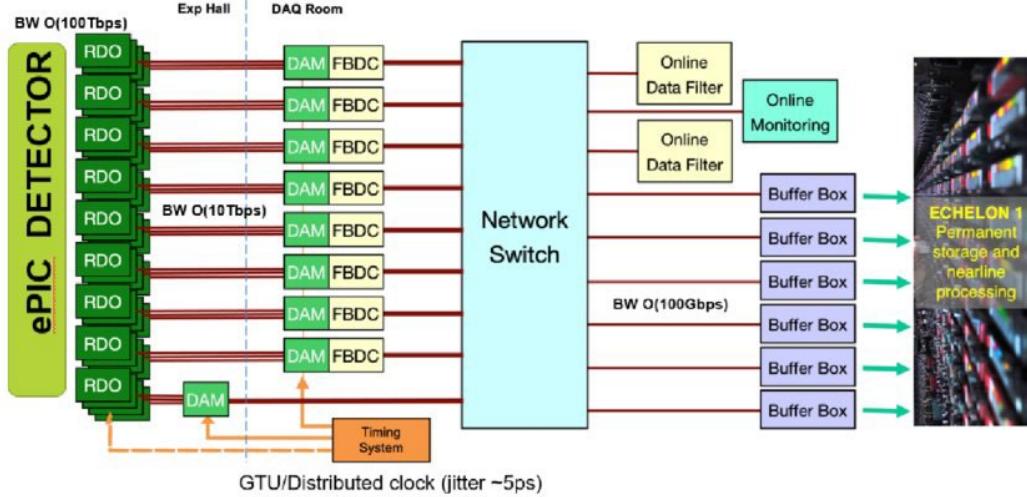
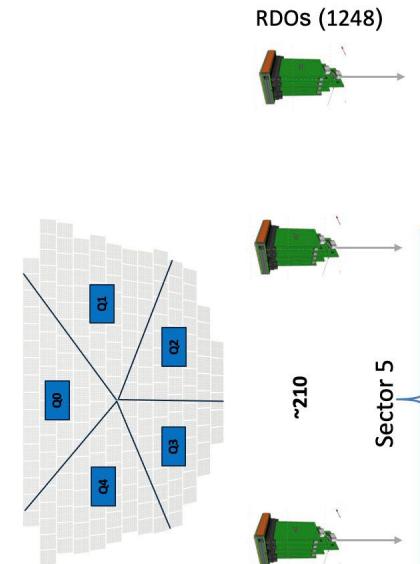



# dRICH DAQ: from ALCOR to DAM


Francesca Lo Cicero  
INFN Rome  
on behalf of INFN ePIC Italia dRICH DAQ group

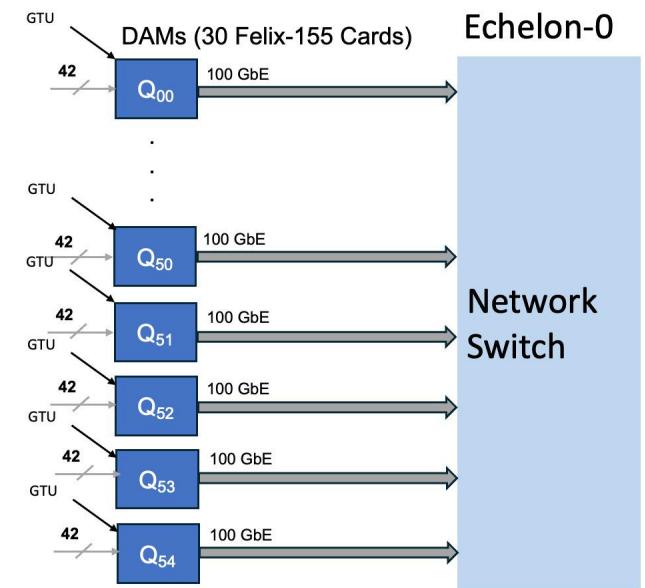
# dRICH recap


The dRICH is made up of six identical open sectors, each containing Silicon PhotonMultipliers (**SiPMs**) clustered in several Photon Detector Units (**PDU**).



# RDO/DAM role in ePIC and dRICH PDU




## Front-End DAQ: RDO



## Data Aggregation Module (DAM)

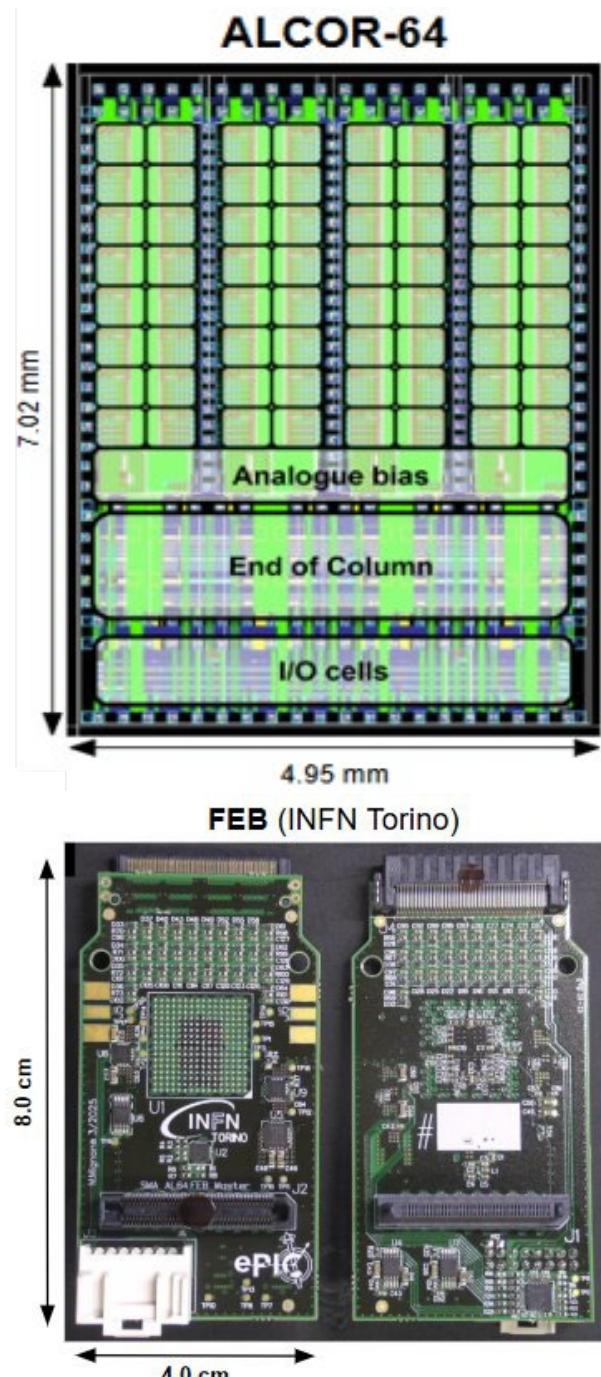
- Implemented on Felix board (INFN Rome)
- Aggregate data from 42 RDOs and transmit them to the ePIC buffering system (Echelon 0) through 100 GbE links.
- Provides computational capability for data handling and reduction

## Back-End DAQ: DAM



# ALCOR ASIC

## Main requirements for the ePIC dRICH detector


- Provide **single-photon time tagging** of signals coming from SiPM sensors
- **Cope with SiPM DCR**: 300 kHz/channel (at max SiPM radiation damage)

## ALCOR Main features (ALCOR ASIC: F. Cossio @PD2025)

- **64-channels** (8x8 pixel matrix) mixed-signal ASIC providing **signal amplification** (fast front-end), **conditioning** (leading edge discriminator) and **digitization** (analogue interpolation TDCs)
- Measurements: **ToA** + **ToT** or **Slew-Rate** for **time walk compensation**
- **Triggerless readout** with fully digital output: 8 LVDS 394 MHz DDR Tx links
- Hardware **shutter** can inhibit event digitization to suppress **out-of-time SiPM DCR hits**
- Power consumption ~12 mW/channel, 110 nm CMOS technology
- Flip-chip BGA package: 17x17mm, 256 Ball, 1 mm pitch

MPW tapeout on Apr 2025, BGA packaging ongoing, first samples to be delivered soon (2026/Q1)

ALCOR update: F. Cossio @Electronics & DAQ WG meeting



# ALCOR data (raw)

- ALCOR hits "event word" are timestamps



3 bits to identify the column (LVDS TX link)  
[0 to 7]

3 bits to identify the pixel  
[0 to 7]

4 TDC IDs: 2 bits  
→ 2 TDCs for leading edge  
→ 2 TDCs for trailing/slew rate

These nine bits are the measurement of the TDC  
You can reach 20-40 ps LSB.  
Calibration needed → can't be used at DAM level

394 MHz → coarse counter LSB 2.54 ns (currently 320 MHz → 3.125 ns)

15 bit coarse counter (0x7FFF = 32767)

Coarse counter expires every 83.228  $\mu$ s > 12.78  $\mu$ s (EIC orbit)

At each EIC orbit we get a RevTick signal from DAM (main EIC "synch")  
→ this trigger a coarse counter reset and a frame structure injected in data flow

- KC codes (8b10b codes) are used as separators/data encapsulators

**INFN**

# ALCOR data format and transmission

**ePIC**

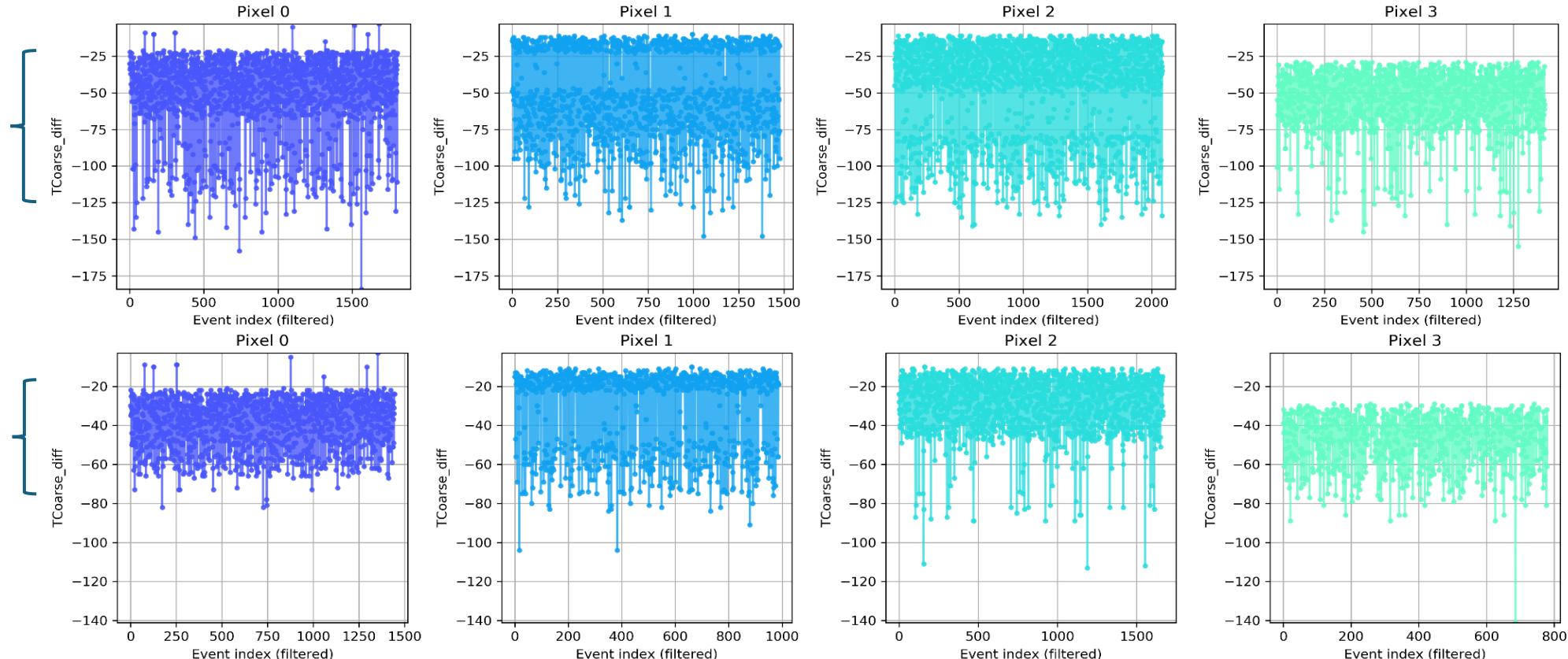
**ALCOR data-push architecture** implies that 32-bit event words are "immediately" out on LVDS Tx links

|        |        |        |                |    |    |              |            |   |   |  |
|--------|--------|--------|----------------|----|----|--------------|------------|---|---|--|
| 31     | 29     | 28     | 26             | 25 | 24 | 23           | 9          | 8 | 0 |  |
| Col ID | Pix ID | TDC ID | Coarse Counter |    |    | Fine Counter |            |   |   |  |
|        |        |        |                |    |    | clk counter  | TDC output |   |   |  |

Events are not transmitted perfectly ordered by time, mainly due to the different TDC conversion time

- Data from trailing edge (TDC1, TDC3) can be transmitted before data from leading edge (TDC0, TDC2), when operating in ToT or SlewRate mode
- Data from a given bunch can be transmitted after data of subsequent bunches have already been transmitted

Global time reference is ensured by **data frames** structure: new frame (frame number, frame info, CRC) every  **$2^{15}$  clock cycles** or set by **external reset**

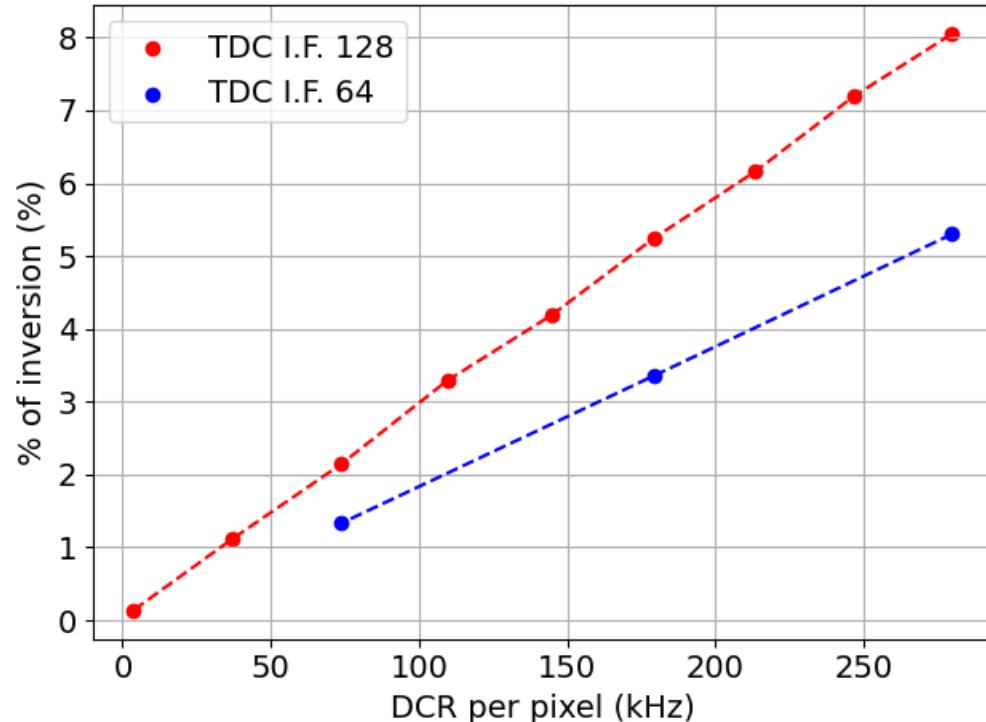

**Data inside each frame will be time-ordered at FPGA-level using Coarse Counter bits**

We performed several simulations on ALCOR data stream to study the effect of time-inverted data and understand how it must be addressed by the ePIC dRICH DAQ FPGA

# ALCOR simulations: time ordering

Time-inverted data mainly due to **TDC conversion time** which **depends on TDC interpolation factor (IF) settings**: 80-250 ns (IF=64), 160-500 ns (IF=128)

TDC IF = 128  
 $\Delta T$  range < 128 CLK

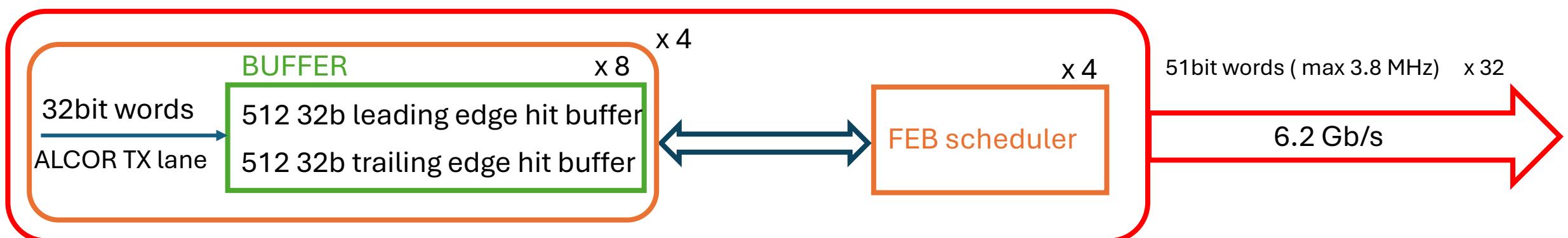



TDC IF = 64  
 $\Delta T$  range < 64 CLK

Need to buffer events up to 256 CLK cycles inside FPGA while performing time ordering

# ALCOR simulations: time ordering

The time-inversion rate has been quantitatively estimated as the % of events with:  
`timestamp[i] < timestamp[i-1]`




- Inversion rate increases linearly with DCR
- Simulations with TDC interpolation factor (IF) **64** show a lower inversion rate due to TDC lower conversion time
- Simulations performed using gate width of 7.5 ns (Data reduction factor = 1.3)

Next step: use output data from these simulations as inputs for next elements in the dRICH DAQ chain (**RDO** and then **DAM**)




# RDO buffering and "time ordering"?



**BUFFER (1024 x 32 bit):** → 1 Mbit full RDO:

- 512 leading words and 512 trailing words
- Leading/trailing edges waiting for matching
- 4.8 MHz : 300 kHz x 8 x 2 + ctrl words

**Schedulers:**

- Act on the occupancy and the timestamp to select the lane to be read → push data to buffer
- Inspect BUF and build 51bit Alcor Words (AWORDs)
- Completed 51b words are sent to the DAM via opt links ordered by BC

2026 Challenge: all this needs to be implemented (and validated!) in a "tiny" AU15P FPGA (5.1 Mbit BRAM)

**51-bit AWORD: leading + trailing**

|             |        |                   |                   |                 |         |          |                  |                  |                |   |   |
|-------------|--------|-------------------|-------------------|-----------------|---------|----------|------------------|------------------|----------------|---|---|
| 50          | 49 48  | 47 46             | 45 39             | 38 30           | 29 27   | 26 24    | 23 22            | 21               | 9              | 8 | 0 |
| K CODE FLAG | FEB ID | TDC ID (trailing) | Coarse (trailing) | Fine (trailing) | Col. ID | Pixel ID | TDC ID (leading) | Coarse (leading) | Fine (leading) |   |   |

- K CODE FLAG: indicates whether the word should be interpreted as a K-code

**Bit optimization performed:**

- Using 13 instead of 15 bit for coarse counter range
- extracting Bunch Crossing Coarse counter of leading for trailing



We aim to send time ordered words (by BC) to the DAM ( to ease data reduction)

# How to transmit AWORD to DAM?

**DAM Firmware:** Reuse as much as possible of the “official” FELIX firmware release.

<https://gitlab.cern.ch/atlas-tdaq-felix/firmware.git>

## FELIX Firmware

- FELIX supports different link protocols for data transfer
- The firmware flavour is defined at built time

### GBT :

- Protocol which provides radiation-tolerant transport of data
- Aggregate multiple lower bandwidth logic links (e-links) in one high bandwidth data link

### FULL :

- Use the GBT protocol for the links towards the FE (downlink)
- To receive data from the FE (uplink) implements a light-weight protocol (with a bandwidth of 9.6 Gb/s per optical link - 7.68Gb/s with 8b10b encoding).

| Protocol | FELIX                   |
|----------|-------------------------|
| GBT      | TX: 4.8G, RX: 4.8G      |
| FULL     | TX: 4.8G, RX: 9.6G      |
| IpGBT    | TX: 2.56.8G, RX: 10.24G |

### IpGBT :

- Evolution of GBT
- Two FEC codes can be used (FEC5/FEC12)

### FEC5 Uplink

| Option                   | 5.12 Gb/s   | 10.24 Gb/s   |
|--------------------------|-------------|--------------|
| Frame (bits)             | 7           | 7            |
| Header (bits)            | 128         | 2 x 128      |
| Coded header             | 2           | 2+2          |
| User field (bits)        | no          | no           |
| Code (bits)              | 116         | 232          |
| 16-bit multiplicity      | 10          | 20           |
| Remainder bits           | 7.250       | 14.5         |
| User Bandwidth (GHz)     | 4           | 8            |
| # eLinks groups (16 bit) | 4.64        | 9.28         |
| eLinks bandwidth (MHz)   | 7           | 7            |
| #eLinks                  | 160/320/640 | 320/640/1280 |
| EC bandwidth (MHz)       | 28/14/7     | 28/14/7      |
| IC bandwidth (MHz)       | 80          | 80/160       |
| Unassigned bits          | 80          | 80/160       |
| Corrected (bits)         | 0           | 4            |
| Efficiency               | 5           | 2 x 5        |
|                          | 91%         | 91%          |

# How to transmit AWORD to DAM?

| Protocol Bandwidth (Gb/s) |                         |
|---------------------------|-------------------------|
| Protocol                  | FELIX                   |
| GBT                       | TX: 4.8G, RX: 4.8G      |
| FULL                      | TX: 4.8G, RX: 9.6G      |
| IpGBT                     | TX: 2.56.8G, RX: 10.24G |

## FULL :

- Less FPGA resources hungry with respect to IpGBT
- **Do not provide radiation-tolerant data transport**

## IpGBT FEC5 :

- Provides **radiation-tolerant** transport of data
- FEC5 Bandwidth: 10.24Gb/s with 91% efficiency
- Scaling up to 48 IpGBT in FLX-155 could be a problem **without modifying the standard FELIX FW**
- Division of physical-link in virtual-links (e-links) is not necessary but **standard FELIX FW doesn't support single e-link configuration**

## Design Assumption:

- RDO/DAM BW: at most 6.2Gb/s
- RDO: Use of VTRx+ Optical Link Module for Data Transmission, w/o IpGBT ASIC

## FELIX Estimated resource utilization

|                  |      | KU115   | VM1802 | VP1552 |
|------------------|------|---------|--------|--------|
| GBT 24 channel   | LUT  | 80.65%  | 69.60% | 35.71% |
|                  | FF   | 77.03%  | 50.94% | 26.13% |
|                  | BRAM | 70.00%  | 89.45% | 34.04% |
|                  | URAM | 62.20%  | 22.14% |        |
| FULL 24 channel  | LUT  | 52.59%  | 44.35% | 22.75% |
|                  | FF   | 38.40%  | 33.21% | 17.03% |
|                  | BRAM | 40.46%  | 20.99% | 7.99%  |
|                  | URAM | 62.20%  | 22.14% |        |
| LPGBT 24 channel | LUT  | 112.51% | 82.94% | 42.55% |
|                  | FF   | 52.39%  | 38.62% | 19.81% |
|                  | BRAM | 68.94%  | 79.52% | 30.26% |
|                  | URAM | 62.20%  | 22.14% |        |

[https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX\\_Phase2\\_firmware\\_specs.pdf](https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/FELIX_Phase2_firmware_specs.pdf)

**FW customization required**

**Discussion about these choices is ongoing with ALICE people ...**

# Link protocol

**DISCLAIMER NOTICE:** all this is VERY



RDO "prepares" data reduction  
DAM "does" data reduction



## AWORD

|             |        |                   |                   |                 |         |          |                  |                  |                |   |   |
|-------------|--------|-------------------|-------------------|-----------------|---------|----------|------------------|------------------|----------------|---|---|
| 50          | 49 48  | 47 46             | 45 39             | 38 30           | 29 27   | 26 24    | 23 22            | 21               | 9              | 8 | 0 |
| K CODE FLAG | FEB ID | TDC ID (trailing) | Coarse (trailing) | Fine (trailing) | Col. ID | Pixel ID | TDC ID (leading) | Coarse (leading) | Fine (leading) |   |   |

|       | DF3 | DF2 | DF1 | DF0 | DCS (free) | AWORD   | AWORD   | AWORD  | AWORD |
|-------|-----|-----|-----|-----|------------|---------|---------|--------|-------|
| FULL  | 255 | 254 | 253 | 252 | 251 204    | 203 153 | 152 102 | 101 51 | 50 0  |
| IpGBT | 223 | 222 | 221 | 220 | 219 204    | 203 153 | 152 102 | 101 51 | 50 0  |

link protocol operated at **39.4 MHz CLK**  
(5/2 of EIC clock, close to LHC clock)

opt-link protocol RDO

- extracts BC from bits 21-11

• extracts geographic position from RDOID (DAM is link-aware) + FEBID (49-48) + AlcorCh (29-24): geo info

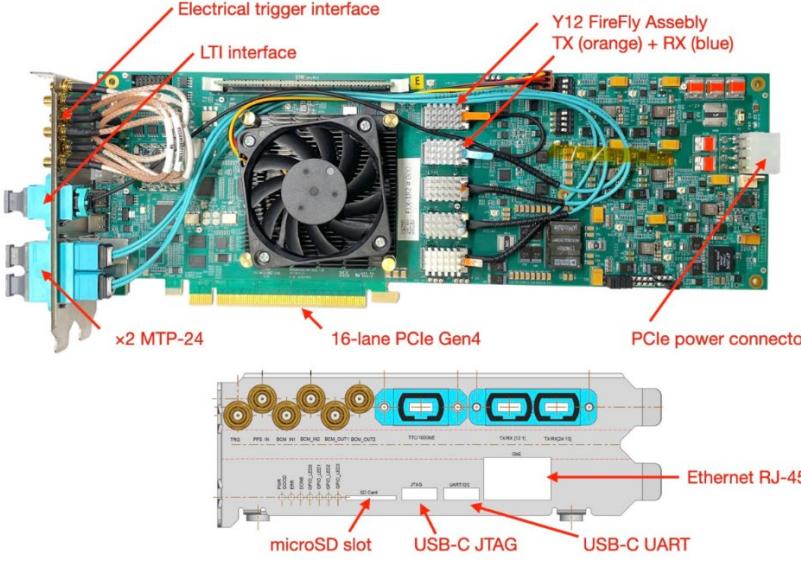
→ data pattern

- NN decision is reached, the DAM must add to the 51-bit word the 11 bits of the RDOID → 62-bit word

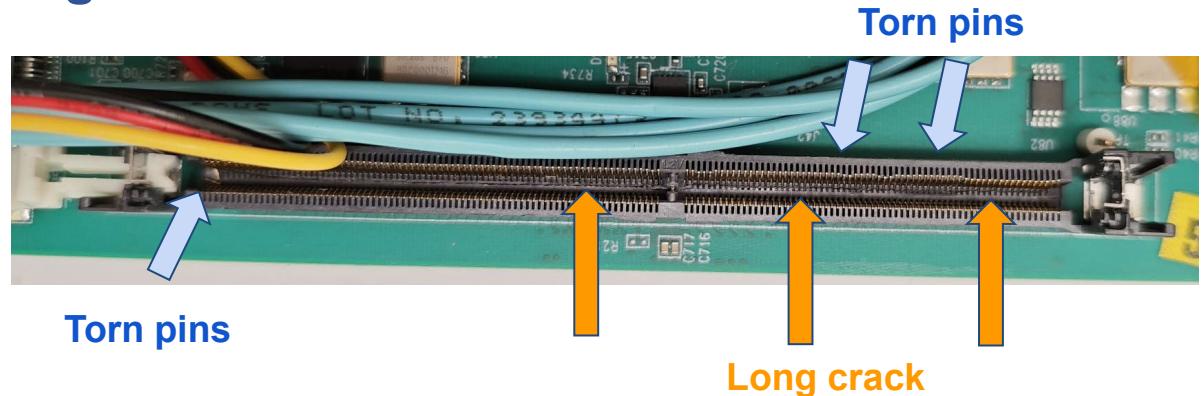
- 2 bits added → PCI 64-bit words → dRWORDS (dRICH words)

- dRWORDS out in timeframes to StreamingReadOut computing

## Protocol over optical link:


- FULL (256 bits/clk)
- IpGBT (224 bits/clk with FEC5)
- Data Flag
- Space for DCS bus (SWT à la ALICE-ITS2)

**IpGBT/FULL to be compared under radiation**


**FULL is our current baseline choice**

# DAM prototype on FLX182

## Board procurement @Rome



- Felix-182 board from JLab arrived in Rome end of December '24.
- It showed damages to the DRAM slot:
  - **torn contact pins**
  - **a crack along the inner side of the slot**



We consulted:

- the INFN Electronics Laboratory in Rome
- CERN EP-ESE Electronic Systems for Experiments (thanks Markus Joos!)

**Both agreed that is extremely difficult to repair the DRAM slot and not worth the effort considering the costs and the likely not optimal result...**

# DAM prototype on FLX182

## Firmware

- Loading Felix official firmware onto the board failed due to a DRAM check error.
  - In current Felix FW versions the PS performs just ancillary functions (BIST,...), while all the design core functionalities are implemented in the PL.
  - We forced Versal Platform Management Controller (PMC) to ignore DRAM status check at start up.



**FW loaded and board detected!**

```
[locicero@apestation0 ~]$ lspci -vvvvv | grep CERN
34:00.0 Network controller: CERN/ECP/EDU Device 0428
  Subsystem: CERN/ECP/EDU Device 0038
35:00.0 Network controller: CERN/ECP/EDU Device 0427
  Subsystem: CERN/ECP/EDU Device 0038
```

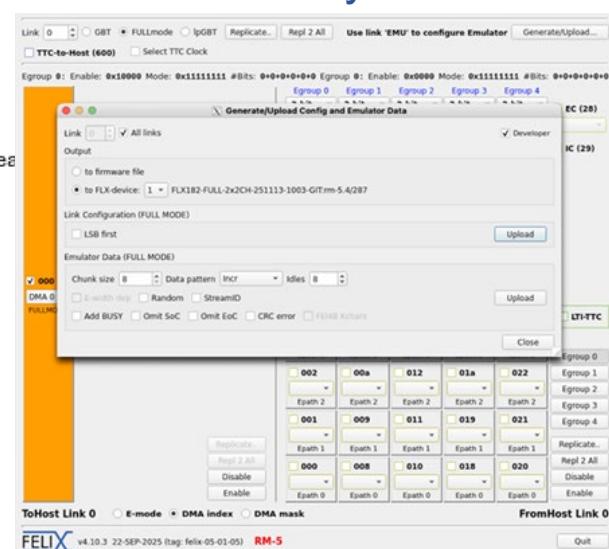
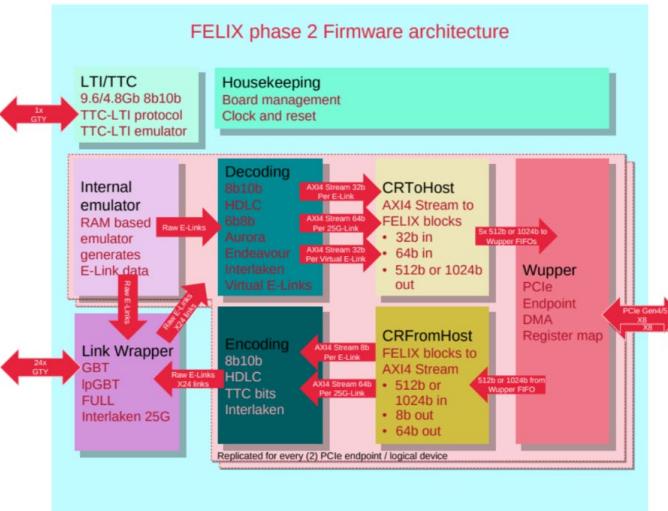
```
lonardo@apestation0 x86_64-elf9-gcc13-opt]$ bin/flx-init
2025-05-14 18:06:05 Opening card 0 (device 0)...
2025-05-14 18:06:05 Card type: FLX-182
2025-05-14 18:06:05 Firmware : FULL
2025-05-14 18:06:05 Clock : Local
```

- Exercise the full software/firmware stack using the internal data generators to instantiate DMAs towards the host memory

Consume FLX-device data while checking the data (blockheader and trailers),  
 counts errors including chunk truncation, halts when the memory buffer is near overflowing.  
 Also counts chunk CRC errors.

Opened FLX-device 0, FLX182-FULL-2x2CH-251113-1003-GIT:rm-5.4/287, trailer=32bit ChunkHeader

\*START(emulator)\* using DMA #0 polling



Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

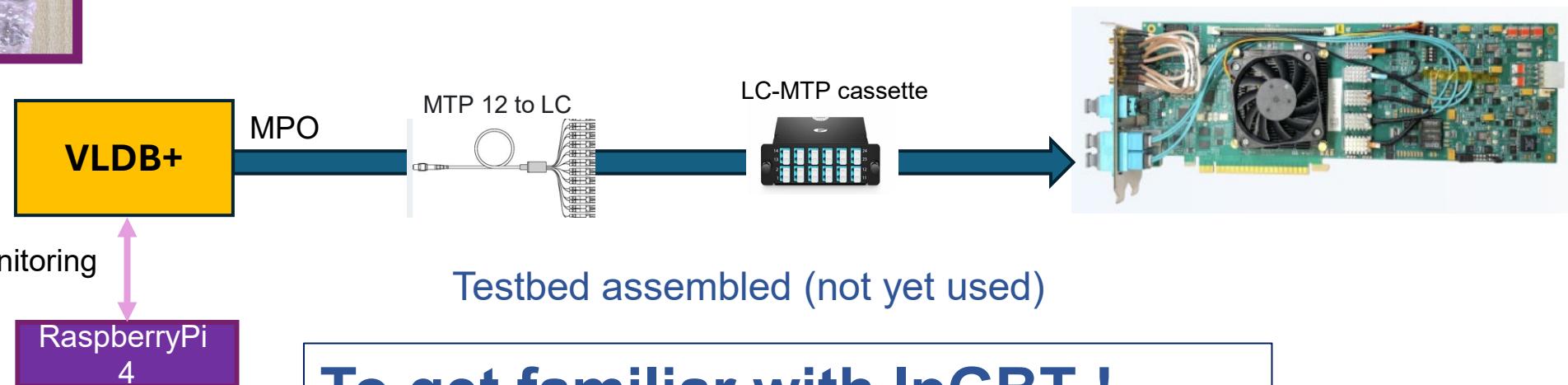
|             | 1     | 2   | ... | 15    |
|-------------|-------|-----|-----|-------|
| Secs        | 241.4 | 0.0 |     | 241.4 |
| Recvd[MB/s] | 0     | 0   |     | 0     |
| File[MB/s]  | 0     | 0   |     | 0     |
| Total[(M)B] | 0     | 0   |     | 0     |
| Rec[(M)B]   | 0     | 0   |     | 0     |
| Buf[%]      | 0     | 0   |     | 3     |
| Wraps       |       |     |     |       |

\*STOP\*

-> Data checked: Blocks 3533027, Errors: header=0 trailer=0

Exiting..




# Testbed (I) @Rome

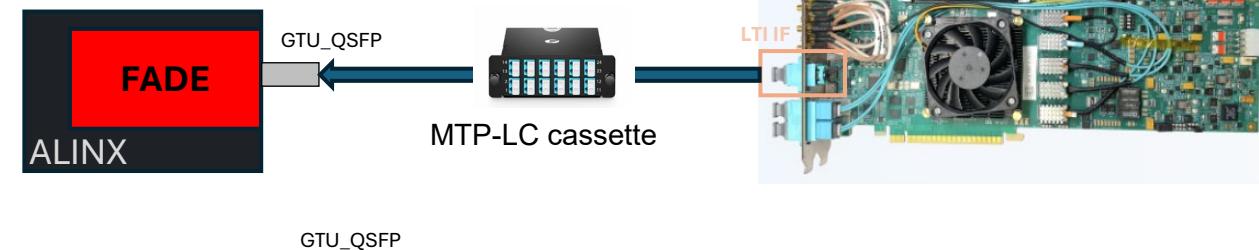
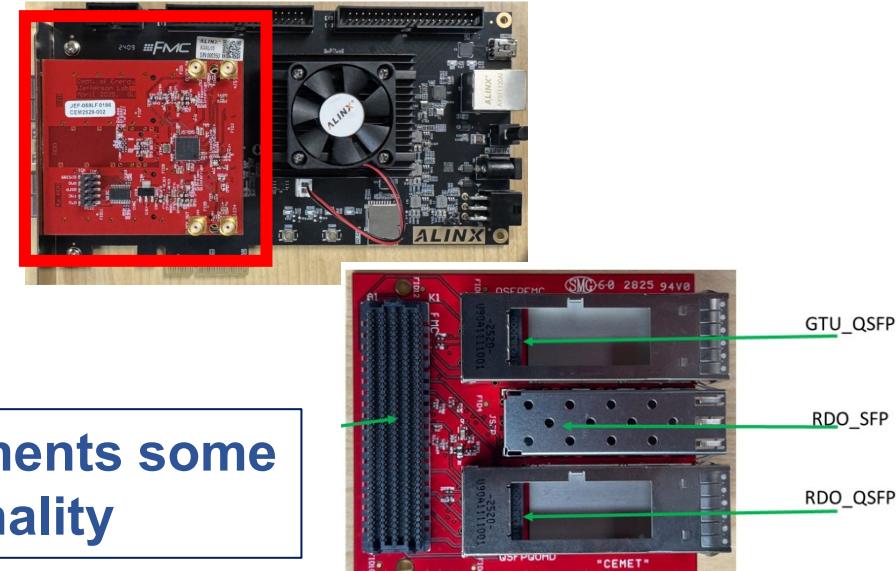


**VLDB+** : board designed by CERN's EP-ESE group to provide an evaluation kit for the new Versatile Link ecosystem.

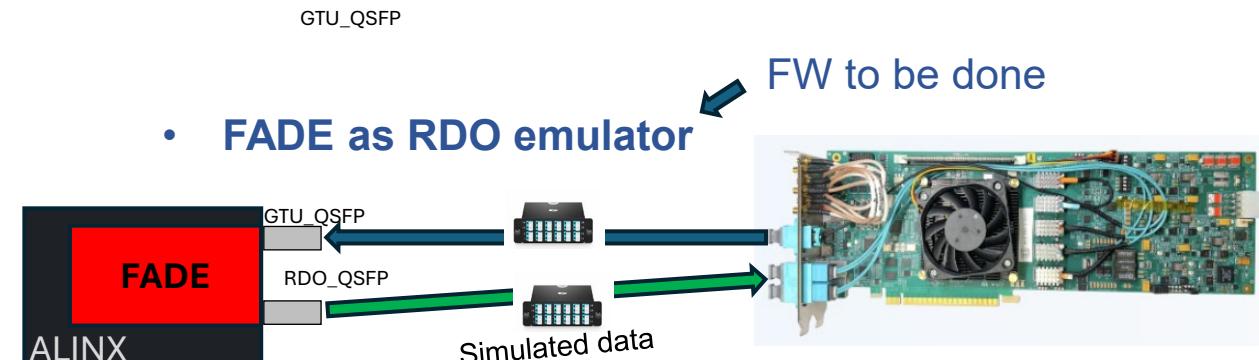
- On board:
  - IpGBT,
  - VTRx+ connector
  - Rad-tol DC/AC regulators
  - FMC connectors for prototyping with FEB or FPGA development kit
- IpGBT configuration through **RaspberryPi 4** and piGBT web application.

Thanks to  
INFN Bologna!

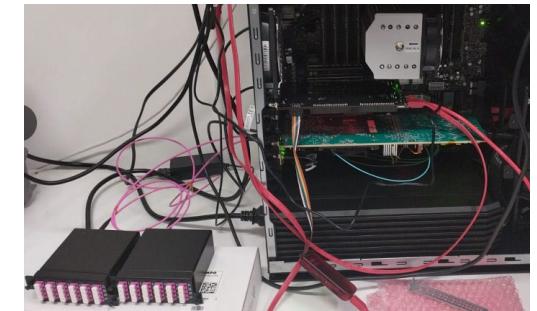




To get familiar with IpGBT !

# Testbed (II) @Rome


## FMC Adaptor card for DAM Emulation (FADE) module

- Plugged onto the AXAU15, an AMD Artix UltraScale+ FPGA development board developed by ALINX.


- FADE in Master mode:** FADE sends the System clock (19.7 MHz) and the run control (7.88 Gbps) to a DAM and receives the 'DAM' status via the GTU\_QSFP.



**FADE implements some GTU functionality**



**Test RDO/DAM connection**



**Testbed assembled (not yet used)**

# Conclusion

## ALCOR64

- MPW tapeout completed in April 2025; first samples expected in Q1 2026
- Several simulations of the ALCOR data stream performed to study the impact of time-inverted data

## RDO

- RDO validated and used during the November 2025 test beam
- On-going studies on data buffering and time ordering for transmission to DAM

## DAM

- FLX182 board procured and installed on a dedicated server, together with ancillary hardware
- On-going studies/test on FELIX firmware and software stack (FULL, GBT and IpGBT flavours)

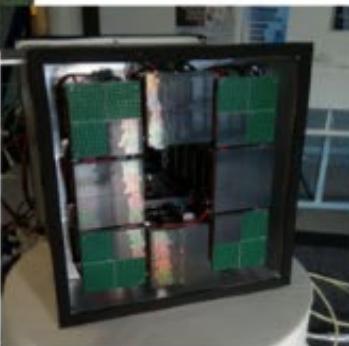
## Future Work

- Use ALCOR simulation output data as input for the next elements of the dRICH DAQ chain (RDO → DAM)
- Implement and validate RDO-level time ordering on the AU15P FPGA
- Perform DAM Tests
  - Optical loopback tests using MTP–LC breakout cable and patch panel
  - Use Alinx + FADE to emulate the GTU module for clock and run-control distribution to DAM
  - Investigate the IpGBT protocol using the VLDB+ board

# Backup

# dRICH testbeam

from the first prototype


2022

electronics v1



2023

electronics v2

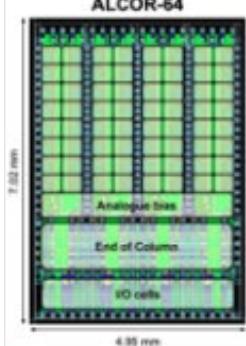


towards detector construction

2024

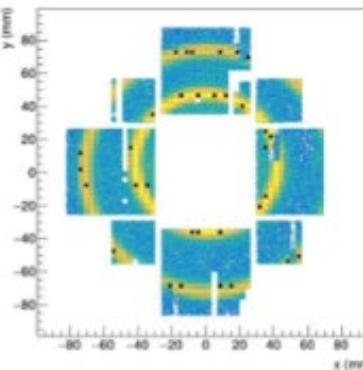
electronics v2.1



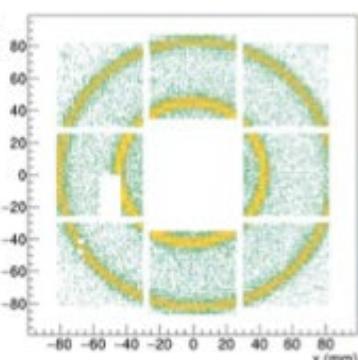

2025

electronics v3




2026

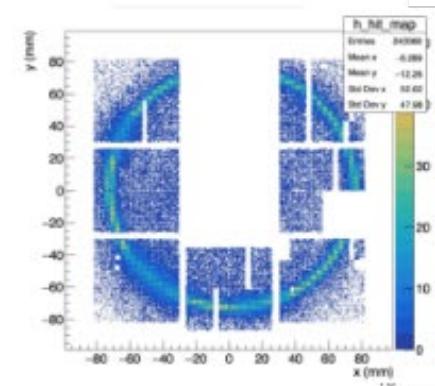
electronics v3 + ALCOR64 + FELIX




FLX-155

$\pm 5$  ns timing cut




$y$  (mm)



$y$  (mm)

$x$  (mm)

KC-705 readout + IPbus



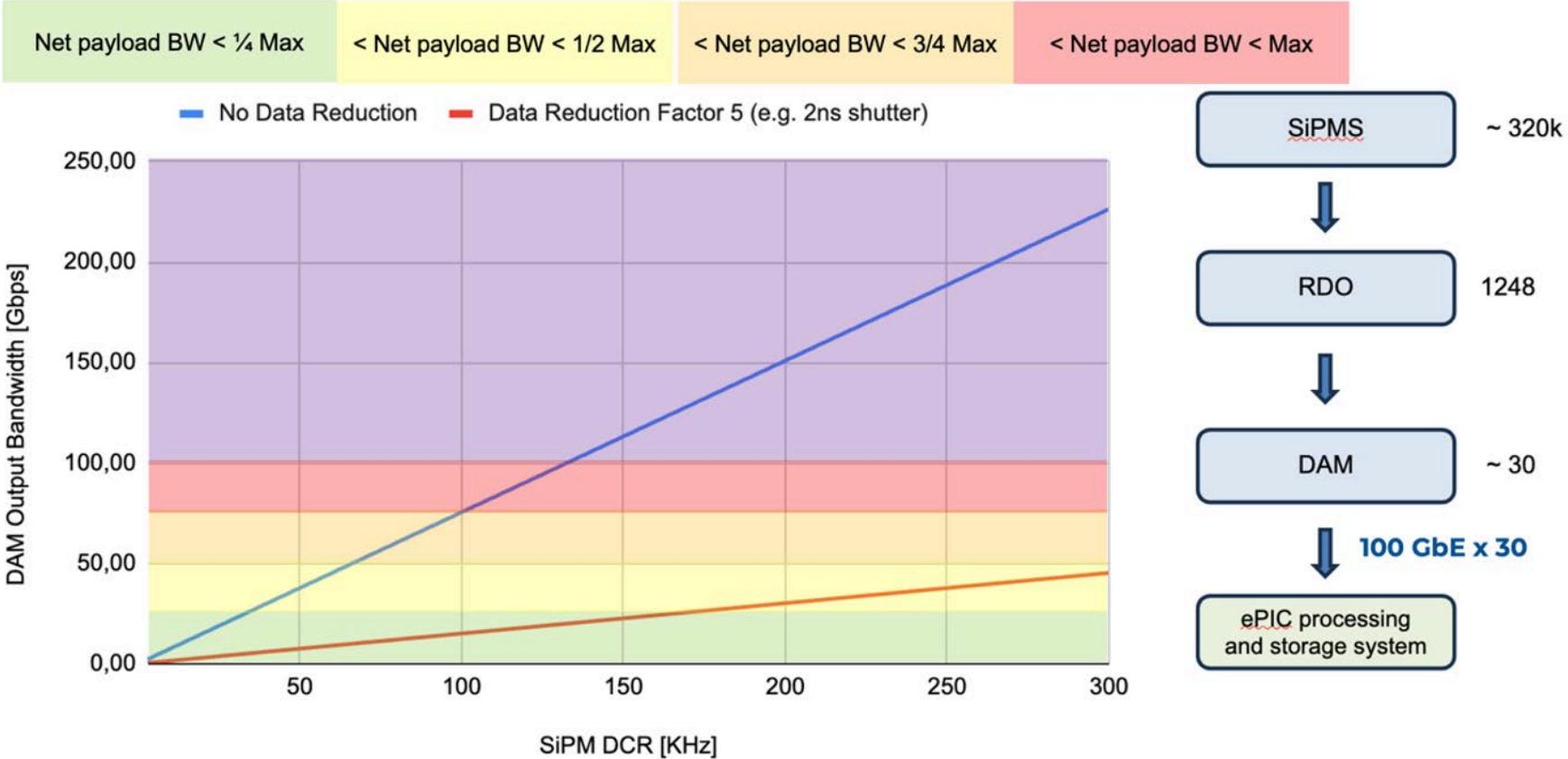
RDO readout + IPbus

RDO + "EIC link" + DAM

# Towards full data-push architecture: time ordering

The problem: ALCOR timestamps are not "*immediately*" out

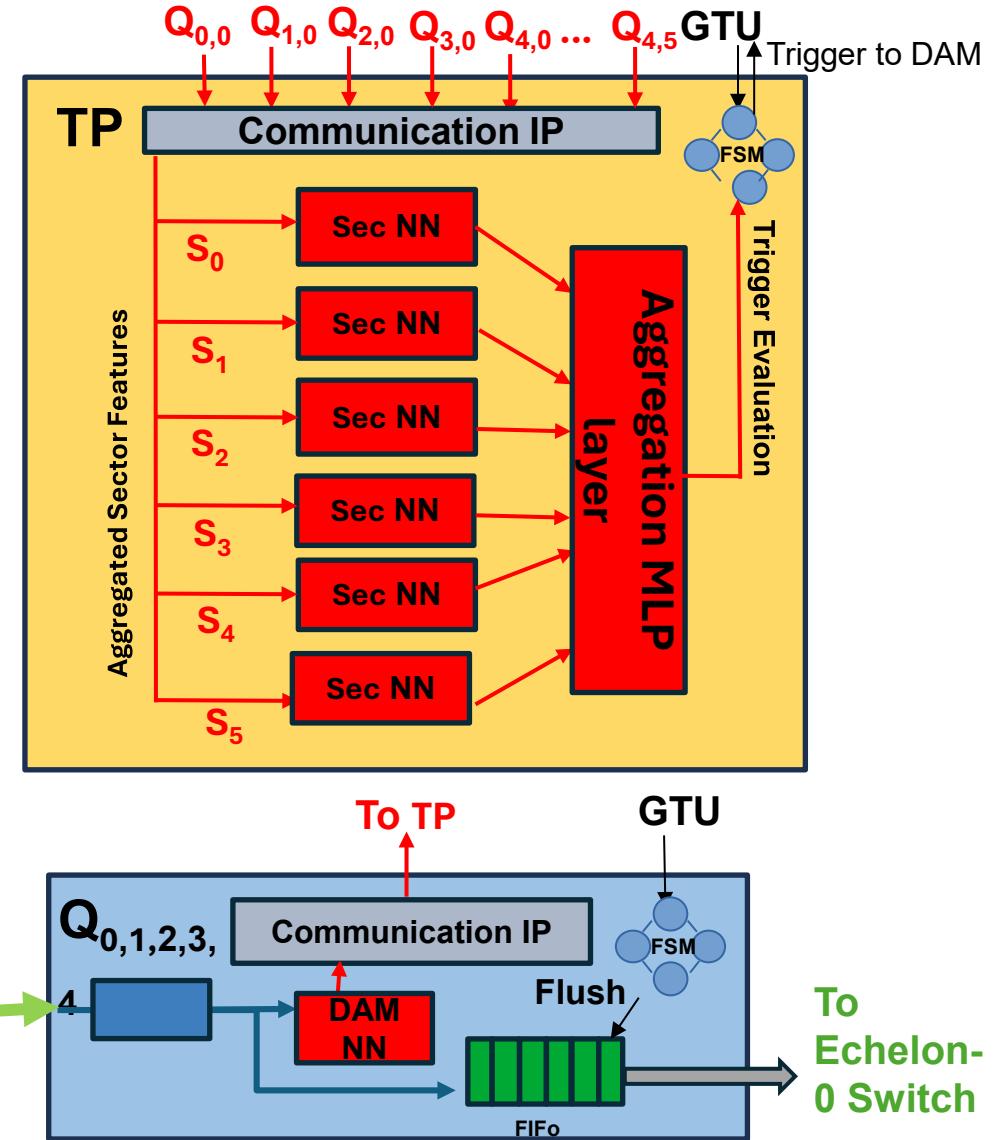
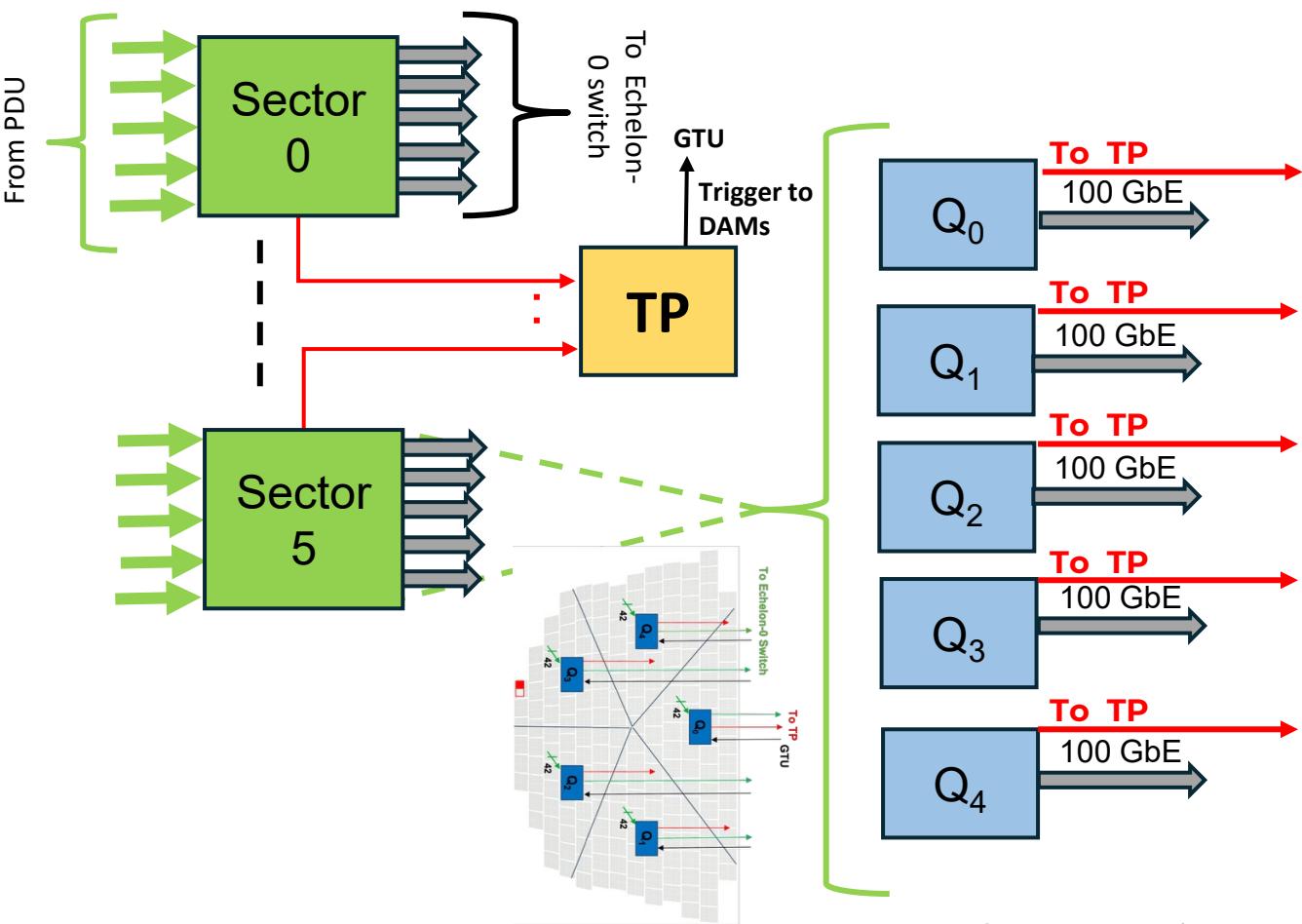
## Pixel TDC conversion defines time required for digitization:


- TDC max conversion time =  $1.5 \times 128 = 192$  clock cycles  $\simeq 500$  ns
- TDC min conversion time =  $0.5 \times 128 = 64$  clock cycles  $\simeq 170$  ns
- Max  $\Delta T = 500$  ns - 170 ns = 330 ns (inside ALCOR channel) → down to the column and transmit off-chip

## ALCOR data transmission:

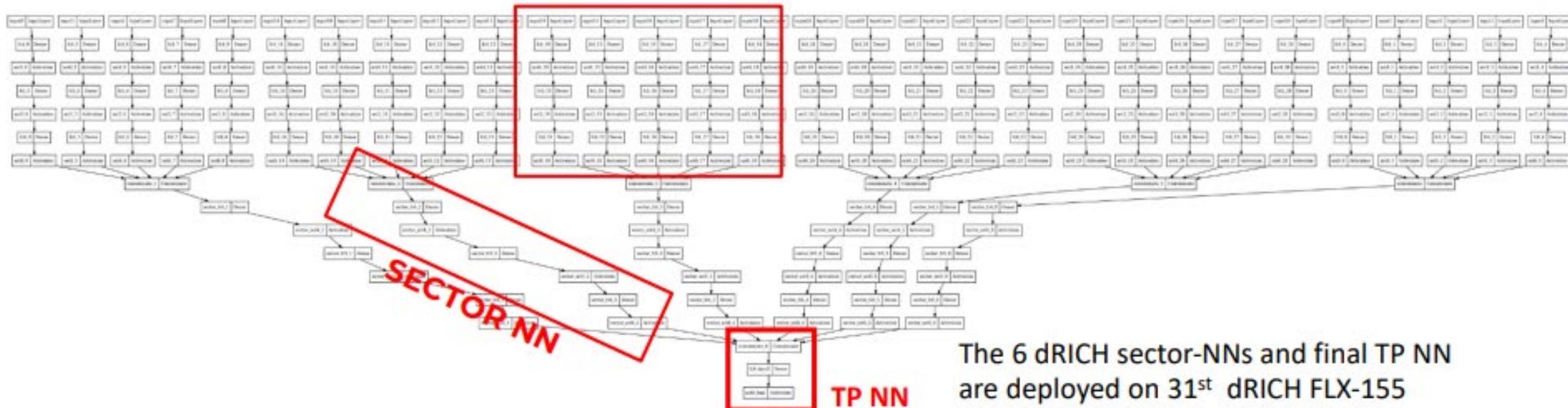
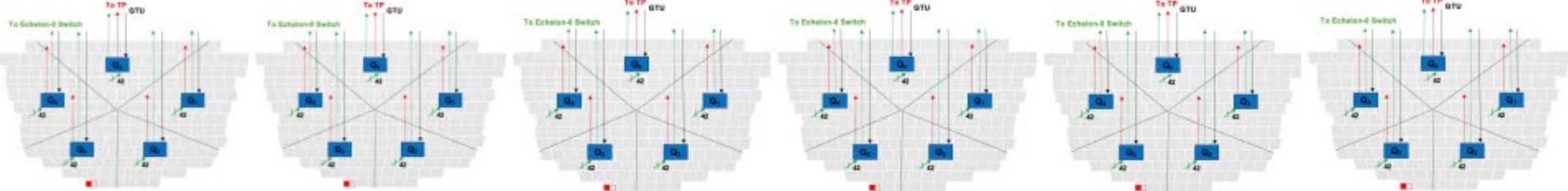
- 1 word: 40 bits → 40 b / 788 Mb/s = 51 ns per event word (we have 8 channels for each Tx link)
- If no other hits in the column, 2 hits (separated by 128 clk cycles in the pixel) are only separated by idle words (K.28.5 "comma" are filtered by RDO) → [dependency on data rates]
- Time reference given by ALCOR frame structure → @DCR = 300 kHz/ch,  $\Delta t_{frame} = 12.7886 \mu s$  →  $N_{events} = 8 \cdot DCR \cdot \Delta t_{frame} = 30.7$
- 31 event words per frame (mean value, 2x in ToT mode, add physics)

→ can hits be sent time ordered (BC) by RDO to ease DAM work?



# dRICH output bandwidth



- Without data reduction with a 100 kHz DCR we are close to DAM bandwidth limit
- A data reduction factor 5 allows us to stay safe up to the 300 kHz limit
- Data reduction factor five can be achieved via shutter or provided by NN or ext. trigger or a combination of them.



**INFN** dRICH data reduction integrated in the DAM **ePIC**

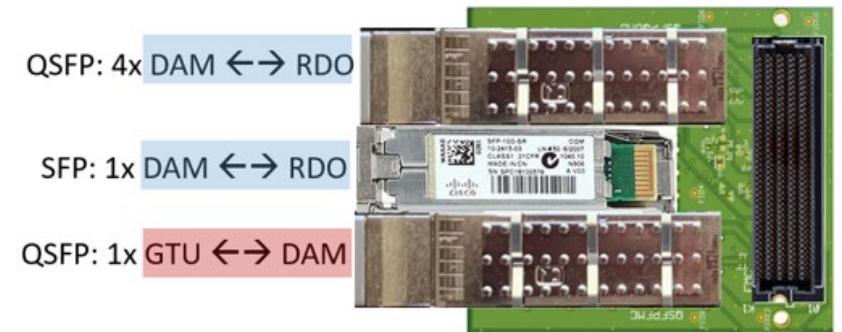
Neural network distributed over 31 Felix-155



# NN deployment model and DAMs

6 dRICH sectors – 5 DAMs/sectors





# FADE module

## FMC Adaptor card for DAM Emulation (FADE) module

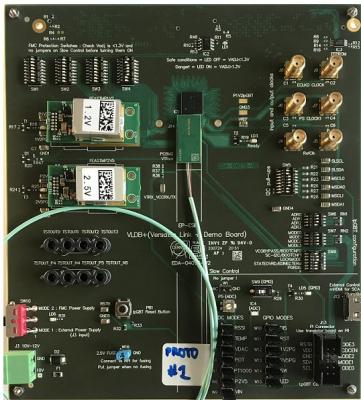
- Designed for the ePIC detector test data readout and the incremental DAQ software development.
- Plugged onto the AXAU15, an AMD Artix UltraScale+ FPGA development board in PClexpress card format and developed by ALINX.

**Slave mode:** FADE receives System clock (19.7 MHz) and the run control (7.88 Gbps), it sends the 'DAM' status via the GTU\_QSFP connector from/to a GTU. It performs as a DAM emulator.

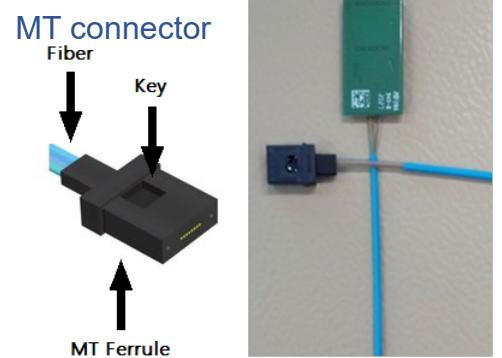
**Master mode:** FADE sends the System clock (19.7 MHz) and the run control (7.88 Gbps), it receives the 'DAM' status via the GTU\_QSFP connector to/from a DAM. Meanwhile, these are 'loopback', so the FADE still performs as a DAM emulator. The master mode just means the FADE implements some GTU functionality.



The GTU\_QSFP is the QSFP connector to GTU (in slave mode), or DAM (in master mode).


# VLDB+

- **IpGBT: Hightly configurable ASIC**
  - Mode of operation (TX/RX/TX-RX)
  - Uplinkdata rate
  - FEC option
  - Number of eLINK
  - ...




11 pins and 320 registers need to be taken care of

**VLDB+:** board designed by CERN's EP-ESE group to provide an evaluation kit for the new Versatile Link ecosystem.



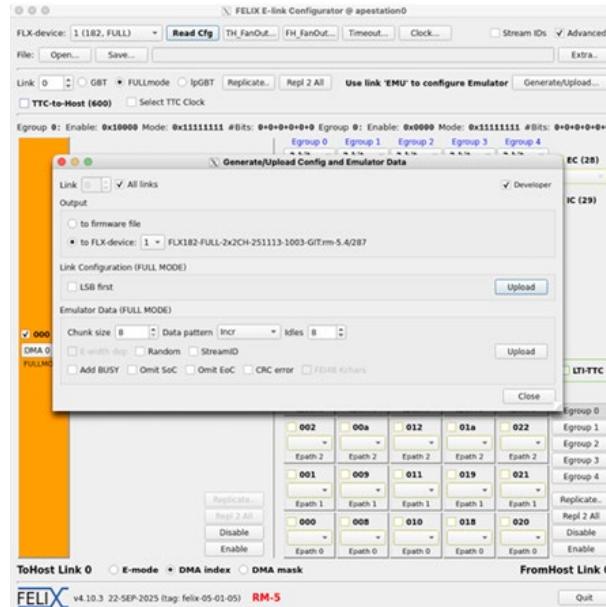
- On board:
  - LpGBT (
  - configuration and monitoring through the RaspberryPi 4 and piGBT web application.,
  - VTRX+
    - only one Tx link is connected to the VTRX+)
  - Rad-tol DC/AC regulators
  - FMC connectors for prototyping with FEB or FPGA development kit



# Testbed (II) @Rome

2 x cassette MTP  
To 24 LC ports




AMD FPGA + FADE board

FLX-182

FADE 2 qsfp+  
ports 1 sfp port

FLX-182 2 MTP  
TX/RX 24  
channels ports





```
[lonardo@apestation0 ~]$ fdaq -d 0 -t 15 -e movesi
```

Consume FLX-device data while checking the data (blockheader and trailers), counts errors including chunk truncation, halts when the memory buffer is near overflowing.

Also counts chunk CRC errors

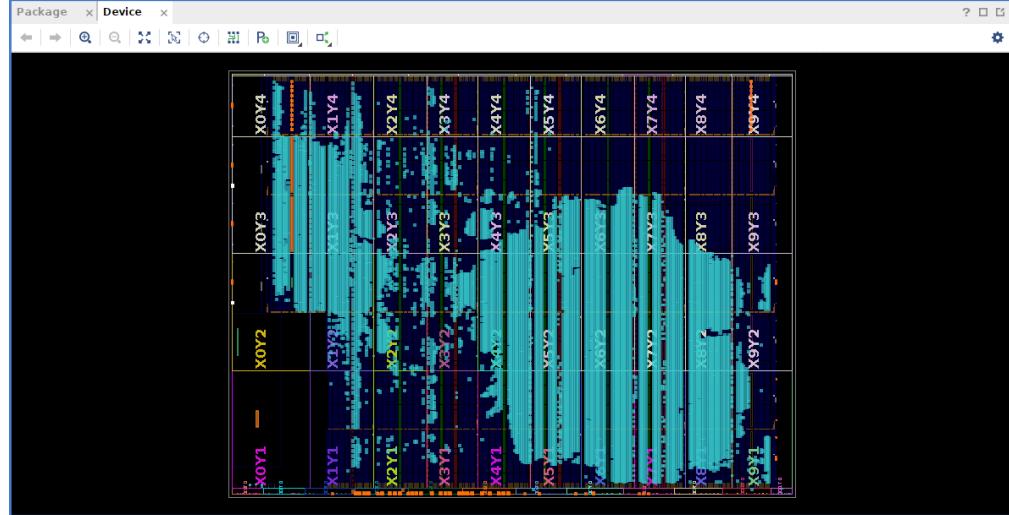
Opened FLX-device 0, FLX182-FULL-2x2CH-2511113-1003-GIT:rm-5.4/287, trailer=32bit ChunkHeaders, buffer=1024MB, DMA=0

\*START(emulator)\* using DMA #0 polling

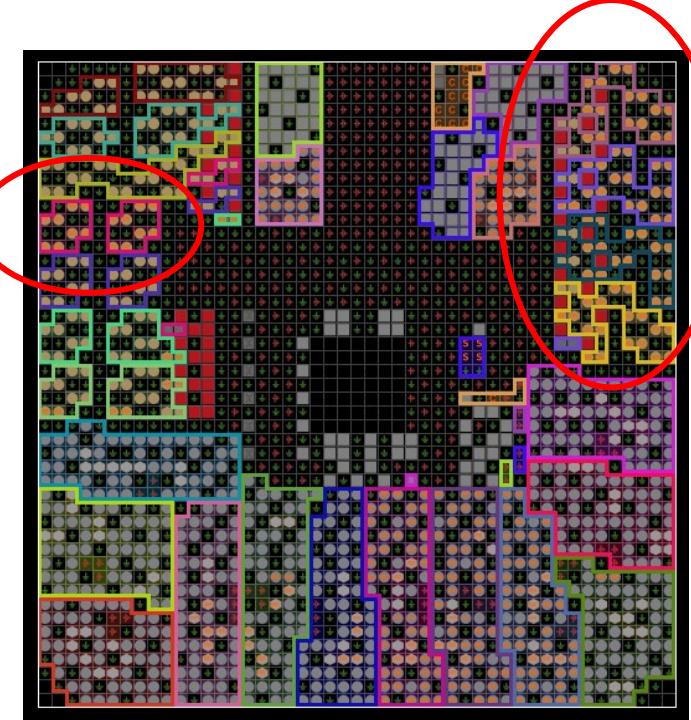
Secs | Recvd[MB/s] | File[MB/s] | Total[(M)B] | Rec[(M)B] | Buf[%] | Wraps

|   |       |     |       |   |   |   |
|---|-------|-----|-------|---|---|---|
| 1 | 241.4 | 0.0 | 241.4 | 0 | 0 | 0 |
| 2 | 241.3 | 0.0 | 482.6 | 0 | 0 | 0 |

15  
\*STOP\*


-> Data checked: Blocks 3533027. Errors: header=0 trailer=0

Exiting.


```
[lonardo@apestation0 ~]$ hexdump movesi-251121-122848-1.dat | head -16
```

00000000 0000 c0cf 0008 6000 00aa 0000 bb00 10aa 0000010 0008 6000 00aa 0100 bb00 10aa 0008 6000  
0000020 00aa 0200 bb00 10aa 0008 6000 00aa 0300 0000030 bb00 10aa 0008 6000 00aa 0400 bb00 10aa  
0000040 0008 6000 00aa 0500 bb00 10aa 0008 6000 0000050 00aa 0600 bb00 10aa 0008 6000 00aa 0700  
0000060 bb00 10aa 0008 6000 00aa 0800 bb00 10aa 0000070 0008 6000 00aa 0900 bb00 10aa 0008 6000  
0000080 00aa 0a00 bb00 10aa 0008 6000 00aa 0b00 0000090 bb00 10aa 0008 6000 00aa 0c00 bb00 10aa  
00000a0 0008 6000 00aa 0d00 bb00 10aa 0008 6000 00000b0 00aa 0e00 bb00 10aa 0008 6000 00aa 0f00  
00000c0 bb00 10aa 0008 6000 00aa 1000 bb00 10aa 00000d0 0008 6000 00aa 1100 bb00 10aa 0008 6000  
00000e0 00aa 1200 bb00 10aa 0008 6000 00aa 1300 00000f0 bb00 10aa 0008 6000 00aa 1400 bb00 10aa

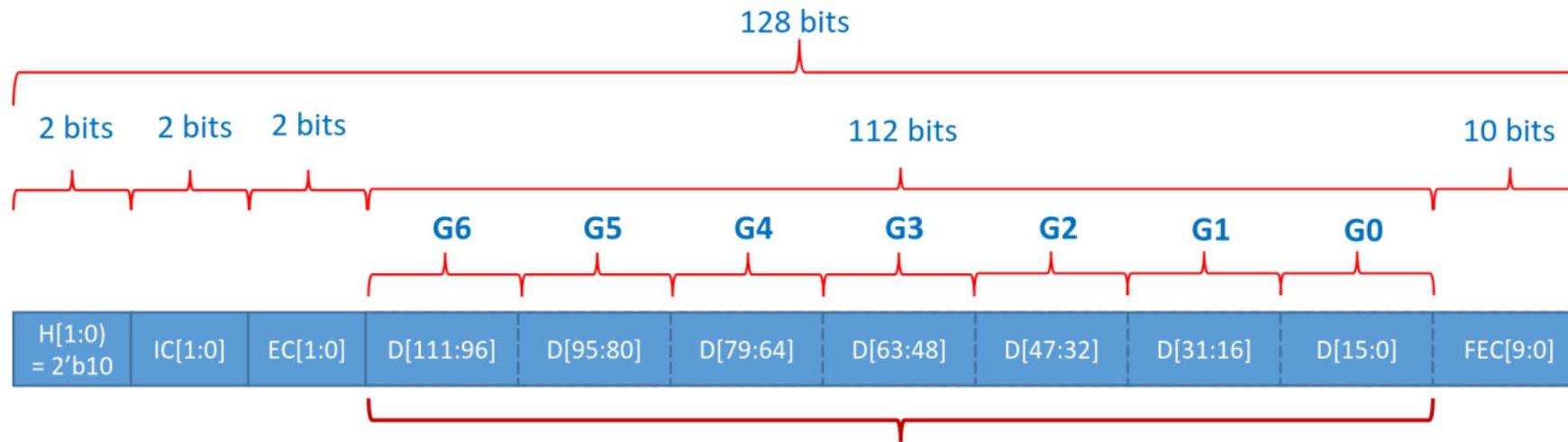
# FELIX Firmware – GBT flavour Synthesis results for 4 channels



4 ch GBT  
4TX 4RX



Pci 2x8 gen3


| Name      | Registers<br>(1799680) | CLB LUTs<br>(899840) | LUT as Logic<br>(899840) | LUT as Memory<br>(449920) | LOOKAHEAD8<br>(112480) | SLICE<br>(112480) | CLB Registers<br>(1799680) | Block RAM<br>Tile (967) | URAM<br>(463) | Bonded IOB<br>(692) | GTYE5_QUAD<br>(11) | PCIE<br>40E5<br>(4) |
|-----------|------------------------|----------------------|--------------------------|---------------------------|------------------------|-------------------|----------------------------|-------------------------|---------------|---------------------|--------------------|---------------------|
| felix_top | 16.99%                 | 24.43%               | 23.69%                   | 1.48%                     | 2.14%                  | 41.38%            | 16.99%                     | 24.46%                  | 43.63%        | 28.32%              | 54.55%             | 50.00%              |

# Uplink – FEC 5

- Dual data rate:
  - 5.12 Gb/s
  - 10.24 Gb/s
- Frame:
  - Header:
    - 2 / 4 – bits
    - 2'b10 (high) & 2'b01 (low)
  - IC field:
    - 2 – bit
    - 80 Mb/s
  - EC field:
    - 2 – bit
    - 80 Mb/s
  - Data field:
    - 112 / 224 – bit
    - 4.48 / 8.96 Gb/s
  - FEC field:
    - 10 / 20 – bit
- Error correction:
  - FEC:
    - Interleaving: 1 / 2
    - Symbol width: 5 – bit
    - Number of wrong symbols: 1 (  $\times$  1 /  $\times$  2 )
  - Up to 5 / 10 consecutive bits
  - Efficiency: 91%
- eLinks:
  - Data
    - 28 eLinks @ 160 / 320 Mb/s
    - 14 eLinks @ 320 / 640 Mb/s
    - 7 eLinks @ 640 / 1280 Mb/s
  - EC
    - 1 eLink @ 80 Mb/s

| FEC5                     | 5.12 Gb/s   | 10.24 Gb/s     |
|--------------------------|-------------|----------------|
| Option                   | 7           | 7              |
| Frame (bits)             | <b>128</b>  | <b>2 x 128</b> |
| Header (bits)            | <b>2</b>    | <b>2+2</b>     |
| Coded header             | <b>no</b>   | <b>no</b>      |
| User field (bits)        | 116         | 232            |
| Code (bits)              | 10          | 20             |
| 16-bit multiplicity      | 7.250       | 14.5           |
| Remainder bits           | 4           | 8              |
| User Bandwidth (GHz)     | 4.64        | 9.28           |
| # eLinks groups (16 bit) | 7           | 7              |
| eLinks bandwidth (MHz)   | 160/320/640 | 320/640/1280   |
| #eLinks                  | 28/14/7     | 28/14/7        |
| EC bandwidth (MHz)       | 80          | 80/160         |
| IC bandwidth (MHz)       | 80          | 80/160         |
| Unassigned bits          | 0           | 4              |
| Corrected (bits)         | <b>5</b>    | <b>2 x 5</b>   |
| Efficiency               | <b>91%</b>  | <b>91%</b>     |

# Example: 5.12 Gbps FEC5 Uplink Frame



| Frame          | Function       | I/O Group        |
|----------------|----------------|------------------|
| FRMUP[9:0]     | FEC[9:0]       |                  |
| FRMUP[25:10]   | Data[15:0]     | 0                |
| FRMUP[41:26]   | Data[31:16]    | 1                |
| FRMUP[57:42]   | Data[47:32]    | 2                |
| FRMUP[73:58]   | Data[63:48]    | 3                |
| FRMUP[89:74]   | Data[79:64]    | 4                |
| FRMUP[105:90]  | Data[95:80]    | 5                |
| FRMUP[121:106] | Data[111:96]   | 6                |
| FRMUP[123:122] | EC[1:0]        | EC               |
| FRMUP[125:124] | IC[1:0]        |                  |
| FRMUP[127:126] | H[1:0] = 2'b10 | HFH[1:0] = 2'b10 |

7 groups of 4 input e-Ports  
Number of data ports:

- 28 eLinks @ 160 Mbps
- 14 eLinks @ 320 Mbps
- 7 eLinks @ 640 Mbps

Note: This is how you will see the uplink frame after it has been processed by the IpGBT-FPGA receiver but not how it is actually transmitted by the IpGBT ...

# Uplink – FEC 12

- Dual data rate:
  - 5.12 Gb/s
  - 10.24 Gb/s
- Frame:
  - Header:
    - 2 / 4 – bits
    - 10 (high) & 01 (low)
  - IC field:
    - 2 – bit
    - 80 Mb/s
  - EC field:
    - 2 – bit
    - 80 Mb/s
  - Data field:
    - 96 / 192 – bit
    - 3.84 / 7.68 Gb/s
  - FEC field:
    - 24 / 48 – bit
- Error correction:
  - FEC:
    - Interleaving: 3 / 6
    - Symbol width: 4 – bit
    - Number of wrong symbols: 1 ( × 3 / × 6)
  - Up to 12 / 24 consecutive bits
  - Efficiency: 78% (if accounting for the unassigned bits)
- eLinks:
  - Data
    - 24 eLinks @ 160 / 320 Mb/s
    - 12 eLinks @ 320 / 640 Mb/s
    - 6 eLinks @ 640 / 1280 Mb/s
  - EC
    - 1 eLink @ 80 Mb/s

| FEC12                    | 5.12 Gb/s   | 10.24 Gb/s     |
|--------------------------|-------------|----------------|
| Option                   | 28          | 28             |
| Frame (bits)             | <b>128</b>  | <b>2 x 128</b> |
| Header (bits)            | <b>2</b>    | <b>2+2</b>     |
| Coded header             | <b>no</b>   | <b>no</b>      |
| User field (bits)        | 102         | 204            |
| Code (bits)              | 24          | 48             |
| 16-bit multiplicity      | 6.375       | 12.75          |
| Remainder bits           | 6           | 12             |
| User Bandwidth (GHz)     | 4.08        | 8.16           |
| # eLinks groups (16 bit) | 6           | 6              |
| eLinks bandwidth (MHz)   | 160/320/640 | 320/640/1280   |
| #eLinks                  | 24/12/6     | 24/12/6        |
| EC bandwidth (MHz)       | 80          | 80/160         |
| IC bandwidth (MHz)       | 80          | 80/160         |
| Unassigned bits          | 2           | 8              |
| Corrected (bits)         | <b>12</b>   | <b>2 x 12</b>  |
| Efficiency               | <b>80%</b>  | <b>80%</b>     |