
Orchestration of TF Processing with
Panda and Rucio

Wen Guan, Dmitry Kalinkin, Maxim Potekhin, Michel Villanueva, Torre
Wenaus, Zhaoyu Yang, Xin Zhao

BNL Nuclear and Particle Physics Software group (NPPS)

Jan 21, 2026
ePIC Collaboration Meeting

ePIC Echelon 0 - Echelon 1 workflows

2

Switch

Switch

4Tbps

400Gbps via ESnet

Buffer

Buffer

Archive

Archive

Prompt monitoring

BNL data center

JLab data center

ePIC Echelon 1 at BNL

ePIC Echelon 1 at JLab

IP6

DAQ room DAQ
enclave

Echelon 0

DAQ STF
buffer
(72hr
depth)

Ext subnet
for E1

delivery
Fast monitoring

STF stream
(Rucio)

TF stream
(Messaging)

Fast monitoring● Super timeframe (STF) stream - complete raw data
○ STFs are ~2GB files consisting of ~1000 time-ordered

timeframes, each STF containing ~½ sec of detector data
○ Managed by Rucio, sent by subscription to the E1 buffers

● Timeframe (TF) sample stream - fast selected subsample
○ Subsets sent quickly with finer granularity to E1s for fast

monitoring; data availability within a few seconds
○ Skimmed from the STFs in the DAQ buffer

● The entire system described at any time by a state machine
encompassing detector, DAQ, machine, calibration… config

● The testbed scope is right of the red line

Prompt processing

Prompt monitoring

Prompt processing

Technology downselect for distributed data processing
1. We are leveraging the proven data distribution and management system – Rucio, which

has been successfully used in major experiments (ATLAS, Belle II) over a long period of
time.

2. PanDA is another proven component of the infrastructure being used, handling the
distributed workload management. It’s a Rucio-aware system which opens up
implementation patterns that are robust and require less code that would be needed
otherwise.

3. BNL Scientific Computing and Data Facilities (SCDF) are hosting instances of both
systems (Rucio and PanDA) which provide an efficient platform for development and
testing for the ePIC Software and Computing Organization. Importantly, many of the
SCDF and NPPS personnel have experience in these systems and their integration.

#3

STF processing orchestration: an agent-based system

1. The principal design choice in the development of the STF processing orchestration
was the use of agents, which are loosely coupled and utilize a neutral communication
layer — currently based on ActiveMQ – to become an end-to-end processing
framework.

2. For STF processing, the system relies on the following two agents:
a. The Data Agent, whose role is to form datasets corresponding to relevant run

periods, and to ship the data from the DAQ buffer to both parts of the Echelon 1.
The operation of the Data Agent is controlled by the MQ messages received from
the DAQ, reflecting the various states of the system.

b. The Processing Agent, whose role is to create processing tasks within the PanDA
system. It’s operation is controlled by the MQ messages received from the Data
Agent.

#4

STF processing orchestration: the testbed

To validate the design of processing orchestration, and evaluate its scalability, a project was
started at BNL with the aim to develop a comprehensive testbed. The testbed leverages the
existing test instances of Rucio, the PanDA server and ActiveMQ (in its Artemis version)
deployed at the SCDF at BNL.

#5

DAQSIM

1. Since the actual DAQ is not in place yet, it needs to be emulated to make the testbed
functionally complete. For this reason, we included another agent – the “daqsim” – to
perform the role of the data source emulation, creating files in its local storage – serving
as a proxy for the DAQ buffer – and notifying other components of the system about the
state of the detector and DAQ (simulated at this point), according to a predefined
schedule/timeline, which is supplied in the YAML format which is human readable and
easy to create and modify (see an example in the next slide).

2. The DAQSIM is based on the popular SimPy package which is well suited for
simulation of time-dependent systems in Python.

3. The current state/substate of the emulator is set based on the “clock” that comes as a
part of SimPy and the time points set in the schedule.

#6

STF processing orchestration: the testbed schedule example
The daqsim-agent schedule defines the states and substates of the DAQ system,
the time spans for each state and substate, and the transitions between them.
The schedule is used to control the simulation of the DAQ system, allowing it to move
through different states and substates, simulating the data acquisition process.
Time span (duration) format is tuple with no spaces: weeks,days,hours,minutes,seconds

- state: no_beam
 substate: calib
 span: 0,0,0,0,10

- state: beam
 substate: not_ready
 span: 0,0,0,0,10

- state: beam
 substate: ready
 span: 0,0,0,0,10

- state: run
 substate: standby
 span: 0,0,0,0,10

- state: run
 substate: physics
 span: 0,0,0,1,0

#7

STF processing orchestration: the testbed (cont’d)

The data transfer mechanism from the DAQ buffer to the two E1 endpoints has not being
designed yet. Currently, it’s emulated by combining XRootD transfer with registration of the
data in Rucio. This actions are performed using the Python APIs for XRootD and Rucio,
respectively. A conceptual diagram of the testbed components is presented in the next slide.
Dashed lines represents MQ messages.

#8

STF processing orchestration: the testbed (cont’d)

#9

schedule
Data-agent

(dataset mgt,
registration)

daqsim processing-agentData

DAQ
RSE Rucio

Data (XRootD)

PanDA

Task

E1
RSE

(BNL)E1
RSE

(JLab)

Rucio subscription creates
replication rule to transfer
data from the DAQ RSE to E1
RSEs via the FTS

STF processing orchestration: an example of the testbed run
1. The daqsim agent – reads in the simulation schedule and initiates the timeline. Issues the

run_imminent, start_run, end_run and other messages reflecting the state as defined in the
schedule.

2. The data-agent — creates a Rucio dataset consistent with the announced run, upon receiving
the “run_imminent” message. When receiving “stf_gen” messages from the daqsim (at each
STF generation), initiates a XRootD-based upload to endpoints, and performs the registration
of each file into the respective dataset. Generates the “data_ready” message, principally for
the processing agent. Upon receiving “end_run” message, closes the dataset, which is
important in the design of the processing-agent (next bullet).

3. The processing-agent: receives the “data_ready” message for the specific run, and actuates
the PanDA client, instructing it to generate a PanDA task which is configured in such a way
that it will keep processing STF files being continuously added to the given dataset, until such
dataset is closed in Rucio by the data-agent.

4. Agents update their status in the monitoring web application.

5. See next slide for more information.

#10

STF processing: full chain as reflected in the monitor
● The full chain is driven by ActiveMQ messages broadcasted to topic “epictopic”, consumed by

all subscribers.

DAQ
generate STFs

DATA
create rucio dataset

PROCESSING
 submit to panda

Agent Agent Agent

MQ send:
 run_imminent
 start_run
 stf_gen
 end_run

MQ receive:
 run_imminent
 start_run
 stf_gen
 end_run
MQ send: data_ready

MQ receive:
 data_ready

Submit job once the
first STF arrives

STF processing: full chain as reflected in the monitor (cont’d)
● The processing agent received the “data_ready” message and submits the job to PanDA, task 33507
● The payload at this point is simply echo to the output file, not real ePIC processing. It read the input

dataset: group.daq:swf.101983.run, produced a rucio dataset: group.daq:swf.101983.processed

Testing the STF processing chain: summary

The full STF processing chain has been tested, from the emulated DAQ data source to the
processing in PanDA. The testing process included all of the following:

1. Operation of the DAQ emulator, driven by an easy-to-configure schedule, presented in
a declarative format. Generation of STF mockup data and MQ communication to other
agents.

2. Operation of the data-agent, directed my MQ messages received from the DAQ
emulator, resulting in creation of datasets, upload of the data to the emulated storage
element, registration of each parcel of the data (STF) in Rucio, and closing of the
dataset at the run completion.

3. Operation of the processing-agent, directed by MQ messages received from the
data-agent, resulting in definition of the PanDA processing tasks, designed to run
continuously until the input dataset is marked “closed” in Rucio.

4. Communication with the monitor web application, providing the monitoring interface to
the operators.

#13

Backup

#14

Processing orchestration: recent developments and plans

1. Recently, the ActiveMQ interface has been enhanced with namespaces and other
devices necessary for parallel testing by many users (e.g. to prevent message loss)
and other optimization.

2. The testbed currently emulates the JLab data endpoint with storage allocated within
BNL SCDF, i.e. at present the data does not leave the BNL perimeter. A full
implementation of data transmission to JLab and development of the data processing
strategies would be the next steps in this work area.

#15

