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• A compact central detector with several subsystems

• Hermetic coverage: –3.5 < η < 3.5 (tracking, calorimetry, particle identification)

p/A e

pfRICH subsystem in backward region

The ePIC Detector at the EIC
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Physics Motivations at the EIC
e−

h

• Semi-Inclusive Deep Inelastic Scattering 
• Production of hadrons in final-state

• Provide information on: 


 the fragmentation process (hadronization) 
 the hadronic structure

→
→

p/A

Particle Identification detectors are crucial
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The pfRICH Concept
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Particle Identification

• Charged particle → emits Cherenkov photons at angle 
• Photons project onto photodetectors → form a ring 

 Ring radius  

• Measuring ring size → deduce  → particle mass 

θc

→ ∝ tanθc

θc

Detection Principle

The pfRICH will provide > 3σ π/K separations for 
momentum up to 7 GeV/c for –3.5 < η < -1.5 
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Particle Identification

Can we use machine learning to improve  
particle identification?
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The Approach 

π

p

K θc

Physics

Can we use machine learning to improve particle identification?: Yes!

pfRICH PID
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An ideal use case for AI/ML, since the signal is well defined and fully understood

AI/ML model
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Model Training
π

Standalone ePIC pfRICH GEANT4: 
• Timing, hits position, momentum … 
• More (good) data → better training

AI/ML model

• Pattern Recognition 
• XGBoost  - Gradient-boosted 
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Particle Identification 
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Model Inference

AI/ML model
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Model Steps
Simulation  

→ Generate particle events with Cherenkov photons 

Data Preprocessing  
→ Convert hit patterns to 64 x 64 images 

CNN Encoder  
→ Extract spatial features from ring patterns 

XGBoost Classifier  
→ Combine CNN features with kinematics for PID 

Hybrid model
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Separation Efficiency 

pfRICH 

η,p
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e
Above 90%



Stony Brook University (CFNS)ePIC collaboration meeting 10

PID Separation 

Above 3σ

width of the ML score distribution (per class, per momentum bin)

π e
π K
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Feature importance

pfRICH 

η,p
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CNN info plays 
a non-neglieable role 

Kinematics info. 
is dominant
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Misidentification

Electron Kaon
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Physics

pfRICH

PID
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This method can be extended to all ePIC PID subsystems  

The more information available, the better the model will perform

AI/ML model

hpDIRC

dDRICH
…

Subsystems

ePIC

Generalize the Approach

Ongoing
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Conclusion
ePIC is a state-of-the-art detector 

It requires state-of-the-art computational tools 

Detector performance is the best entry point for impactful AI/ML applications

The hybrid ML model for pfRICH is robust 

Its integration into the ePIC software is ongoing 

The approach is readily extendable to other PID systems


