Pig]

Orchestration of TF Processing with
Panda and Rucio

Wen Guan, Dmitry Kalinkin, Maxim Potekhin, Michel Villanueva, Torre
Wenaus, Zhaoyu Yang, Xin Zhao

BNL Nuclear and Particle Physics Software group (NPPS)

Jan 21, 2026
ePIC Collaboration Meeting

ePIC Eche

on O - Echelon 1 workflows

IP6 BNL data center

DAQ room DAQ

enclave

>

STF stream
(Rucio)

ePIC Echelon 1 at BNL

Super timeframe (STF) stream - complete raw data
o STFs are ~2GB files consisting of ~1000 time-ordered

timeframes, each STF containing ~%2 sec of detector data
o Managed by Rucio, sent by subscription to the E1 buffers

Timeframe (TF) sample stream - fast selected subsample
o Subsets sent quickly with finer granularity to E1s for fast
monitoring; data availability within a few seconds
o Skimmed from the STFs in the DAQ buffer
The entire system described at any time by a state machine
encompassing detector, DAQ, machine, calibration... config
The testbed scope is right of the red line

4prs TF stream
(Messaging)
Echelon 0 400Gbps via ESnet

JLab data center

ePIC Echelon 1 at JLab

Technology downselect for distributed data processing

1.

We are leveraging the proven data distribution and management system — Rucio, which
has been successfully used in major experiments (ATLAS, Belle Il) over a long period of
time.

PanDA is another proven component of the infrastructure being used, handling the
distributed workload management. It's a Rucio-aware system which opens up
implementation patterns that are robust and require less code that would be needed
otherwise.

BNL Scientific Computing and Data Facilities (SCDF) are hosting instances of both

systems (Rucio and PanDA) which provide an efficient platform for development and
testing for the ePIC Software and Computing Organization. Importantly, many of the
SCDF and NPPS personnel have experience in these systems and their integration.

#3

STF processing orchestration: an agent-based system

1. The principal design choice in the development of the STF processing orchestration
was the use of agents, which are loosely coupled and utilize a neutral communication
layer — currently based on ActiveMQ — to become an end-to-end processing
framework.

2. For STF processing, the system relies on the following two agents:
a. The Data Agent, whose role is to form datasets corresponding to relevant run
periods, and to ship the data from the DAQ buffer to both parts of the Echelon 1.
The operation of the Data Agent is controlled by the MQ messages received from
the DAQ, reflecting the various states of the system.

b. The Processing Agent, whose role is to create processing tasks within the PanDA
system. It's operation is controlled by the MQ messages received from the Data
Agent.

#4

STF processing orchestration: the testbed

To validate the design of processing orchestration, and evaluate its scalability, a project was
started at BNL with the aim to develop a comprehensive testbed. The testbed leverages the
existing test instances of Rucio, the PanDA server and ActiveMQ (in its Artemis version)
deployed at the SCDF at BNL.

#5

DAQSIM

1.

Since the actual DAQ is not in place yet, it needs to be emulated to make the testbed
functionally complete. For this reason, we included another agent — the “dagsim” — to
perform the role of the data source emulation, creating files in its local storage — serving
as a proxy for the DAQ buffer — and notifying other components of the system about the
state of the detector and DAQ (simulated at this point), according to a predefined
schedule/timeline, which is supplied in the YAML format which is human readable and
easy to create and modify (see an example in the next slide).

The DAQSIM is based on the popular SimPy package which is well suited for
simulation of time-dependent systems in Python.

The current state/substate of the emulator is set based on the “clock” that comes as a
part of SimPy and the time points set in the schedule.

#6

STF processing orchestration: the testbed schedule example

STF processing orchestration: the testbed (cont’d)

The data transfer mechanism from the DAQ buffer to the two E1 endpoints has not being
designed yet. Currently, it's emulated by combining XRootD transfer with registration of the
data in Rucio. This actions are performed using the Python APIs for XRootD and Rucio,

respectively. A conceptual diagram of the testbed components is presented in the next slide.

Dashed lines represents MQ messages.

#8

STF processing orchestration: the testbed (cont’d)

schedule

#9

STF processing orchestration: an example of the testbed run

1.

The daqsim agent — reads in the simulation schedule and initiates the timeline. Issues the
run_imminent, start_run, end_run and other messages reflecting the state as defined in the
schedule.

The data-agent — creates a Rucio dataset consistent with the announced run, upon receiving
the “run_imminent” message. When receiving “stf_gen” messages from the dagsim (at each
STF generation), initiates a XRootD-based upload to endpoints, and performs the registration
of each file into the respective dataset. Generates the “data_ready” message, principally for
the processing agent. Upon receiving “end_run” message, closes the dataset, which is
important in the design of the processing-agent (next bullet).

The processing-agent: receives the “data_ready” message for the specific run, and actuates
the PanDA client, instructing it to generate a PanDA task which is configured in such a way
that it will keep processing STF files being continuously added to the given dataset, until such
dataset is closed in Rucio by the data-agent.

Agents update their status in the monitoring web application.

See next slide for more information.

#10

STF processing: full chain as reflected in the monitor

e The full chain is driven by ActiveMQ messages broadcasted to topic “epictopic”, consumed by
all subscribers.

Timestamp vy hamespace message_type sender_agent source workflow is_successful
20260112 23:14:32 test-zy data_ready data-agent-zyang2-408 1:3836714 N/A Success
20260112 23:14:18 test-zy end_run dag-agent-zyang2-407 1:3836714 N/A Success
20260112 23:14:17 test-zy stf_gen dag-agent-zyang2-407 1:3836714 N/A Success
20260112 23:14:15 test-zy stf_gen dag-agent-zyang2-407 1:3836714 N/A Success
20260112 23:14:14 test-zy stf_gen dag-agent-zyang2-407 1:3836714 N/A Success
20260112 23:14:14 test-zy start_run dag-agent-zyang2-407 1:3836714 N/A Success
20260112 23:14:14 test-zy run_imminent dag-agent-zyang2-407 1:3836714 N/A Success
Agent Agent Agent
o
DAQ - DATA . PROCESSING | !}
generate STFs create rucio dataset submit to panda ‘ (
MQ send: MQ receive: MQ receive: PanDA
run_imminent run_imminent data_ready
start run start_run
stf_gen stf_gen Submit job once the
end_run end_run first STF arrives

MQ send: data_ready

STF processing: full chain as reflected in the monitor (cont'd)

e The processing agent received the “data_ready” message and submits the job to PanDA, task 33507

e The payload at this point is simply echo to the output file, not real ePIC processing. It read the input

dataset: group.daq:swf.101983.run, produced a rucio dataset: group.daq:swf.101983.processed

***x MQ: data ready for run 101983 ¥k

*xk Named datasets for run 101983 xx*x

*kk 1inDS: swf.101983.run sokk

*xk outDS: swf.101983.processed xkk

INFO: Subscribed to queue: 'epictopic'

2026-01-12 23:14:53,824 — INFO - base_agent - Subscribed to queue:
*%% Initialized the PROCESSING class, test mode is False %k

%% PROCESSING class run method called xxx*

*%k Processing agent is running. Press Ctrl+C to stop. skk

%% PANDA PARAMS sk

taskName : user.zyang2.swf.101983.processed/
uniqueTaskName : True

vo : wlcg

architecture : Qcentos8#x86_64

transUses :

transHome : None

processingType : panda-client-1.6.5-jedi-run
prodSourcelLabel : test

site E1_BNL

excludedSite !

includedSite : None

cliParams prun -v

skipScout True

osInfo Linux—-4.18.0-513.24.1.e18_9.x86_64—x86_64-wi-
workingGroup : EIC

nMaxFilesPerJob 1 200

respectSplitRule : True

sourceURL : https://pandaserver@l.sdcc.bnl.gov:25443
dsForIN : group.daq:swf.101983.run
runUntilClosed 1 True

sokookokkokokokokokkokokkokokok

*%x Getting PanDA API client. *okok

(0, 'succeeded. new jediTaskID=33507')

evse M- < > =]
Task ID Type Processing type Working Group User Nucleus
33507 analy panda-client-1.6.5-jedi-run EIC Zhaoyu Yang =

States of jobs in this task [drop mode]

pending defined waiting assigned throttled activated sent starting
Run
Containers
Input: Progress, %
group.daq:swf.101983.run 100%
Output:
Wf.101983. log,
user.zyang2.swf.101983.processed_myout.txt/
Dataset processing information:
Show 10 v entries
Dataset, container name Type * Stream
group.dag:swf.101983.run input IN
swf.101983. 109.91704.91704 log LOGO
swf.101983. L 91703.91703 output OUTPUTO
wf.101983. log/ tmpl_log LOGO
Wwf.101983. T tmpl_output OUTPUTO

pandamon01.sdcc.bnl.gov/task/33507/

Status

Task extra info ~ m Task parameters and help ~ Memory & walltime usage v Other plots v

running

Status

holding

N input files
finished

@

(100%) 3

transferring

¢

Time stamps:
created
last modified

2026-01-13 04:16:05
2026-01-13 04:22:23

merging

N files | finished | failed

3|3]0

Nfiles

Nfiles finished

Priority:
Cores original
current
1 1000
1000
finished failed
Search:
Nfiles failed

0

Attempt

cancelled

% Links
100 jobs

o+

Rating

closed

RSE

(=

Testing the STF processing chain: summary

The full STF processing chain has been tested, from the emulated DAQ data source to the
processing in PanDA. The testing process included all of the following:

1. Operation of the DAQ emulator, driven by an easy-to-configure schedule, presented in
a declarative format. Generation of STF mockup data and MQ communication to other
agents.

2. Operation of the data-agent, directed my MQ messages received from the DAQ
emulator, resulting in creation of datasets, upload of the data to the emulated storage
element, registration of each parcel of the data (STF) in Rucio, and closing of the
dataset at the run completion.

3. Operation of the processing-agent, directed by MQ messages received from the
data-agent, resulting in definition of the PanDA processing tasks, designed to run
continuously until the input dataset is marked “closed” in Rucio.

4. Communication with the monitor web application, providing the monitoring interface to

the operators.
#13

Backup

#14

Processing orchestration: recent developments and plans

1. Recently, the ActiveMQ interface has been enhanced with namespaces and other
devices necessary for parallel testing by many users (e.g. to prevent message loss)
and other optimization.

2. The testbed currently emulates the JLab data endpoint with storage allocated within
BNL SCDF, i.e. at present the data does not leave the BNL perimeter. A full
implementation of data transmission to JLab and development of the data processing
strategies would be the next steps in this work area.

#15

