
The ePIC Computing Model and Calibrations

1

Marco Battaglieri (INFN-Genova), Markus Diefenthaler (JLab),
Taku Gunji (QNSI/U-Tokyo), Jeff Landgraf (BNL), Torre Wenaus (BNL)



Outline 2

uePIC Streaming DAQ and Computing
uRecent SRO WG activities 
uStreaming Calibration and Alignment  
uMilestones and needs of subsystem engagement



ePIC Streaming Readout and Computing 3
u All raw data (collision event + substantial background) from FEB is streamed continuously and 

streamed data is inspected by prompt holistic reconstruction to identify physics events.
u This needs seamless integration between subsystem readout, DAQ, and Computing.

u Data filtering (ex, noise reduction), frame-building, reconstruction, calibration, analysis, monitoring
u Target : Rapid turnaround of 2-3 weeks for data for physics analyses

u This turnaround time is constrained by the calibration timescale



Streaming Calibration and Alignment 4
u Real-time calibration is challenging but essential for physics-quality full reconstruction in 2 weeks.
u This 2 weeks timescale is based on the statistics needed for reconstruction-level calibrations.

SRO DAQ SRO 
Computing

Calibration 
workflow

Calibration/Alignment 
workflow

Calibration & 
Alignment DB

Prompt reconstructed 
data

Raw data Calibrations/alignment 
constants

We need to validate two weeks turnaround and develop 
entire chains in streaming DAQ and computing.



ePIC Computing Model 5
u We developed the ePIC Streaming Computing Model to accommodate the requirements for 

streamed data processing, calibration, and streaming orchestration. 
ePIC Software & Computing Report
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Abstract

This second version of the ePIC Streaming Computing Model Report

provides a 2024 view of the computing model, updating the October

2023 report with new material including an early estimate of comput-

ing resource requirements; software developments supporting detector

and physics studies, the integration of ML, and a robust production

activity; the evolving plan for infrastructure, dataflows, and workflows

from Echelon 0 to Echelon 1; and a more developed timeline of high-

level milestones. This regularly updated report provides a common

understanding within the ePIC Collaboration on the streaming com-

puting model, and serves as input to ePIC Software & Computing

reviews and to the EIC Resource Review Board. A later version will

be submitted for publication to share our work and plans with the

community. New and substantially rewritten material in Ver-
sion 2 is dark green. The present draft is preliminary and
incomplete and is yet to be circulated in ePIC for review.
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https://doi.org/10.5281/zenodo.14675920
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Echelon 0: ePIC experiment, DAQ system 
Echelon 1: Two host labs, two primary ePIC computing facilities (prompt reconstruction)
Echelon 2: Global contributions leveraging commitments to ePIC computing 
Echelon 3: Supporting the analysis community where they are at their home institutes

https://doi.org/10.5281/zenodo.14675920


Recent SRO WG activities 6

u Now the effort is moving from design to implementation. Our recent 
activities aim to define and test the interface between DAQ and computing 
by building several testbeds. 

u Testbed plans are taking concrete shape:
u Streaming orchestration using Rucio and Panda

u Developing E0-E2 streaming workflows and workload management system

u Streaming reconstruction using JANA2 and EICRecon
u Raw streamed data to collision event identification, reconstruction, and analysis.

u Alignment and Calibration workflows
u Rapid data processing and execution of calibrations from standalone workflows to complicated 

workflows with subsystem dependencies (ex, alignment).

u Streaming analysis
u Demonstrate simulation data production streaming to E2 site. 

On-going

On-going

Need to start now!

Started



Level of Calibration 7
u What is calibrated? (Calibration Content)

u Detector physical parameters
u Bias voltages, gain settings, Temperature / radiation 

damage corrections, etc
→ Calibration affecting the physical operation point
of detectors.

u Electronics and readout calibration
u Pedestals / offsets, Channel-to-channel timing, 

Amplifier gains, ADC linearity
→ Calibration of electronics configuration 
parameters.

u Reconstruction-level calibration
u T0 offsets, Energy calibration, Detector alignment

→ Reconstruction-critical calibration.
u Time-dependent corrections

u Clock drift, Temperature-induced slow drifts, Event-by-
event T0 corrections via vertex
→ Time-evolving calibration parameters.

u How calibration data is obtained (Calibration 
Methods)
u Special runs

u Pedestal/noise runs, special bunch patterns, Low 
luminosity runs, Vernier scans

u Dedicated on-detector calibration systems
u Lasers, LEDs, Pulsers, Diodes

u Continuous monitoring during normal beam 
operations
u Built-in calibration features, Streaming pedestal 

monitoring, Online gain tracking
u Physics-based calibration using high-statistics events

u Calorimeter energy scale (π⁰, MIP, electrons), Tracking 
alignment (residual-based)

u Time-dependent parameter estimation
u Clock correction, Slow thermal drift monitoring, Event-by-

event T0 estimation



Prototyping 8
Carlos (Muñoz Camacho) presented on Oct. 28 on the Backward ECal (EEEMCal) Calibration. 
The EEEMCal is a good example to start with. https://indico.bnl.gov/event/30349/

This prototype addresses reconstruction-level calibrations and physics-
based calibration using high-statistics events. 
1. Script Integration: Carlos provides calibration scripts and integrates 

them into JANA2/EICrecon, defining data flow and required inputs.
2. Workflow Implementation: Implement file-based workflow first; 

then prepare for stream-based workflow
3. AI-Driven Components: Stepwise integration of calibration 

detection logic, automated validation, and selective human-in-the-
loop checkpoints.

4. Workflow Orchestration: Proven workflows are then incorporated 
into the overall orchestration framework for automated operations.

5. Milestones & Deliverables: Prototype workflow (manual → semi-
automated → AI-assisted), validated Conditions DB, documentation 
of APIs, state machine, ownership, and operational cycle; plan for 
scaling to full EIC detectors.

Other systems are welcome to join the prototype

https://indico.bnl.gov/event/30349/


Example of LHCb 9

Details will be given by Marco at the next talk.

We have to develop our plans for the alignment.



Toward (AI-Driven) Autonomous Calibration 10
u Our primary objective is to build an autonomous calibration system, capable of detecting when 

calibrations are needed, executing them reliably, and integrating results into the reconstruction.
u AI/ML methods serve as powerful tools that can enhance selected components.

Three Core Tasks for autonomy 
1. Calibration Logic (AI-assisted decision engine)
• Software must detect when new calibration is required (e.g., 

change detection, drift detection) and update the state machine 
accordingly. (AI can assist)

2. Calibration Integration Into the State Machine
• The calibration workflow must connect to a 

calibration/conditions DB to track calibration status and link to 
calibration data, define who reads/writes constants, and manage 
workflow transitions.

3. Calibration Execution & Validation (AI-supported QC)
• Calibration scripts must compute new constants, validate 

them, and register them in the database.
(AI can assist in automated quality checks or validation 
scoring.)

Operational Boundary Conditions
1. Online Condition
• Must function during live data-taking
• File-based workflows as an initial stage but target 

is fully streaming, low-latency calibration loops

2. Human Condition
• Define necessary manual checkpoints
• Specify where human approval or override is 

required
• Aim for automation first → integrate human-in-

the-loop later

3. Cybersecurity Condition
• Access control, signing of calibration constants
• Addressed in later implementation phase



Streaming DAQ and Computing milestones 11

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

Streaming DAQ Milestones and Deliverables

FY26Q1: PicoDAQ: Readout test setups
FY26Q4: MicroDAQ: Readout detector data in test stand using engineering articles
FY28Q1: MiniDAQ: Readout detector data using full hardware, timing chain, and orchestration systems
FY29Q2: Full DAQ-v1: Full functionality DAQ ready for full system integration & testing
FY31Q3: Production DAQ: Ready for cosmics



Streaming DAQ and Computing milestones 12

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

(AI-Driven) Autonomous Calibration

• Progress continues on understanding calibration workflows in collaboration with subsystem experts, with a focus 
on identifying timelines and interdependencies.

• The strategy for autonomy involves algorithms for change detection and agentic workflows.
• FY28 Q1 Goal: Autonomous calibration of one detector system using simulated streaming data.



Updating the Calibration Needs Table 13
u The previous calibration table (prepared one year ago by Jin) needs updating
u We must clarify each calibration item's parameters, procedures, frequencies, and dependencies —to 

ensure consistent workflows across subsystems.
u This will help structure workflows, define connections, and highlight opportunities for (AI-assisted) 

automation.

https://docs.google.com/spreadsheets/u/1/d/e/2PACX-1vRkJT9ODHAjqJhR_nb2GxPgYvHEcawklMgC-u_Fi67shZXdMitENF4ashAbD8dlvS6TwHqXG3UtZvhY/pubhtml


Toward a Revised Calibration Table 14
Goals of the Reorganization
• Identify/Revise calibration items including parameters, procedures, frequencies, and dependencies
• Add missing tasks; eliminate obsolete entries
• Map each calibration task to subsystem, workflow category, calibration tier
• Clarify ownership and cross-detector dependencies

Subsystem Responsibilities
• Review all calibration items relevant to the detector 

subsystem
• Confirm whether parameters, procedures, and 

update frequencies remain valid
• Provide missing calibration tasks or workflow 

changes introduced in the new structure
• Clarify dependencies on other subsystems (triggers, 

timing, alignment, etc.)
• Identify needs for new automation, tools, or 

monitoring
• Update contact persons for calibration, software, 

and data-flow interfaces

SRO Computing model WG Responsibilities
• Ensure each task is correctly categorized (method, 

tier, workflow type)
• Harmonize common tasks across subsystems and 

eliminate redundancies
• Maintain communication loop and track update 

status for each detector
• Identify items requiring further discussion or long-

term development
• Development of testbeds and algorithms of using 

typical use cases (ex, ECal energy calibration)
• Build the standardized calibration framework and 

integrate subsystem inputs 

The responsibility-sharing proposal



Questions to the DSCs 15
u We will start progressing on understanding calibration plans and required workflows in collaboration 

with subsystem experts

u Key points for DSC inputs:
u Contacts: Update contact persons and clarify responsibilities
u Review of Calibration Items: Confirm which calibration parameters, procedures, and update frequencies 

remain valid. Identify missing tasks or obsolete ones.
u Workflow Alignment: Define each subsystem’s calibration workflows —inputs, processing steps, outputs, 

inter-subsystem dependencies (triggers, timing, alignment, shared detectors), and global calibration 
workflows such as global alignment.

u Automation & Tools: Identify requirements for automation, monitoring tools, and AI-tools.
u Potential Bottlenecks: Are any steps likely to delay calibration or prevent timely updates? Are there any 

showstoppers that could prevent calibrating the ePIC data within two weeks?

u Next steps (short & long-term view)
u Complete table update and align responsibilities

u Our goal is to have the table updated by February 28
u We will reach out to any DSCs we have not heard from by January 31

u Develop prototyping using Backward ECal and AI-driven prototype workflow
u Prepare for streaming-based calibration integration by FY28.Q1
u Coordinate with subsystem teams for full deployment



Reference 16

u Streaming computing model googledoc folder

u calibration workflow planning chart

u Computing resource estimates slides 20240904

u Computing resource requirements worksheet

u ePIC workflow management system requirements draft

u ePIC DAQ WG wiki

u ePIC detector digitization model spreadsheet

https://drive.google.com/drive/folders/1mcVcMbVHG1hqIb0l4Y4qTBjimAg4Tv-z
https://docs.google.com/spreadsheets/d/e/2PACX-1vRkJT9ODHAjqJhR_nb2GxPgYvHEcawklMgC-u_Fi67shZXdMitENF4ashAbD8dlvS6TwHqXG3UtZvhY/pubhtml
https://docs.google.com/presentation/d/18rIzko0sAY2y3wMzUFKdZnf7H6O81ZBeck73WeCBrh0/edit
https://docs.google.com/spreadsheets/d/1ApjIriu44DymP_i2T5O3W5_QgkXhVeinE6VRBZDHwSU/edit?gid=0
https://www.overleaf.com/read/rgjwfmcfhncs
https://wiki.bnl.gov/EPIC/index.php/DAQ
https://docs.google.com/spreadsheets/d/1s8oXj36SqIh7TJeHFH89gQ_ayU1_SVEpWQNkx6sETKs/edit?gid=238482234


backup slides
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Use cases and Echelon distribution 18

Prompt = rapid low-latency processing 
Prompt processing of newly acquired 
data typically begins in seconds, not 
tens of minutes or longer

u Echelon 1s uniquely perform the low-latency streaming workflows consuming the data stream from 
Echelon 0 
u Archiving, monitoring, prompt reconstruction, rapid diagnostics 

u Ensure the E1s have sufficient processing power for the low-latency workflows 
u Apart from low-latency streaming, Echelon 2s are full participants in the use cases and accelerate them.

backup



Echelon 0 (DAQ) to Echelon 1 19

u What’s in the data stream sent 
from DAQ?
u Time frames, each containing all 

detector data within a time window 
of ~0.6ms, are built in DAQ

u Time frames are aggregated in super 
time frames (STFs) which are sent 
out of DAQ to E1
u Super Time Frame (STF) is a 

contiguous set of ~1000 time frames
u Within a STF the TFs are time-ordered, 

as required for reconstruction
u This O(1s), 2GB STF data unit is an 

appropriate granularity for Echelon 1 
processing 

backup



Streaming reconstruction : JANA2 20

u Multithreaded JANA2 framework provides a component-level hierarchical decomposition of data boundaries 
into Run, Timeframe, PhysicsEvent, and Subevent levels. This is essential for streaming processing. 

u The Folder and Unfolder component interfaces enable traversal of this hierarchy by supporting operations such 
as splitting and merging data streams. This functionality has been tested and validated within EICrecon

backup



Streaming reconstruction : Prototyping 21
u TimeFrame data processing for event building based on JANA2 (TimeFrame Splitting and Selection)

Physics Event Level

Timeframe Level Source Process Unfold

FoldSelection & Process

TF Background Only
Physics Event

Timeframe
Splitting

Reconstruction 
Event Selection

X

Process: Clustering, Tracking, …

Timeframe Splitting & Selection 

Process

Write

u After Selection, data (physics event 
candidates) is reconstructed in 
EICrecon using same tracking 
algorithms as used in MC studies. 

u https://github.com/eic/EICrecon/blob
/main/docs/design/tracking.md

Same routines as used in 
ePIC MC studies.  

backup

https://github.com/eic/EICrecon/blob/main/docs/design/tracking.md


Streaming reconstruction : Performance 22
u Algorithms to select physics event candidates are under development. Needs subsystem inputs!

80%

~6%
(1799/1000*140/5)

99.5%

~8%
(2135/1000*140/5)

Physics
Physics

BG
BG

backup



Streaming DAQ and Computing milestones 23

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

Streaming Orchestration Milestones and Deliverables

ü Requirement documents for streaming orchestration developed.
• FY28 Q1 Goal: Deliver a functional testbed for calibrating one detector system using simulated streaming data.
• Progress is ongoing in testbed development: 

• We are evaluating streaming orchestration using PanDA + Rucio. 
• We have demonstrated streaming data processing using EJFAT.
• Additional prototypes under consideration: LHCb Allen, SPADI Alliance.

backup



Streaming DAQ and Computing milestones 24

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

Streaming Data Processing Milestones and Deliverables

ü JANA2 enables data processing at the timeframe, event, and sub-event levels.
• FY28 Q1 Goal: Achieve streaming data reconstruction with high efficiency in identifying physics collision events in 

simulations, including varying levels of background. This includes an AI/ML challenge focused on developing 
algorithms for distinguishing physics events from background.

• Progress is ongoing in streaming data reconstruction.

backup



Testbed for Streaming Orchestration 25
Motivation: 
• Evaluate how well existing distributed computing tools support streaming orchestration. 
• Focus on practical deployment and performance in realistic environments. 

u Design Precepts: 
• Robust geographical distribution across real-world networks
• Full automation of data processing workflows
• Complete exposure of system status and operational analytics

u Approach: 
• PanDA and Rucio align with the stated design precepts. 
• Both are deployed in live testbed instances at BNL: 

• Other sites can participate in collaborative testing and development: https://github.com/BNLNPPS/swf-testbed
• Assume that data is delivered in STFs, each consisting of 1000 aggregated TFs, with a size of ~2 GB at a rate of ~1 Hz.

u Streaming in Action (Testbed Observations):
• Each STF contains approximately 45,000 events and takes approximately 19 hours to process on a single serial core
• This latency is too high for timely detector status feedback
• STF data is distributed across multiple workers at sub-file granularity
• Sub-file fan-out and parallel processing enable true streaming behavior in the testbed
• Data-driven logic automatically triggers E1 transfers and prompt processing upon file appearance. 

https://github.com/BNLNPPS/swf-testbed


Levels of calibration:

Calibrations can be categorized by both the use of the calibration results, and by the method of 
producing the calibration results.   We intend to focus on test setups for specific calibrations and 
gradually build up the infrastructure for defining and addressing each needed calibration scheme within 
the autonomous calibration framework.

• Use of calibration Results:
• Calibrations that affect actual physical detector parameters (e.g. setting bias voltages)
• Calibrations that affect electronics setup (e.g. pedestal values, electronics timing)
• Calibration values that are sensitive within DAQ processing (e.g. gains, T0 offsets)
• Calibrations values that are applied during reconstruction

• Method of calibration data acquisition 
• Special runs 

• Dedicated equipment on (e.g. lasers, pulsers, diodes)
• Special electronics configuration (e.g. pedestals)
• Special beam states (e.g. Reduced Bunch counts, Vernier Scans, low luminosity)

• Monitoring of built in calibration features during normal beam time (e.g. lasers, pulsers, diodes)
• Constant Time-Dependent Parameterization during beam operations (e.g. Clock corrections due 

to slow temperature drifts, event-by-event T0 corrections via vertex position)
• High Statistics Parameterization during regular beam operations (e.g. Energy calibration in 

calorimeters)



Streaming DAQ and Computing milestones 27

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

• Compute-Detector Integration:
• Joint deliverables between DAQ and computing to develop integrated systems for detector 

readout, data processing, and ultimately physics analysis. 
• Key role of AI(/ML): Empowering data processing and enabling autonomous experimentation and 

control.


