093 | DNA 0x17983690b4021c2

Peripherals ▾ Chipscope ▾ User-space tools ▾ Self-test

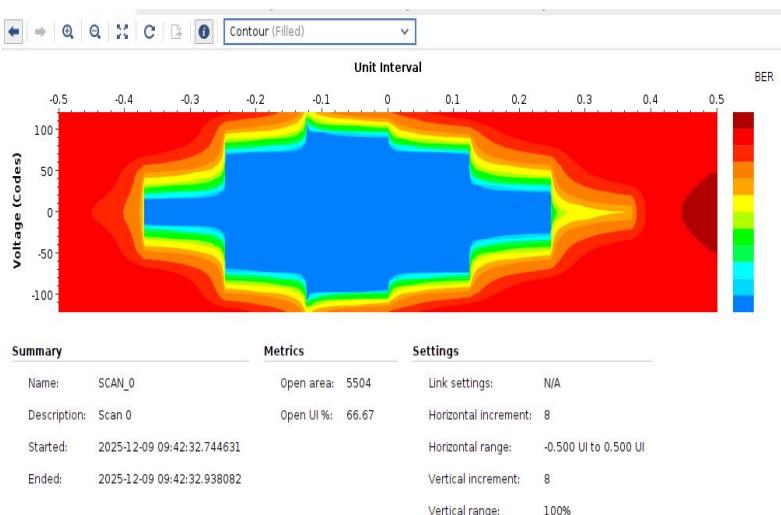
sysmon@f1270000
HW monitor device at /sys/bus/iio/devices/iio:device0

Temperature monitor


Input	Value (deg C)	[Min, Max] (deg C)	Description	Status
max_max	31.1	[0.0, 50.0]	FPGA diode temperature (latched max)	OK
min	25.7	[NAN, NAN]		OK
min_min	25.2	[NAN, NAN]		OK
temp	29.2	[0.0, 50.0]	FPGA diode temperature	OK

Voltage monitor

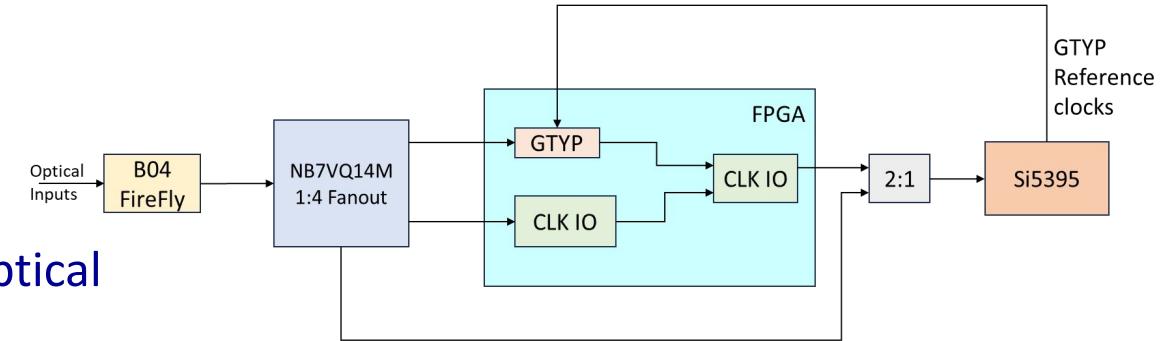
Input	Value (V)	[Min, Max] (V)	Description	Status
gtm_avcc_202	0.919	[nan, nan]		OK
gtm_avcc_203	0.918	[nan, nan]		OK
gtm_avcc_204	0.919	[nan, nan]		OK
gtm_avcc_205	0.919	[nan, nan]		OK
gtm_avcc_206	0.920	[nan, nan]		OK
gtm_avccaux_202	1.501	[nan, nan]		OK
gtm_avccaux_203	1.501	[nan, nan]		OK
gtm_avccaux_204	1.503	[nan, nan]		OK
gtm_avccaux_205	1.501	[nan, nan]		OK
gtm_avccaux_206	1.503	[nan, nan]		OK
gtm_avtt_202	1.200	[nan, nan]		OK
gtm_avtt_203	1.199	[nan, nan]		OK
gtm_avtt_204	1.200	[nan, nan]		OK
gtm_avtt_205	1.199	[nan, nan]		OK
gtm_avtt_206	1.199	[nan, nan]		OK


DDR4

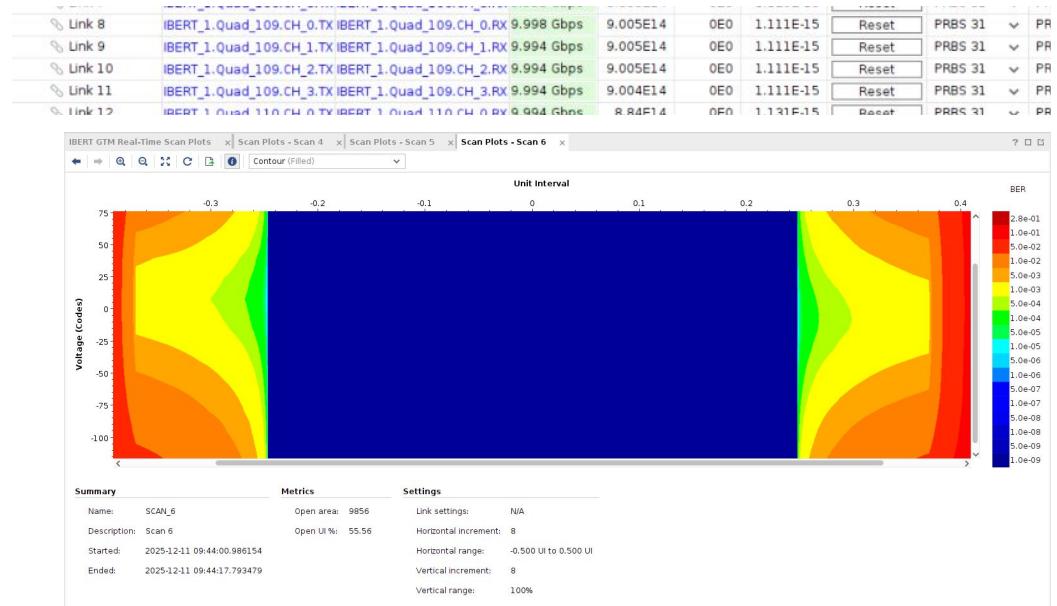
- DDR4 layout optimized
- Passed DDRMC calibration test and used for PetaLinux
- The complex width of the data window (margin) is normal

IBERT - GTYP for 48-ch Data

- Tested with 25G FireFly modules
 - 25Gbps, no error was observed during the test, BER < 10^{-15}
 - 10Gbps, no error was observed during the test, BER < 10^{-15}



Scan @ 25Gbps


IBERT @ 25Gbps

IBERT – GTYP for LTI

- Either recovered clock from TTC link, or clock from optical link directly
 - Recovered clock from TTC link
 - Connected to GTYP to get recovered clock as system clock
 - 4 TTC links on one B04
- Optional optical clock
 - To use the optical clock as system clock directly, clock buffer NB7VQ14M is added to one RX link, to fan out the optical input link to GTYP and FPGA clock input
 - NB7VQ14M supports up to 14Gb/s
- IBERT
 - For the links connected to GTYP directly
 - No error was observed during both 25Gb/s and 10Gb/s test
 - For the link connected to NB7VQ14M
 - 10Gb/s: BER $\sim 10^{-15}$, no error was observed during test
 - Bypass NB7VQ14M with jumper resistors, no error was observed during test, BER $\sim 10^{-15}$

Block diagram of TTC link scheme

IBERT with NB7VQ14M @10Gbps

Ungrouped Link		Link Group 0 (Link 0	IBERT_1.Qquad_109.CH_0.TX	IBERT_1.Qquad_109.CH_0.RX	24.994 Gbps	1.879E15	0E0	5.323E-16	...	PRBS 31	PRBS 31	User Desvn	User vs UsevH
Link Group 0 (Link 1	IBERT_1.Qquad_109.CH_1.TX	IBERT_1.Qquad_109.CH_1.RX	24.994 Gbps	1.879E15	0E0	5.323E-16	...	PRBS 31	PRBS 31	User Desvn	User vs UsevH	
Link Group 0 (Link 2	IBERT_1.Qquad_109.CH_2.TX	IBERT_1.Qquad_109.CH_2.RX	24.994 Gbps	1.879E15	0E0	5.323E-16	...	PRBS 31	PRBS 31	User Desvn	User vs UsevH	
Link Group 0 (Link 3	IBERT_1.Qquad_109.CH_3.TX	IBERT_1.Qquad_109.CH_3.RX	24.994 Gbps	1.879E15	0E0	5.323E-16	...	PRBS 31	PRBS 31	User Desvn	User vs UsevH	

IBERT @25Gb/s bypass NB7VQ14M

IBERT - GTM

- 4 GTM channels

- 4 GTM channels with FireFly B04 module have been tested with 25Gb/s
- No error was observed during test, BER < 10^-15

Serial I/O Links														
Name	TX	RX	Status	Bits	Err...	BER	BERT Reset	TX Pattern	RX Pattern	TX Pre-C...	TX...	TX Post...	TX Diff...	
Link Group 0							Reset	PRBS 31	PRBS 31	User De	Mi	User D	User	
Link 0	IBERT_0.Quad_204.CH_0.TX	IBERT_0.Quad_204.CH_0.RX	24.996 Gbps	1.124E15	0E0	8.896E-16	Reset	PRBS 31	PRBS 31	User De	U	User D	User	
Link 1	IBERT_0.Quad_204.CH_1.TX	IBERT_0.Quad_204.CH_1.RX	24.984 Gbps	1.124E15	0E0	8.896E-16	Reset	PRBS 31	PRBS 31	User De	U	User D	User	
Link 2	IBERT_0.Quad_204.CH_2.TX	IBERT_0.Quad_204.CH_2.RX	24.984 Gbps	1.124E15	0E0	8.896E-16	Reset	PRBS 31	PRBS 31	User De	U	User D	User	
Link 3	IBERT_0.Quad_204.CH_3.TX	IBERT_0.Quad_204.CH_3.RX	24.984 Gbps	1.124E15	0E0	8.896E-16	Reset	PRBS 31	PRBS 31	User De	U	User D	User	

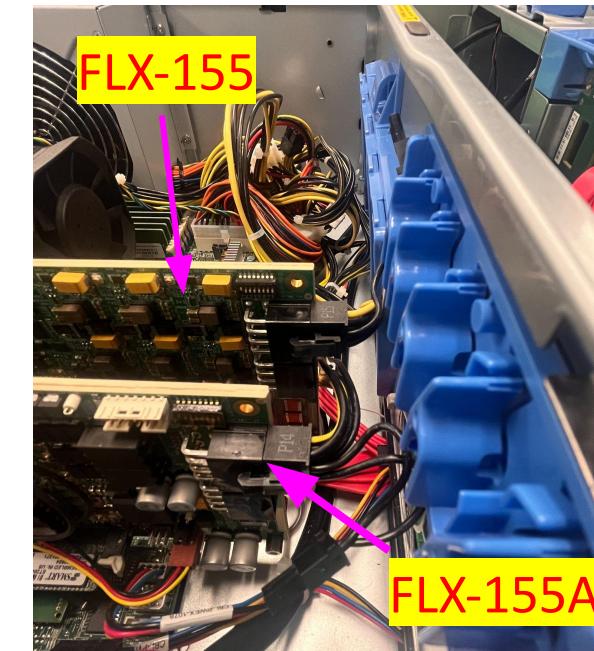
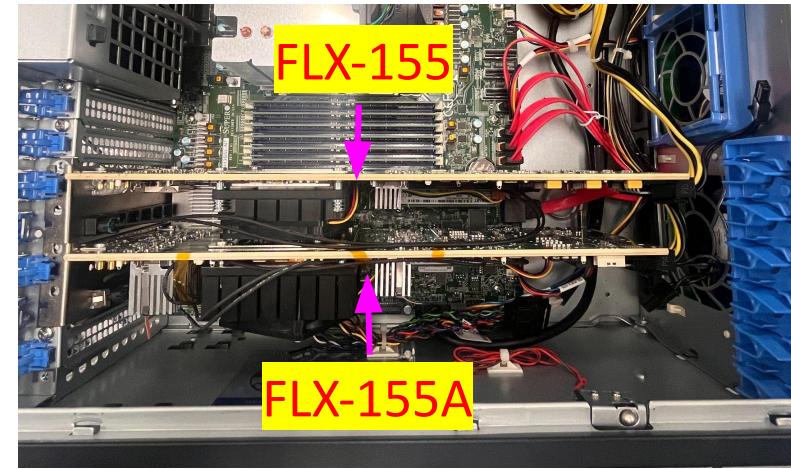
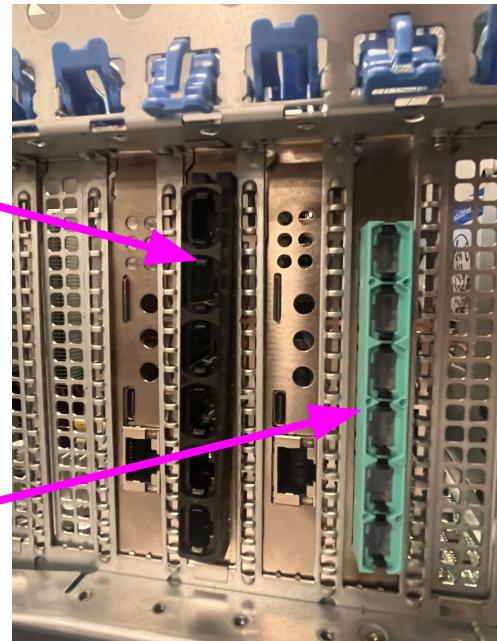
PCIe Performance

- Tested PCIe Gen5 2 x8 endpoints, bifurcated
- 512-byte TLP size
- Theoretical payload bandwidth: 240.94 Gb/s for each endpoint
- 2 Upper endpoints, 2*27.457 GB/s (2*219.7 Gb/s), 91.2% theoretical maximum speed

```
[felix@130-199-21-187 bin]$ ./fdaqm -C 2 -t 10
Consume FLX-device data while checking the data (blockheader and trailers)
Also counts chunk CRC errors.
Opened FLX-device 0, FLX155-GBT-2x24CH-241016-1747-GIT:rm-5.2/101, trailer=32bit ChunkHeaders, buffer=1024MB, DMA=0
Opened FLX-device 1, FLX155-GBT-2x24CH-241016-1747-GIT:rm-5.2/101, trailer=32bit ChunkHeaders, buffer=1024MB, DMA=0
**START**
** using DMA #0 polling
  Secs | d-D | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps
  ---- | --- | --- | --- | --- | --- | --- | ---
  1   0-0  28968.5   0.0   28968.5   0   41   26
  ## @Dev-DMA=0-0 Blocks 27898757 Errors: header=27898757 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  1   1-0  27691.9   0.0   27691.9   0   11   25
  ## @Dev-DMA=1-0 Blocks 26958942 Errors: header=26958942 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  2   0-0  27457.2   0.0   56425.7   0   4   52
  ## @Dev-DMA=0-0 Blocks 55103261 Errors: header=55103261 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  2   1-0  27457.6   0.0   55149.5   0   19   51
  ## @Dev-DMA=1-0 Blocks 53689436 Errors: header=53689436 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  3   0-0  27038.8   0.0   83464.6   0   45   77
  ## @Dev-DMA=0-0 Blocks 81090110 Errors: header=81090110 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  3   1-0  27038.4   0.0   82187.9   0   49   76
  ## @Dev-DMA=1-0 Blocks 79787592 Errors: header=79787592 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  4   0-0  27619.5   0.0   111084.1   0   5   103
  ## @Dev-DMA=0-0 Blocks 108480539 Errors: header=108480539 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  4   1-0  27624.1   0.0   109811.9   0   25   102
  ## @Dev-DMA=1-0 Blocks 107015429 Errors: header=107015429 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  5   0-0  27114.8   0.0   138198.9   0   44   128
  ## @Dev-DMA=0-0 Blocks 134541694 Errors: header=134541694 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  5   1-0  27113.8   0.0   136925.7   0   22   127
  ## @Dev-DMA=1-0 Blocks 133521131 Errors: header=133521131 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  6   0-0  27950.7   0.0   166149.6   0   5   154
  ## @Dev-DMA=0-0 Blocks 162255488 Errors: header=162255488 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  6   1-0  27955.1   0.0   164880.8   0   12   153
  ## @Dev-DMA=1-0 Blocks 160932702 Errors: header=160932702 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  7   0-0  27751.4   0.0   193901.0   0   14   180
  ## @Dev-DMA=0-0 Blocks 189245365 Errors: header=189245365 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  7   1-0  27724.4   0.0   192605.2   0   12   179
  ## @Dev-DMA=1-0 Blocks 188007286 Errors: header=188007286 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  8   0-0  27344.0   0.0   221245.0   0   26   206
  ## @Dev-DMA=0-0 Blocks 215836723 Errors: header=215836723 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  8   1-0  27374.2   0.0   219979.5   0   65   204
  ## @Dev-DMA=1-0 Blocks 214182208 Errors: header=214641266 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  9   0-0  27351.0   0.0   248596.1   0   55   231
  ## @Dev-DMA=0-0 Blocks 242239735 Errors: header=242315401 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  9   1-0  27350.4   0.0   247329.8   0   22   230
  ## @Dev-DMA=1-0 Blocks 241338341 Errors: header=241338341 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  10  0-0  28304.1   0.0   276900.2   0   63   257
  ## @Dev-DMA=0-0 Blocks 269796552 Errors: header=270149523 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
  10  1-0  28280.2   0.0   275610.0   0   47   256
  ## @Dev-DMA=1-0 Blocks 268704255 Errors: header=268704255 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
**STOP**
-> Data checked @Dev-DMA=0-0: Blocks 269796552, Errors: header=270149523 trailer=0
First block with error, index 0, chunk data:
==> BLOCK ##INVALID HEADER (FF FF FF FF) 0 bytes payload
## (255x)

-> Data checked @Dev-DMA=1-0: Blocks 268704255, Errors: header=268704255 trailer=0
First block with error, index 0, chunk data:
==> BLOCK ##INVALID HEADER (FF FF FF FF) 0 bytes payload
## (255x)
```

Mechanical Update




- The board length reduced by ~11.5mm
- A 1x6 snap-in MTP adapter without ear is used
- Two changes make it to be easily installed into the server and plug the power cable into the power connector

1x6 MTP adapter
w/ flange
86.6x9.8 mm

1x6 MTP adapter
w/o flange
77.7x9.75 mm

FELIX Schedule

- January 2026, 4 more FLX-155A cards are being assembled
- Spring 2026, ATLAS FDR
- After FDR, pre-production (FLX-155B) fabrication, assembly and testing
- Fall 2026, ATLAS PRR
- After PRR, ATLAS production
- End of 2027, ATLAS production complete

Summary

- FLX-155A test results show all main functions work properly as expected. Power on sequence workaround on the current board has been finalized
- 4 more boards are being assembled, 1 for ePIC is expected to be delivered in February
- FELIX for ATLAS production is planned in this year