
Fast TF streaming with PanDA/iDDS,
and 2026 plans

ePIC Collaboration Meeting, BNL
Jan 21 2026

Wen Guan, Dmitry Kalinkin, Maxim Potekhin, Michel Villanueva, Torre Wenaus,
Zhaoyu Yang, Xin Zhao
Nuclear and Particle Physics Software (NPPS) Group, BNL Physics Dept

Takahashi Tomonori
Osaka University

T. Wenaus Jan 2026

Streaming workflow orchestration testbed components

● swf-testbed
○ Testbed umbrella repo: doc, packaging, venv, example agents, service management, test

driver, extensions for complex workflows: orchestration of persistent agents,
extensible workflow definitions driven by common runner

● swf-common-lib
○ Common infrastructure, logging utils, packaging infrastructure

● swf-monitor
○ Django service with full-system browser UI, REST API, ActiveMQ and logging
○ Postgres DB serving the full system via REST
○ Comprehensive Model Context Protocol (MCP) service for info and control via LLM

● ActiveMQ based agents
○ All now operate as persistent agents ready for work, controlled by CLI or MCP
○ DAQ simulator: expressing the E0-E1 interface
○ Data agent: STF file receiving, registering and forwarding to Rucio for transport
○ Fastmon agent: Fast sampling of STFs serving local/remote clients, client-specific filtering
○ STF processing agent: workflow for end to end PanDA/Rucio processing of STFs
○ Fast processing agent: implementing workflow I will describe

2

Bold: new or extensively developed since August 2025

https://github.com/BNLNPPS/swf-testbed
https://github.com/BNLNPPS/swf-common-lib
https://github.com/BNLNPPS/swf-monitor

T. Wenaus Jan 2026

Fast TF streaming with PanDA/iDDS

● Fast Processing Agent
○ Run_imminent

■ Send config to iDDS to set up PanDA workers
(e.g. how many workers)

■ iDDS creates the PanDA workflow
○ TF processing

■ Fast proc agent slices STF samples down to
smaller TF ranges scaled for quick parallel
worker processing: deliver result for control
room fast

○ Streaming slices to workers
■ A PanDA worker loop

● Fetch one slice message
● Process the payload
● Send back the result in a message
● Ack the message to indicate processing complete

○ End_run
■ End the listening loop in PanDA workers
■ Terminate the workers (next run starts clean)

3

T. Wenaus Jan 2026

PanDA/iDDS TF streaming detail

● Run_imminent
○ iDDS creates PanDA task & worker jobs

within the tast
○ Message Harvester to create pilots

● PanDA worker
○ Pilot starts in batch slot, asks PanDA for work,

is assigned a job: now it’s a persistent (for life
of the batch slot) slice processor

○ Fetches ActiveMQ configuration from iDDS
○ Listens to ActiveMQ for slice messages
○ Processes slice
○ Sends results to FastProcessingAgent

(bookkeeping) and iDDS
■ iDDS calculates the delay from slice

creation to getting the results, use this info
to adjust the number of workers

4

That’s the workflow, it’s our most complex so far,
I’ll briefly describe some enabling infrastructure for it

PanDA/iDDS workflow working as of a few days ago,
thank you Wen! Example PanDA worker job

https://pandamon01.sdcc.bnl.gov/job?pandaid=119830

T. Wenaus Jan 2026

Fast TF streaming PanDA worker job

● iDDS worker handler manages PanDA
job and Harvester pilot generation
based on workflow configuration from
fast processing agent

● Transformer running in the pilot
establishes it as a worker in the slice
processing workflow

● Worker consumes slice messages from
/queue/panda.slices.transformer
○ fetch one message, process the

payload, send the result back, ack
the message as processed

● Processing the payload is a dummy op
○ Move when we can to streaming

reco as the payload processor
● Slice processing duration and parallel

worker scale-out are scaled to desired
latency and stats for presenting fresh
data analytics, e.g. ~30sec, will also try
~10sec

5

2026-01-18 14:38:02,654 Thread-3 Subscriber DEBUG [broker] [10.42.46.11]: headers:
{'subscription': 'None.Subscriber.spool1493.c465dd69', 'message-id': '861378,861076', 'destination':
'/topic/panda.slices', 'expires': '0', 'redelivered': 'false', 'priority': '4', 'persistent': 'true', 'timestamp':
'1768746963195', 'msg_type': 'slice', 'run_id': '102023', 'ttl': '43200000', 'vo': 'eic', 'ack': '861378,861076',
'content-length': '392'}, body: {"msg_type": "slice", "run_id": "102023", "created_at":
"2026-01-18T14:36:03.194616", "content": {"run_id": "102023", "execution_id": "stf_datataking-wguan2-0079",
"req_id": "2837c040-d0c9-4236-a645-4d838711c5e4", "filename": "swf.102023.000001.stf", "tf_filename":
"swf.102023.000001_slice_000.tf", "slice_id": 0, "start": 0, "end": 65, "tf_count": 66, "state": "queued",
"substate": "new"}}
2026-01-18 14:38:02,655 Thread-3 Transformer DEBUG Received result message:
msg_type=slice, run_id=102023
2026-01-18 14:38:02,656 Thread-3 PayloadProcessor INFO Processing payload: {'run_id':
'102023', 'execution_id': 'stf_datataking-wguan2-0079', 'req_id': '2837c040-d0c9-4236-a645-4d838711c5e4',
'filename': 'swf.102023.000001.stf', 'tf_filename': 'swf.102023.000001_slice_000.tf', 'slice_id': 0, 'start': 0, 'end':
65, 'tf_count': 66, 'state': 'queued', 'substate': 'new'}
2026-01-18 14:38:02,656 Thread-3 Transformer INFO Processed slice message
successfully: run_id=102023, result={'run_id': '102023', 'execution_id': 'stf_datataking-wguan2-0079', 'req_id':
'2837c040-d0c9-4236-a645-4d838711c5e4', 'filename': 'swf.102023.000001.stf', 'tf_filename':
'swf.102023.000001_slice_000.tf', 'slice_id': 0, 'start': 0, 'end': 65, 'tf_count': 66, 'state': 'queued', 'substate': 'new',
'processed': True}, error=None
2026-01-18 14:38:02,656 Thread-3 Publisher DEBUG Publishing message:
msg_type=slice_result, run_id=102023
2026-01-18 14:38:02,670 Thread-3 Publisher DEBUG Message published successfully:
msg_type=slice_result, run_id=102023, destination=/topic/panda.results

https://github.com/wguanicedew/iDDS/blob/dev/main/lib/idds/agents/prompt/handlers/workerhandler.py#L106
https://github.com/wguanicedew/iDDS/blob/dev/prompt/lib/idds/prompt/transformer.py
http://swf.102023.000001_slice_000.tf/
http://swf.102023.000001_slice_000.tf/
http://swf.102023.000001_slice_000.tf/

T. Wenaus Jan 2026

Agent management system

● The fast TF streaming workflow uses all the
currently existing agents

● Running each in a terminal window, the old
approach, is tedious and a poor model of
the actual system

● New agent management system uses
supervisord to manage agents
autonomously, under message-based
direction from CLI or MCP

● You just tell it to start the testbed instance
for the desired workflow, it sets up the
needed agents

● Then tell it to run the workflow
● (Then e.g. change params and iterate)
● The agents are persistent: they wait for

work in between workflow runs

6

T. Wenaus Jan 2026

The testbed now has a comprehensive MCP service
Human❯ Let's (re)start the testbed and run the default workflow
● I'll restart the testbed and run the default workflow. Let me first check the current
status, then restart.
● swf-testbed - get_testbed_status (MCP)(username: "wenauseic")
● Agent manager is healthy, all agents stopped. Starting the testbed and then running the
workflow.
● swf-testbed - start_user_testbed (MCP)(username: "wenauseic")
● Testbed starting. Let me wait a moment for agents to come up, then start the workflow.
● Bash(sleep 3)
● swf-testbed - list_agents (MCP)(namespace: "torre1", status: "OK")
● New agents are up and ready:
 - daq_simulator-agent-wenauseic-450 - READY
 - stf_processing-agent-wenauseic-451 - READY
 Now starting the default workflow.
● Workflow started. Let me monitor its progress.
● swf-testbed - list_workflow_executions (MCP)(currently_running: true)
● Workflow stf_datataking-wenauseic-0048 is running. Let me track its progress.
● swf-testbed - get_workflow_monitor (MCP)(execution_id: "stf_datataking-wenauseic-0048")
● Just started - waiting for events. Let me check messages after a few seconds.
● Bash(sleep 8)
● swf-testbed - get_workflow_monitor (MCP)(execution_id: "stf_datataking-wenauseic-0048")
● swf-testbed - list_messages (MCP)(execution_id: "stf_datataking-wenauseic-0048")
● Still in initial DAQ state delays. Let me check logs and wait a bit more.
● swf-testbed - list_logs (MCP)(execution_id: "stf_datataking-wenauseic-0048")
● Workflow completed successfully. Let me get the final status.
● swf-testbed - get_workflow_execution (MCP)(execution_id: "stf_datataking-wenauseic-0048")
● Testbed restarted and workflow completed successfully.
 Summary
 ┌─────────────────────┬───────────────────────────────┐
 │ Item │ Value │
 ├─────────────────────┼───────────────────────────────┤
 │ Execution ID │ stf_datataking-wenauseic-0048 │
 ├─────────────────────┼───────────────────────────────┤
 │ Status │ completed │
 ├─────────────────────┼───────────────────────────────┤
 │ Namespace │ torre1 │
 ├─────────────────────┼───────────────────────────────┤
 │ Config │ fast_processing_default │
 ├─────────────────────┼───────────────────────────────┤
 │ Run ID │ 101992 │
 ├─────────────────────┼───────────────────────────────┤
 │ Duration │ ~40 seconds │
 ├─────────────────────┼───────────────────────────────┤
 │ STF files generated │ 10 │
 └─────────────────────┴───────────────────────────────┘
 Agents involved:
 - daq_simulator-agent-wenauseic-450 - broadcasted run_imminent → start_run → 10× stf_gen
→ end_run
 - stf_processing-agent-wenauseic-451 - processed all messages successfully
 Workflow sequence (from logs):
 1. run_imminent broadcast → processing agent prepared resources
 2. start_run broadcast → processing agent ready
 3. 10× stf_gen broadcasts (2s intervals, realtime mode)
 4. end_run broadcast → processing agent completed
 No errors. The testbed is operational and ready for further work 7

● ~30 MCP tools giving LLMs access to ~all testbed
system/log knowledge available
○ Uses REST interface to the monitor which is backed by

the testbed DB, based on django-mcp-server
● Most are passive info providers
● Several are active operators

○ start/stop testbed, based on agents needed for a
particular workflow config

○ start/stop workflows operating with those agents
○ various cleanups

● You can start your testbed and run a workflow,
monitoring its execution and reporting results, with
one Claude prompt (right)

● This is all at the individual user level,
autonomous from other testbed users

● It adds an agent to the system: your personal agent
○ Manages your testbed agents, supporting

‘start/stop testbed’
○ Probably more to come, it’s the agentic era!

https://github.com/gts360/django-mcp-server

T. Wenaus Jan 2026

Multi-user support

● Testbed is based on shared infrastructure
+ independent operation via mechanisms
to isolate/filter one user from another

● Agent names have assured isolation for
some time: username and unique ID are
built in

● Additional mechanism introduced:
namespaces

● Namespaces support isolation/filtering at
the higher workflow and testbed instance
levels

● Namespaces also support collaboration:
multiple people can use the same
namespace

8

T. Wenaus Jan 2026

Looking back at May 2025 planned scope
Components and functionalities of the system to define and implement in a first prototype:

● stream definition, structure and associated metadata
○ bulk data stream

■ stream delivering 100% of the data to both E1s
○ monitoring stream

■ finer grained, lower latency stream of a fraction of the data for fast (O(1min)) monitoring and validation at E1s
■ complements the very fast monitoring and validation happening in DAQ

● E0 - E1 data flows
○ how bulk data moves from E0 to E1
○ how fast monitoring data moves from E0 to E1

● E1 bulk data orchestration
○ How and where bulk data lands at E1s
○ Triggering actions on the data (archiving, prompt processing) as it arrives

● E1 fast monitoring infrastructure
○ How fast monitoring data moves from E0 to E1
○ How and where it is received and processed by monitoring agents/workers

● E1 data processing orchestration
○ Workflows for processing physics data at the E1s

● E1 calibration orchestration
○ Workflows, from simple to complex, for performing prompt calibration/alignment at E1s
○ Supporting many such activities concurrently across the detector systems
○ Tools to define and automatically execute complex workflows with dependencies down the processing chain

● Detector/data state machine
○ Infrastructure to manage and interface to detector/data state in an E1 resident service
○ cataloging of detector/data states, clients served and their needs
○ Needs further development as part of defining the E0-E1 interface, and to begin to incorporate calibration

● E2 extension
○ An extension of the testbed will prototype the inclusion of Echelon 2 (E2) computing facilities

9

Green: implemented in the testbed, at V1 level

Blue: planned for 2026

What did we do that’s not on here?
Some May jokes became later reality

Let’s let LLMs write the code, lol

Let’s use MCP to control the whole thing
and as a full system info source, lol

https://docs.google.com/document/d/1mPqMsjHiymkeAB7uih_8TjFIluwM8MENIWZF3EDwNrU/edit?tab=t.0

T. Wenaus Jan 2026

2026 Objectives
● Defining and developing the E0-E1 interface Cross-testbed collaboration
● We now have the STF processing and fast STF streaming workflows, let’s start using them!

○ Begin to scale and operate under quasi realistic conditions, as permitted by 2026 infrastructure
○ Exercise and test the system - are we using the right system components, is it a system that

meets the requirements
● Flesh out the workflows as real data processors using simulation data as TF ‘DAQ input’ and TF-based

EICrecon streaming reconstruction Cross-testbed collaboration
● Operational Osaka Japan extension of the testbed
● Calibration workflows integrated in testbed to drive PanDA based processing, with state machine

integration Cross-testbed collaboration
● Building out MCP, helping answer what is AI-empowered streaming data processing

○ Adept/extend the testbed’s MCP service based on experience
○ Add to our MCP suite the PanDA and Rucio MCP tools

■ AskPanDA, MCP analytics service, Rucio MCP
● The ePIC streaming workflow orchestration testbed is a system simulator from E0 egress through

E1 and soon to proto E2. Explore what we can do and address with such a simulator!

10

FY25 FY26 FY27 FY28 FY29 FY30 FY31

PicoDAQ MicroDAQ MiniDAQ Full DAQ-v-1 Production DAQ DAQ

Streaming Orchestration Streaming Challenges

AI-Empowered Streaming Data Processing Analysis Challenges Computing

Distributed Data Challenges

AI-Driven Autonomous Calibration AI-Driven Autonomous Alignment, Calibration, and Control AI

https://www.overleaf.com/project/67bdf89a3d44a138da503dea

T. Wenaus Jan 2026

Streaming Fast Monitoring Files (TFs)
● Extend swf-fastmon-agent to allocate TF files in a storage instance
● Enable monitoring clients to

retrieve them from anywhere
via root:// protocol

● XRootD Authentication
○ X.509 grid certificate (current)
○ Aiming to switch to

WLCG/EGI tokens
● Aiming to O(seconds) latency for

TF retrieval

Fast Monitoring Applications
● Further develop testbed interfaces applications to real data (instead of mock records)

○ Introduce realistic payloads using current ePIC reconstruction framework
○ Demonstrate integrated running of monitoring and fast calibration workflows (Snakemake

workflows) within the testbed (a fastmon client)

2026 Objectives: Fast monitoring

11

FastMon Agent

SSE Stream

T. Wenaus Jan 2026

2026 Objectives: PanDA in production and CI

In the PanDA for ePIC production effort proceeding in parallel with the testbed…
● PanDA operational as ePIC simulation production back end

○ Including monitoring, analytics, and Perlmutter as well as OSG operation
● AskPanDA operational for ePIC production jobs

● Develop prototype distributed CI system with PanDA as backend
– enables processing-intensive CI/testing workflows for ePIC
○ Evaluate applicability of ATLAS’s processing-intensive

distributed test/CI system ART
○ Snakemake-defined, PanDA-executed validation workflows

 demonstrated

12

Frontend for ART in PanDA monitoring systen

T. Wenaus Jan 2026

The participants

● Wen Guan
○ PanDA, iDDS and testbed-interface components of fast STF sample processing

● Dmitry Kalinkin
○ Calibration, validation and CI workflows; EICrecon payload integration; realization of ‘real’ STF

data structure as it becomes defined
● Maxim Potekhin

○ PanDA and Rucio based STF processing workflows; DAQ interfaces and simulation
● Tomonori Takahashi (Osaka)

○ Extending testbed to Osaka, fast STF sampling client, proto Echelon 2, production integration
● Michel Villanueva

○ Fast STF sample preparation, distribution, processing
● Torre Wenaus

○ Testbed infrastructure, fast STF sampling workflows, DAQ interfaces and simulation
● Zhaoyu Yang

○ Monitoring & analytics (PanDA, Opensearch, Grafana), AI MCP (AskPanDA, analytics)
● Xin Zhao

○ Computing facilities, SCDF liaison, foundation services including PanDA, Rucio, ActiveMQ

13

T. Wenaus Jan 2026

Conclusion
● Two TF processing workflows implemented thus far

○ Prompt processing of STF files at E1s
■ Transfer to E1s with Rucio and process entire STF files
■ Jobs processed via PanDA as conventional batch jobs with STF file input

○ Fast streaming of finer-grained TFs for quick results in control room
■ STF subsamples messaged to parallel workers for high throughput on fresh data
■ iDDS mediates between testbed processing agent and PanDA’s parallel persistent workers
■ Workers have lifetime of batch slot, with small assignments constantly streamed in during a run

● Time to start using them towards testbed objectives!
○ Evaluate against WFMS requirements, scaling, robustness, defining E0-E1 interface, …

● Other threads of activity are growing
○ Thanks to Japan participation, progress to proto E2 at Osaka integrated with the testbed
○ PanDA for production operational, distributed CI planned
○ Application of fast monitoring workflow to real reco workloads, calibration

● Managing workflow complexity motivated very helpful infrastructure: comprehensive MCP and an
agent management system -- models the real system better, and demonstrates natural language
interaction/control via fully system-aware LLM

● Next big objective to add in 2026: the first calibration workflows

14

T. Wenaus Jan 2026

More information

● ePIC workflow management system requirements draft
● Streaming workflow testbed planning document
● Streaming workflow testbed progress document
● Testbed monitor

○ InCommon federated login access, ask Torre for a django account on the monitor itself
● BNL PanDA (and Rucio) startup guide (testbed uses BNL R&D instances of each)
● BNL PanDA monitor

● ePIC Streaming Computing Model Report (currently V2 Fall 2024, V3 in dev)
● ePIC streaming computing model WG meeting notes

● New iDDS paper in arXiv

15

Thank you to everyone in NPPS, SCDF and the ePIC
streaming computing model working group community
who have contributed to making this testbed a reality!

https://www.overleaf.com/read/rgjwfmcfhncs#7cd189
https://docs.google.com/document/d/1mPqMsjHiymkeAB7uih_8TjFIluwM8MENIWZF3EDwNrU/edit?tab=t.0
https://docs.google.com/document/d/1PUoo-W6dCeOKsD4VubYTgSxBHBUb4D5dYfVy1oLYh7E/edit?tab=t.0
https://pandaserver02.sdcc.bnl.gov/swf-monitor
https://docs.google.com/document/d/1zxtpDb44yNmd3qMW6CS7bXCtqZk-li2gPwIwnBfMNNI/edit?tab=t.0#heading=h.iiqfpuwcgs2k
https://pandamon01.sdcc.bnl.gov/
https://zenodo.org/records/14675920
https://docs.google.com/document/d/1t5vBfgro8Kb6MKc-bz2Y67u3cOCpHK4dfepbJX-nEbE/edit?tab=t.0#heading=h.y3evqgz3sc98
https://arxiv.org/abs/2510.02930

T. Wenaus Jan 2026

Backup

16

T. Wenaus Jan 2026

ePIC Echelon 0 - Echelon 1 workflows

17

Switch

Switch

4Tbps

400Gbps via ESnet

Buffer

Buffer

Archive

Archive

Prompt monitoring

BNL data center

JLab data
center

ePIC Echelon 1 at BNL

ePIC Echelon 1 at JLab

IP6

DAQ
room

DAQ
enclave

Echelon 0

DAQ STF
buffer
(72hr
depth)

Ext subnet
for E1

delivery
Fast monitoring

STF stream
(Rucio)

TF stream
(Messaging)

Fast monitoring● Super timeframe (STF) stream - complete raw data
○ STFs are ~2GB files consisting of ~1000 time-ordered

timeframes, each STF containing ~½ sec of detector data
○ Managed by Rucio, sent by subscription to the E1 buffers

● Timeframe (TF) sample stream - fast selected subsample
○ Subsets sent quickly with finer granularity to E1s for fast

monitoring; data availability within a few seconds
○ Skimmed from the STFs in the DAQ buffer

● The entire system described at any time by a state machine
encompassing detector, DAQ, machine, calibration… config

● The testbed scope is right of the red line

Prompt processing

Prompt monitoring

Prompt processing

T. Wenaus Jan 2026 18

DB model Jan 2026

T. Wenaus Jan 2026

State machine implementation
Our baseline workflows exercise most of it (no detector/machine at this point)

19

States
● no_beam

○ Collider not operating
● beam

○ Collider operating
● run

○ Physics running
● calib

○ Dedicated calibration period
● test

○ Testing, debugging
○ Any substates can be present during test

Substates
● not_ready

○ detector not ready for physics datataking
○ occurs during states: no_beam, beam, calib

● ready
○ collider and detector ready for physics, but not declared as good for physics
○ when declared good for physics, transitions from beam/ready to run/physics
○ occurs during states: beam

● physics
○ collider and detector declared good for physics
○ if collider or detector drop out of good for physics, state transitions out of ‘run’ to ‘beam’ or ‘off’
○ occurs during states: run

● standby
○ collider and detector still good for physics, but standing by, not physics datataking (dead time!)
○ occurs during states: run

● lumi
○ detector, machine data that is input to luminosity calculations
○ occurs during states: beam, run

● eic
○ machine data, machine configuration
○ occurs during states: all

● epic
○ detector configuration, data
○ occurs during states: all

● daq
○ info, config transmitted from DAQ
○ occurs during states: all

● calib
○ a catch-all for a great many calib data types, we can start small
○ occurs during states: all (assuming there are cases where calib data is taken during beam on)

T. Wenaus Jan 2026

Fast STF sample processing for fast control room monitoring

● Have started to build on our ePIC computing resource requirements estimates with a new
prompt processing workflow orchestration spreadsheet

● It addresses the question, what will shifters have on their screens from E1-based
monitoring immediately after run start, and ongoing, presenting near-live detector state?

● Rucio STF delivery takes minutes, it doesn’t play a role in this
● STFs arrive from DAQ every ~half second with ~45k events each, getting high-stats reco

up on the screens quickly will be a priority, and will require quickly sampling them
○ Target plucked out of the air: process an STF equivalent (~45k events) every 30sec

● This is what the STF sample based fast monitoring stream from fastmon agent is for
● Fan out STF samples of new data in near real time across E1 workers

○ A given worker processes (fractions of) hundreds of STFs over its batch slot lifetime
● The PanDA fine grained processing services -- the event service and iDDS (intelligent

Distributed Dispatch and Scheduling system) -- were designed for this
○ Worker acts as a (semi) persistent agent accepting fine grained tasks
○ iDDS mediates the fast assignment to workers of STF samples produced by fastmon
○ PanDA does the fine grained bookkeeping and automated retry

● This is now implemented as the fast processing workflow

20

https://docs.google.com/spreadsheets/d/1ApjIriu44DymP_i2T5O3W5_QgkXhVeinE6VRBZDHwSU/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1H7jtsPd0YDIdR10u-SALgu-hTuEsbCSNYz60Qs4YMHs/edit?gid=0#gid=0

T. Wenaus Jan 2026

Testbed monitor

21

https://pandaserver02.sdcc.bnl.gov/swf-monitor
Two auth layers:
InCommon (BNL or other login)
Django account (ask Torre)

https://pandaserver02.sdcc.bnl.gov/swf-monitor

T. Wenaus Jan 2026

PanDA, Rucio integration in the testbed monitor/system

● PanDA and Rucio testbed configurations are browsable in the testbed monitor
○ PanDA queues
○ Rucio endpoints

● New PanDA, Rucio configurations can be activated via the monitor by superusers (ie Xin)
● This is an extremely simple (yet fully adequate for the testbed) replacement for the complex CRIC

information management system developed by ATLAS PanDA and used by WLCG
○ Based on the same json schema as CRIC

● The full BNL-instance PanDA and Rucio databases are browsable in the testbed monitor
○ Not in itself greatly useful except to experts, but opens the door to integrating PanDA and Rucio

information directly in testbed monitor views
○ Will use complementary integration of PanDA monitor via links, avoid duplication

● Next: integrate more PanDA services
○ Opensearch for analytics (BNL instance in place)

■ Also Grafana
○ ‘Ask PanDA’ MCP service

■ Also Rucio MCP?
○ Pilot/batch monitoring service

■ Add links to a service in Lancaster, they
kindly extended their ATLAS/Rubin service
to support our PanDA instance

22

T. Wenaus Jan 2026

STF prompt processing workflow
in the testbed

1. Run Start - DAQ simulator generates a run start broadcast message
indicating a new datataking run is beginning
2. Dataset Creation - data-agent sees the run start message and has
Rucio create a dataset for the run
3. Processing Task - processing-agent sees the run start message and
establishes a PanDA processing task for the run
4. STF Available - DAQ simulator generates a broadcast message that a
new STF data file is available, iterates while run in progress
5. STF Transfer - data-agent sees the message and initiates Rucio
registration and transfer of the STF file to E1 facilities
6. STF Processing - PanDA sees new STF files arrive at the E1s,
transferred by Rucio, and initiates PanDA jobs to process the STFs
7. Fast Monitoring - fastmon-agent sees the broadcast message that a
new STF data file is available and performs a partial read to inject a data
sample into E1/E2 fast monitoring

23

The automated workflow integrates an ePIC-controlled
‘decision box’ operating together with PanDA at the E1s, with
visibility to the STF data, to take informed decisions on
whether this STF should be processed or not, at this E1

T. Wenaus Jan 2026

Workflow orchestration framework

● The fast STF sample processing is an example of complex workflows we
want to flexibly define, configure, parameterise, adjust

● A system allowing us to do this is now part of the testbed, the workflow
orchestration framework

● Provides for defining, parameterising, executing and monitoring a
catalog of workflows

● Implements concise python workflow definitions, full parameterisation in
config files, a generic execution framework to run these, and a cataloging
system for workflow definitions and their executions, with presentation in the
monitor
○ 557 line python script for the STF processing workflow became 56 lines

● WorkflowRunner orchestration layer with SimPy discrete event simulation to
turn definitions into running workflows

● TOML-based config for workflow parameters
● WorkflowDefinition, WorkflowExecution models
● Unique execution tracking `workflow-username-N’
● Detailed workflow definition and execution

inspection in monitor

24

https://github.com/BNLNPPS/swf-testbed/blob/infra/baseline-v24/example_agents/daq_simulator.py
https://github.com/BNLNPPS/swf-testbed/blob/infra/baseline-v24/workflows/stf_processing.py

T. Wenaus Jan 2026

Coming in 2026: Calibration workflows in the testbed

● Taku Gunji gave a recent talk on calibration in the
computing model, the topic is gaining attention

● As this activity develops it will guide integrating
calibration into the testbed

● Objective: demonstrate capability for autonomous
(automated) calibration of a detector system
○ In an example subdetector system, extensible

to others

25

Testbed relevant

https://docs.google.com/presentation/d/1CTDrdv2pqKS6m0oQ-g7t-y3yw9gvhVXL/edit?slide=id.p1#slide=id.p1
https://docs.google.com/presentation/d/1CTDrdv2pqKS6m0oQ-g7t-y3yw9gvhVXL/edit?slide=id.p1#slide=id.p1

T. Wenaus Jan 2026

The PanDA workload manager (developed by BNL and UT Arlington)

26

The only ATLAS specific part

Fine grained workflow orchestration

Granularity suited to the use case Fine sub-file event ranges

Tape-disk
orchestration

PanDA paper
CSBS 2024

https://link.springer.com/article/10.1007/s41781-024-00114-3
https://link.springer.com/article/10.1007/s41781-024-00114-3

