

EXPLORING EFTs OF GAUGED CHIRAL SYMMETRIES AT THE LHC AND BEYOND

Felix Yu (JGU Mainz)

High Energy Theory Seminar, Brookhaven National Laboratory
January 22, 2026

With the Standard Model now complete, we are on a global hunt for New Physics

Standard Model of Elementary Particles

three generations of matter (fermions)			interactions / force carriers (bosons)	
I	II	III	g	H
mass charge spin u up	≈2.2 MeV/c ² 2/3 1/2 d down	≈1.28 GeV/c ² 2/3 1/2 s strange	≈173.1 GeV/c ² 2/3 1/2 t top	≈124.97 GeV/c ² 0 0 0 higgs
≈4.7 MeV/c ² -1/3 1/2 e electron	≈96 MeV/c ² -1/3 1/2 μ muon	≈4.18 GeV/c ² -1/3 1/2 b bottom	≈1.7768 GeV/c ² -1 1/2 τ tau	≈91.19 GeV/c ² 0 1 Z Z boson
≈0.511 MeV/c ² -1 1/2 e electron neutrino	≈105.66 MeV/c ² -1 1/2 μ muon neutrino	≈18.2 MeV/c ² 0 1/2 τ tau neutrino	≈80.39 GeV/c ² ±1 0 W W boson	

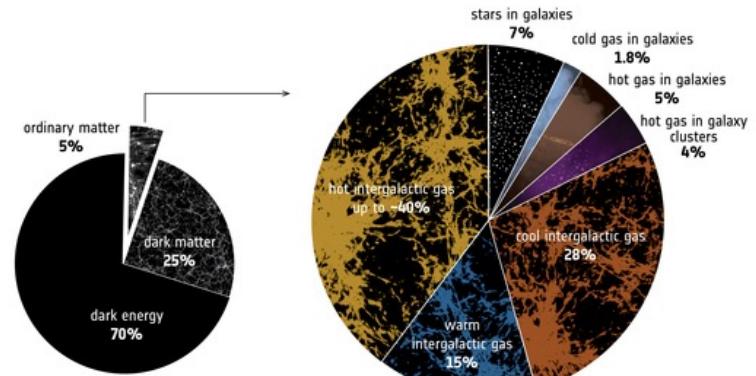
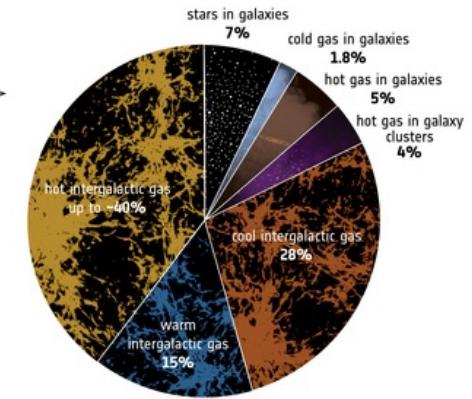
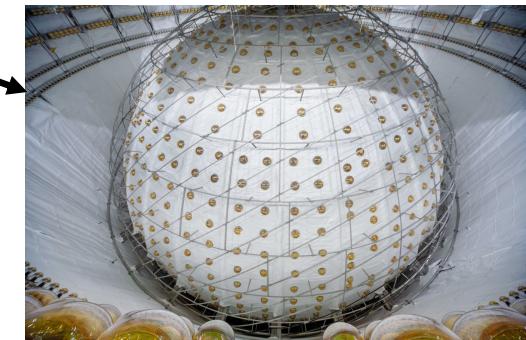
SCALAR BOSONS

GAUGE BOSONS
VECTOR BOSONS

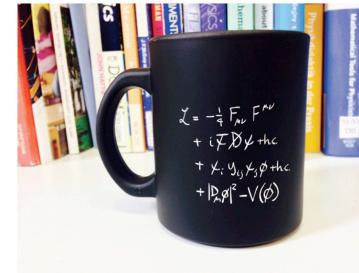
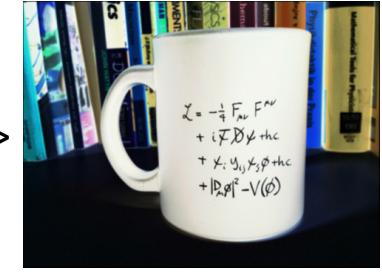
+ many more
DM, DE

Origin of vs
Baryon asymmetry

+ many more
DM, DE



New particles, new interactions



In QFT, chiral symmetry permeates...

- As a structural aspect of 4D spacetime
 - Rotations and boosts of the Lorentz group can be reshuffled into an $SU(2)_L \times SU(2)_R$ algebra
 - Leads to irreducible LH or RH 2-comp. Weyl representations
 - Starting point for spinor-helicity formalism for amplitudes

$$\begin{array}{ll} [J_i, J_j] = i\epsilon_{ijk}J_k , & [J_i^+, J_j^+] = i\epsilon_{ijk}J_k^+ , \\ [J_i, K_j] = i\epsilon_{ijk}K_k , & [J_i^-, J_j^-] = i\epsilon_{ijk}J_k^- , \\ [K_i, K_j] = -i\epsilon_{ijk}J_k & [J_i^+, J_j^-] = 0 , \end{array}$$

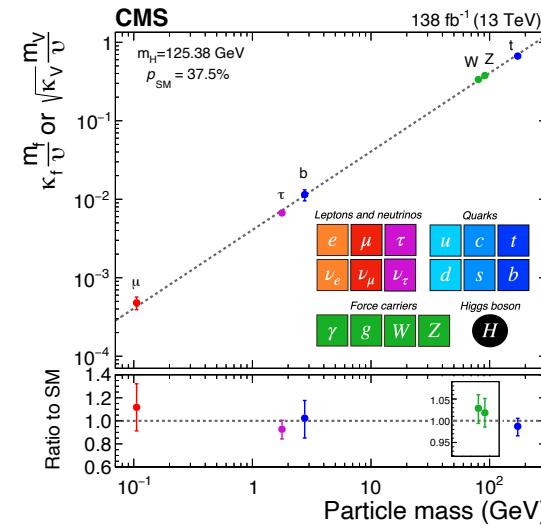
$$J_i^+ = \frac{1}{2}(J_i + iK_i) \text{ and } J_i^- = \frac{1}{2}(J_i - iK_i)$$

In QFT, chiral symmetry permeates...

- As a structural aspect of 4D spacetime
- As gauge and global group structure of the SM
 - Self-evident with the electroweak gauge group
 - No vector-like reps. for fermions and minimal Higgs content enforces no tree-level FCNCs, Higgs low-energy theorems, new physics flavor problem
 - Chiral couplings are an essential aspect of EW loop calculations

Predictive nature of SM Higgs physics is controlled by chiral symmetry

Non-decoupling top quark dof gives Higgs low-energy theorems



In QFT, chiral symmetry permeates...

- As a structural aspect of 4D spacetime
- As gauge and global group structure of the SM
 - Self-evident with the electroweak gauge group
 - Crucial for QCD chiral Lagrangian and hadron spectroscopy

Chiral effective Lagrangian from $N_F = 3$ QCD
models phenomenology of mesons via quark
condensate ansatz

Meson spectroscopy leads to famous U(1)
problem

Phase counting leads to Strong CP problem

$$\langle \bar{q}q \rangle \equiv v^3$$

$$\bar{u}_L u_R \approx |\langle \bar{u}_L u_R \rangle| \exp(i(\theta_{\pi^0} + \theta_{\eta'})) = \frac{v^3}{2} \exp(i(\theta_{\pi^0} + \theta_{\eta'})) ,$$

$$\bar{d}_L d_R \approx |\langle \bar{d}_L d_R \rangle| \exp(i(-\theta_{\pi^0} + \theta_{\eta'})) = \frac{v^3}{2} \exp(i(-\theta_{\pi^0} + \theta_{\eta'})) ,$$

$$\bar{s}_L s_R \approx |\langle \bar{s}_L s_R \rangle| \exp(i\theta_{\eta'}) = \frac{v^3}{2} \exp(i\theta_{\eta'}) \sim \frac{v^3}{2} ,$$

Kivel, Laux, FY, JHEP **11** (2022) 088 [2207.08740]

In QFT, chiral symmetry permeates...

- As a structural aspect of 4D spacetime
- As gauge and global group structure of the SM
- As a possible feature of New Physics
 - Anomaly cancellation imposes a self-consistency requirement on NP dofs
 - MSSM and chiral superfields
 - PQ mechanism and axion solution as well as massless up quark solution to nEDM and strong CP
 - Fundamental Majorana nature of neutrinos?
 - Baryogenesis and new sources of CP violation
 - EW sphaleron reprocessing of B+L violation
 - + many open questions, *e.g.* chiral gauge groups at strong coupling

Goal: study gauged chiral EFT

- Effective Field Theory is perhaps our most powerful tool to characterize new physics and BSM extensions
 - Scale separation affords framework to capture wide classes of ultraviolet completions to the SM
- Will particularly focus on gauged chiral extensions of SM and their effective description
 - Such descriptions generally exhibit non-decoupling
 - NP chiral symmetry can be orthogonal to SM chiral symmetry
 - Exhibit interplay of misaligned Higgsed/unbroken phases

Global vs. gauged chiral symmetry

- Will focus on **gauged** chiral symmetries
 - Chiral anomalies (Adler-Bell-Jackiw) must cancel in UV
 - 't Hooft anomaly matching prescribes chiral transformations are inherited across phase boundaries
 - For example, pion decay to two photons via global $(U(1)_{EM})^2$ anomaly
 - One goal: construct an observable to “measure” gauge chiral anomaly Michaels, FY, *JHEP 03 (2021) 120* [2010.00021]
- *Aside: extending SM via a new global chiral symmetry is basis for axion physics*

Outline

- Introduction and motivation – chiral symmetry as a guiding principle for New Physics
- $U(1)_B$ model and field content
- Collider physics of new scalar ϕ
 - Z' -fusion and Higgsstrahlung production, decay patterns
 - Unmixed vs. mixed ϕ -h scenarios
- Z - Z' - γ vertex, measuring a chiral gauge anomaly
 - Conjecture: dim. reg., naïve γ^5 , and momentum-shift invariance
- Conclusions

$U(1)_B$ model and field content

- SM has global $U(1)_B \times U(1)_L$ symmetry
 - Can gauge any combination of B and L without modifying Yukawas
 - Focus on gauged $U(1)_B$ $\mathcal{L}_q = \frac{g_B}{6} Z'_\mu \sum_q \bar{q} \gamma^\mu q$
 - Must introduce new EW fields and assign charges to cancel mixed anomalies = “anomalons”
$$\mathcal{A}(SU(2)^2 \times U(1)_B) = \frac{3}{2} \quad \quad \mathcal{A}(U(1)_Y^2 \times U(1)_B) = \frac{-3}{2}$$
 - Additionally, choose charges to satisfy the trace condition and suppress kinetic mixing
$$L_L(2, -\frac{1}{2}, -1), \ L_R(2, -\frac{1}{2}, 2), \quad E_L(1, -1, 2), \ E_R(1, -1, -1), \\ N_L(1, 0, 2), \ N_R(1, 0, -1)$$

$U(1)_B$ spontaneous symmetry breaking

- Introduce Φ (B-charge = +3) to spontaneously break $U(1)_B$

$$\mathcal{L} = -\frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu} + |D_\mu\Phi|^2 - \mu_\Phi^2|\Phi|^2 - \lambda_\Phi|\Phi|^4$$

$$M_{Z'} = 3\frac{g_B}{2}v'$$

- Anomalons have two vevs for mass mechanism

$$\begin{aligned} \mathcal{L}_{\text{Yuk}} = & -y_L \bar{L}_L \Phi^* L_R - y_E \bar{E}_L \Phi E_R - y_N \bar{N}_L \Phi N_R \\ & - y_1 \bar{L}_L H E_R - y_2 \bar{L}_R H E_L - y_3 \bar{L}_L \tilde{H} N_R - y_4 \bar{L}_R \tilde{H} N_L + \text{h.c.} , \end{aligned}$$

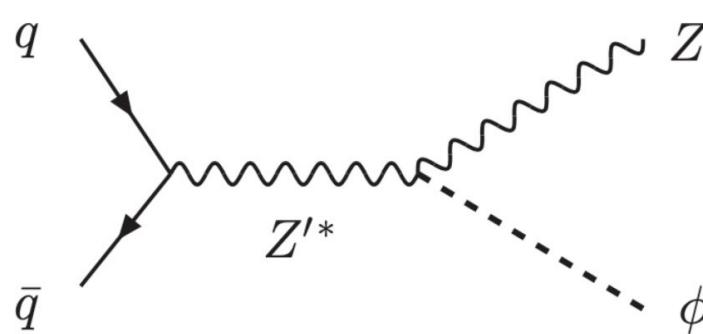
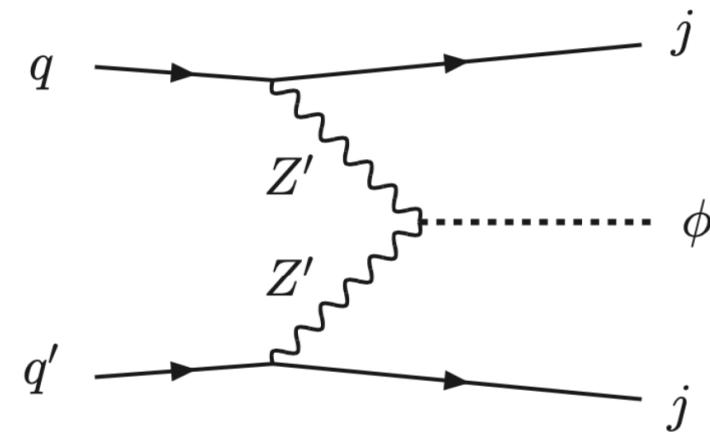
- Set all Yukawas nonzero to avoid accidental Z_2 parity (stable charged particles)
 - Small y_1 and y_2 couplings give negligible effect on $\text{Br}(h \rightarrow \gamma\gamma)$
- Will effective description with anomalous heavy, and dynamical Z' and ϕ dofs
 - Contrast ϕ vs. other gauge-singlet scalars S (used, *e.g.*, for SFOPTs)

QUARK-UNIVERSAL $U(1)$ BREAKING SCALAR AT THE LHC

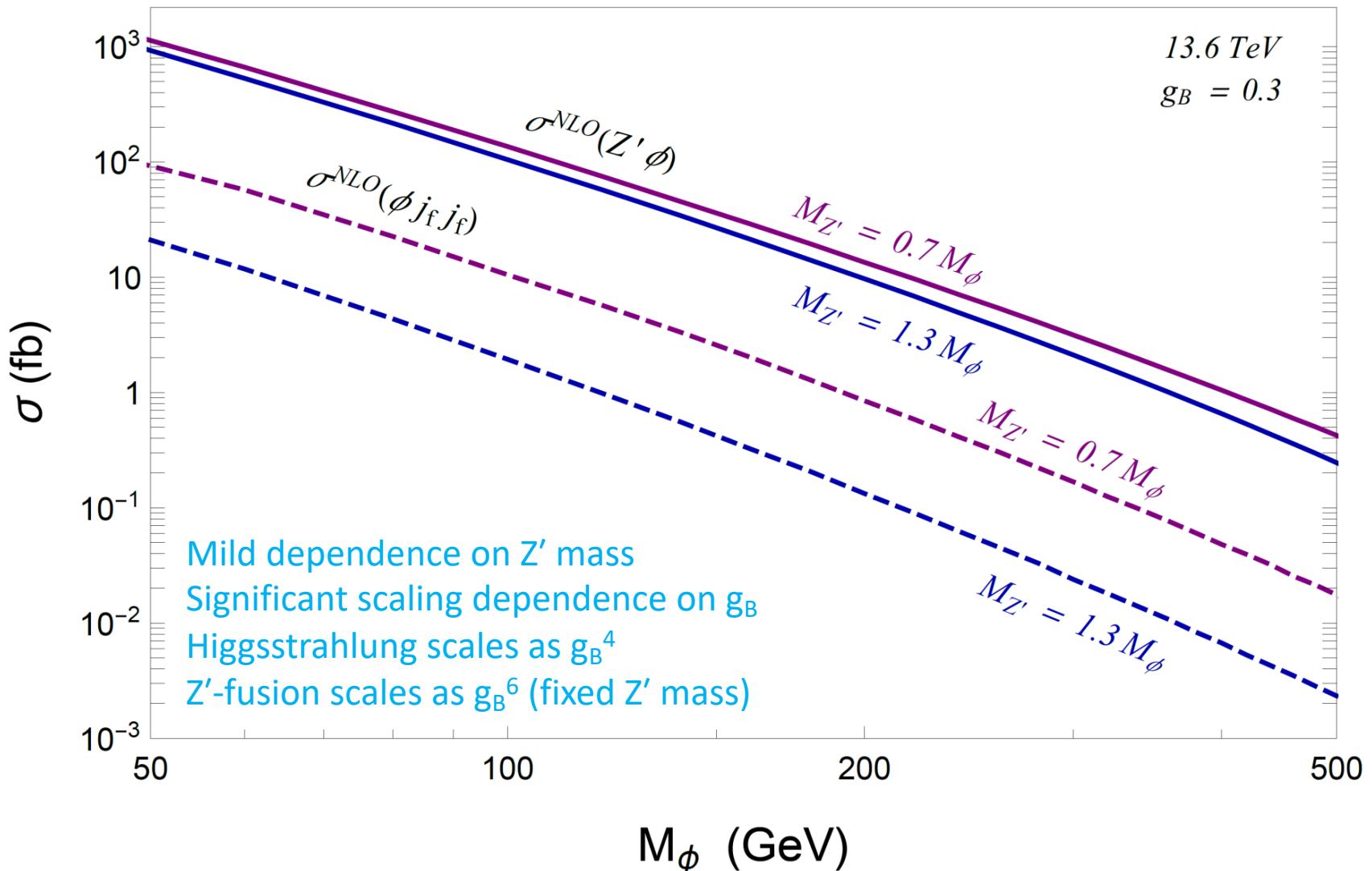
Lorin Armbruster, Bogdan A. Dobrescu, FY [2506.06806]
Accepted by Physical Review D

Cross sections for ϕ

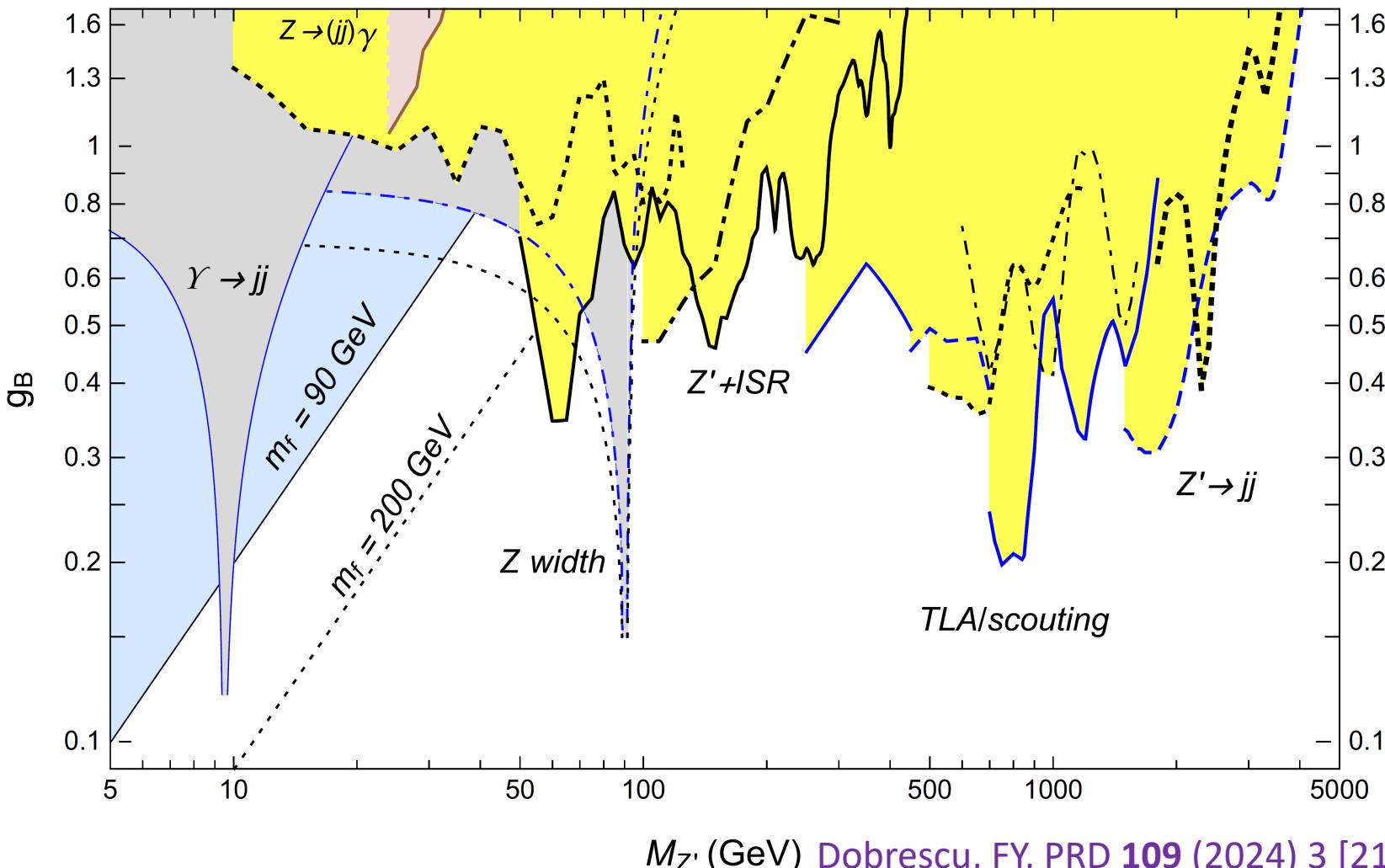
- First consider case with no ϕ -h mixing
- Leading production modes are “familiar” Higgsstrahlung and Z' -fusion



Cross sections for ϕ



Current status of dijet resonance searches

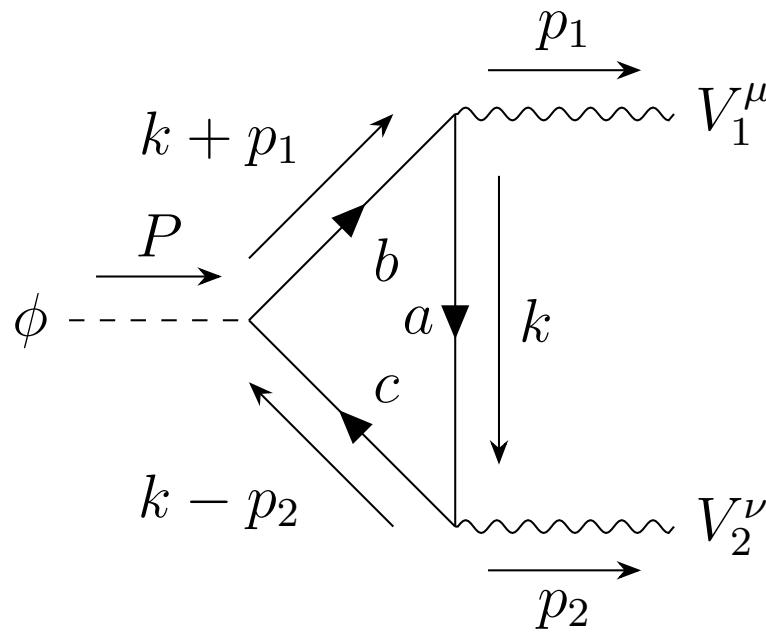
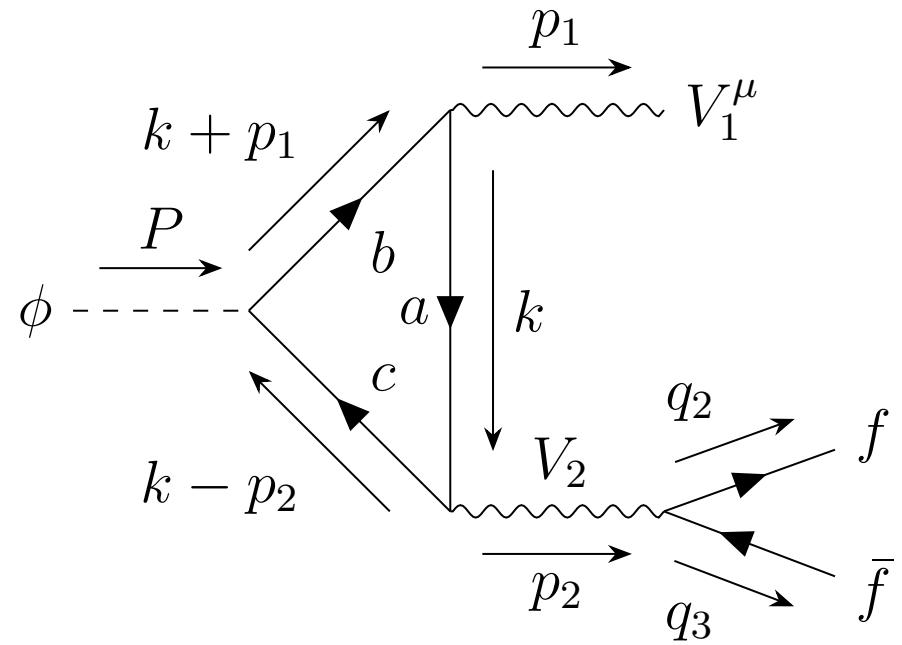


Dobrescu, FY, PRD **109** (2024) 3 [2112.05392]

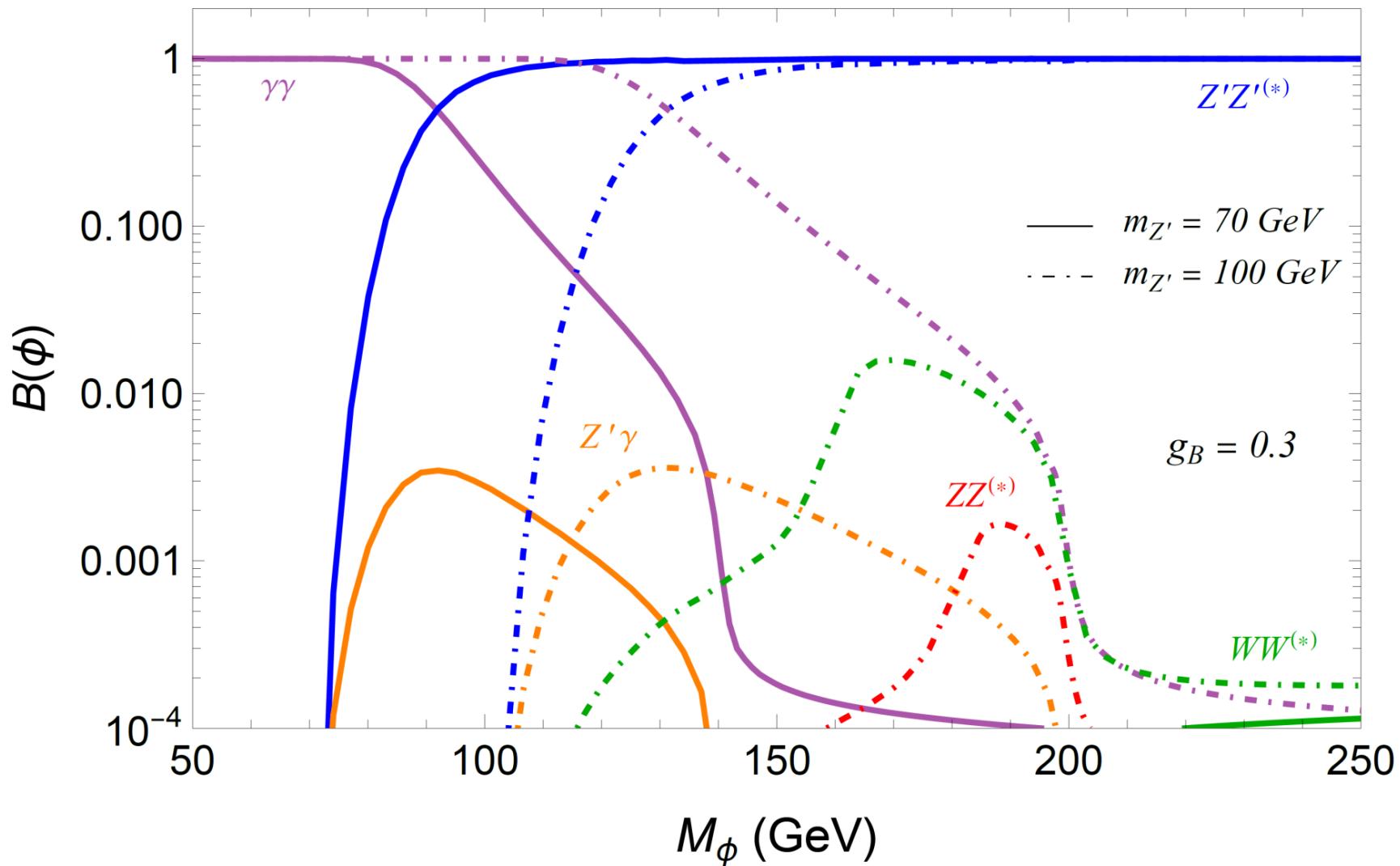
Decays of ϕ

- For finite but heavy anomalon limit ($M_1 = 200$ GeV, $M_2 = 250$ GeV), only tree-level decay is $\phi \rightarrow Z'Z'$
 - When $M_\phi < 2 M_{Z'}$, one-loop decays of ϕ to $V_1 V_2$ or $V_1 f \bar{f}$ are most relevant

$$V_1 V_2 = \gamma\gamma, Z'\gamma, WW, ZZ, Z'Z, Z\gamma$$

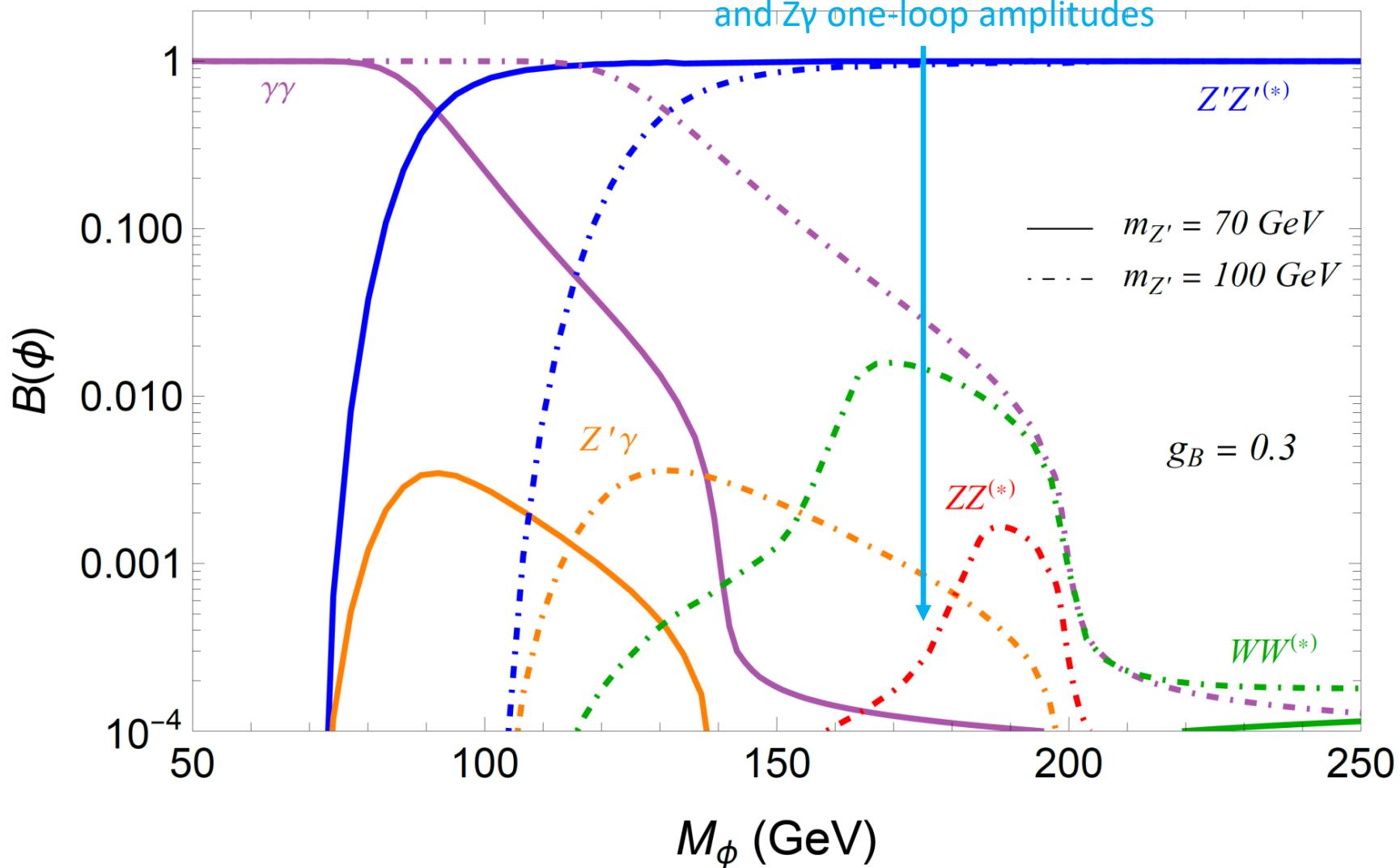


Decays of ϕ



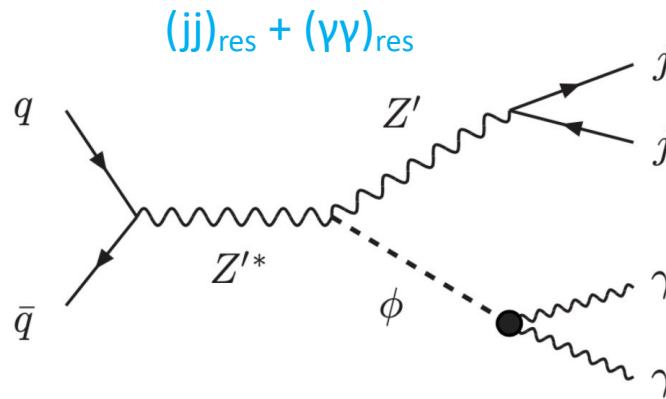
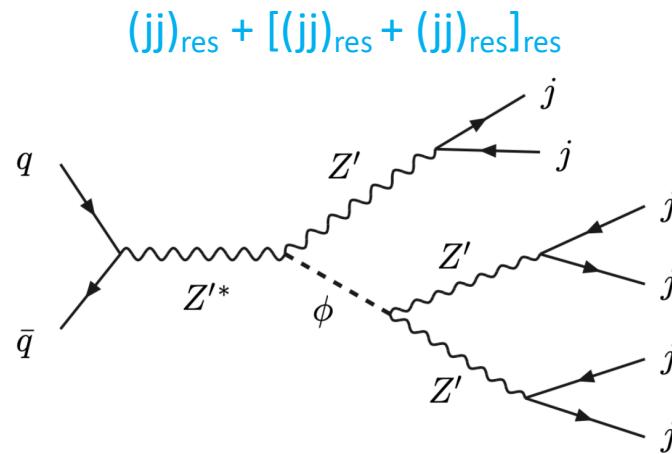
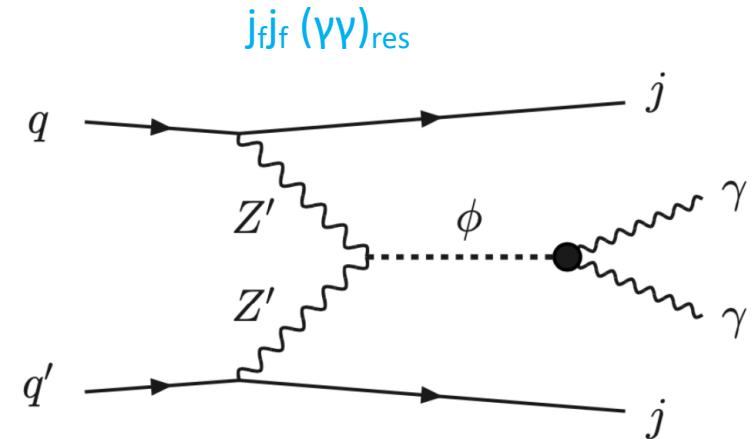
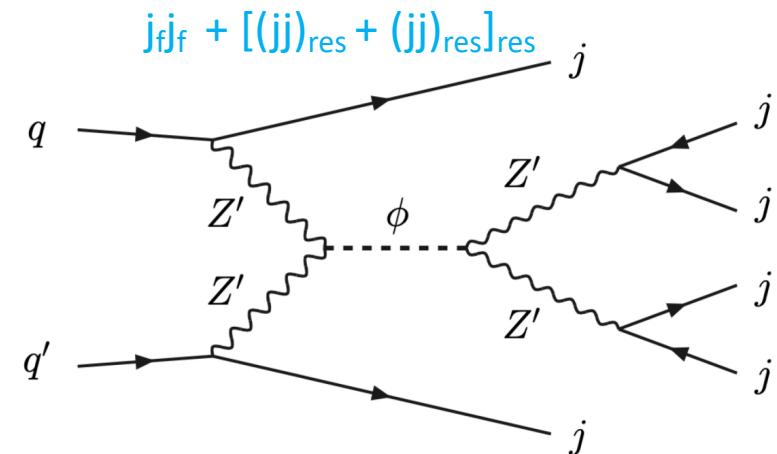
Decays of ϕ

One curious feature: $Z+ff\bar{b}$ decay includes interference with ZZ' , ZZ , and $Z\gamma$ one-loop amplitudes



Suite of collider signatures

- Stitch together production and decay



Cross sections with Higgs mixing

- Now, incorporate scalar mixing angle α_h

$$V(\Phi, H) = \lambda_\Phi \left(|\Phi|^2 - \frac{v_0'^2}{2} \right)^2 + \lambda_H \left(H^\dagger H - \frac{v_0^2}{2} \right)^2 + 2\lambda_p |\Phi|^2 H^\dagger H$$

$$v'^2 = \lambda_H \frac{\lambda_\Phi v_0'^2 - \lambda_p v_0^2}{\lambda_H \lambda_\Phi - \lambda_p^2}$$

$$v_h^2 = \lambda_\Phi \frac{\lambda_H v_0^2 - \lambda_p v_0'^2}{\lambda_H \lambda_\Phi - \lambda_p^2}$$

$$\sin \alpha_h \approx \frac{\lambda_p v_h v'}{\lambda_\Phi v'^2 - \lambda_H v_h^2}$$

- Current mixing angle constraints from overall signal strength – gauge singlet scalar mixing

$$\begin{aligned} \mu_{\text{ATLAS}} &= 1.05 \pm 0.06 \\ \mu_{\text{CMS}} &= 1.002 \pm 0.057 \end{aligned} \longrightarrow \mu_{\text{LHC}} = 1.026 \pm 0.041 \longrightarrow \sin \alpha_h \leq 0.24$$

CMS, Nature **607** (2022) [2207.00043]
ATLAS, Nature **607** (2022) [2207.00092]

Cross sections with Higgs mixing

- Now, incorporate scalar mixing angle

$$V(\Phi, H) = \lambda_\Phi \left(|\Phi|^2 - \frac{v_0'^2}{2} \right)^2 + \lambda_H \left(H^\dagger H - \frac{v_0^2}{2} \right)^2 + 2\lambda_p |\Phi|^2 H^\dagger H$$

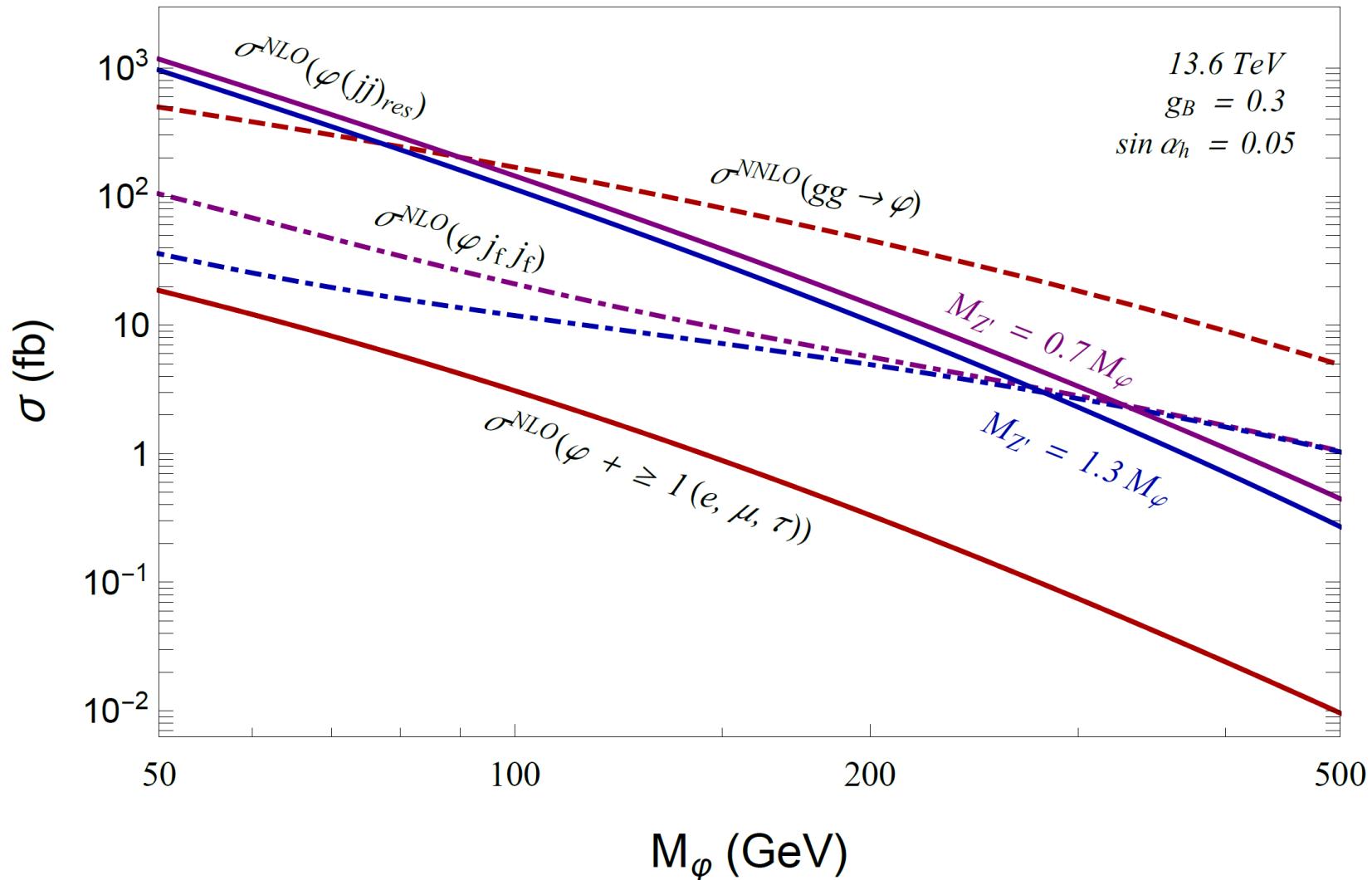
$$v'^2 = \lambda_H \frac{\lambda_\Phi v_0'^2 - \lambda_p v_0^2}{\lambda_H \lambda_\Phi - \lambda_p^2}$$

$$v_h^2 = \lambda_\Phi \frac{\lambda_H v_0^2 - \lambda_p v_0'^2}{\lambda_H \lambda_\Phi - \lambda_p^2}$$

$$\sin \alpha_h \approx \frac{\lambda_p v_h v'}{\lambda_\Phi v'^2 - \lambda_H v_h^2}$$

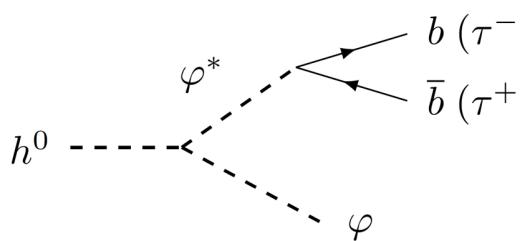
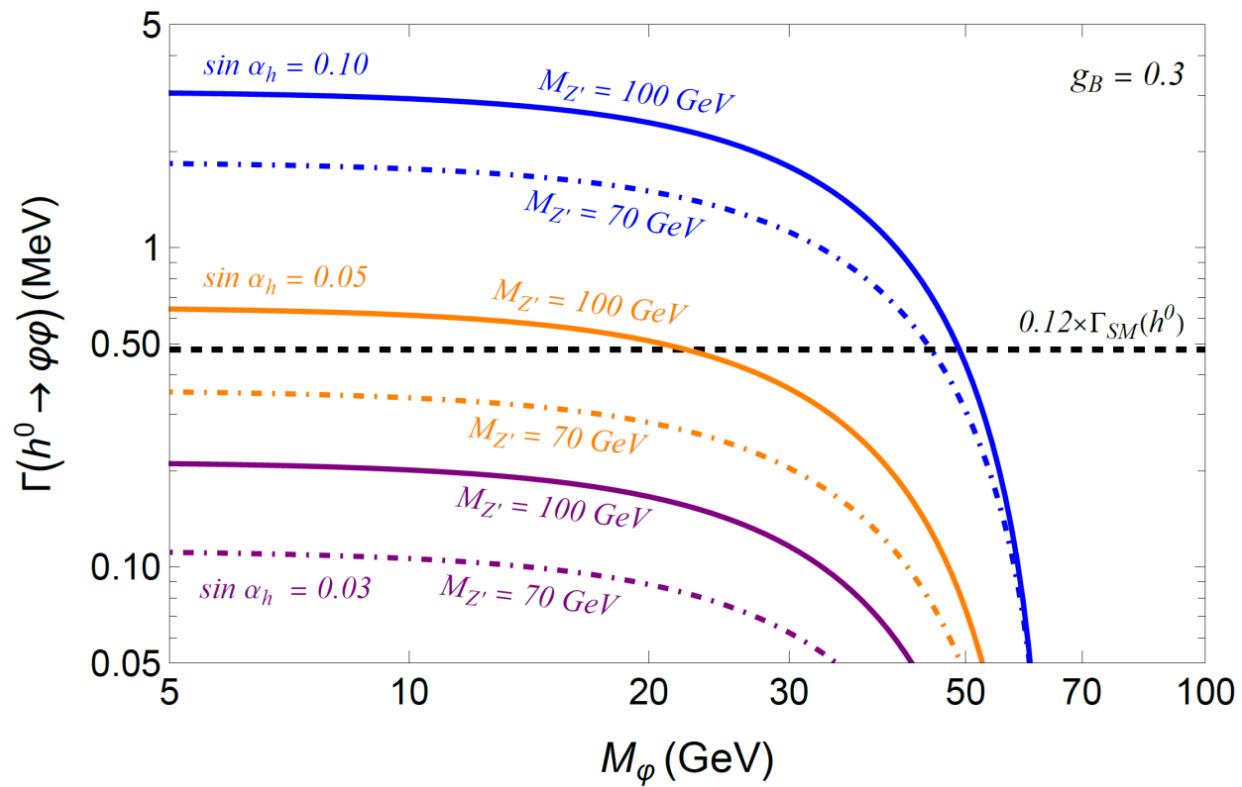
- Denote scalar mass eigenstates as φ and h^0
 - Production cross sections almost factorize according to SM Higgs-like content vs. NP ϕ -like content, except VBF modes
 - Most decay rates almost factorize similarly
 - Important exception: $\varphi \rightarrow \gamma\gamma$

Cross sections with Higgs mixing

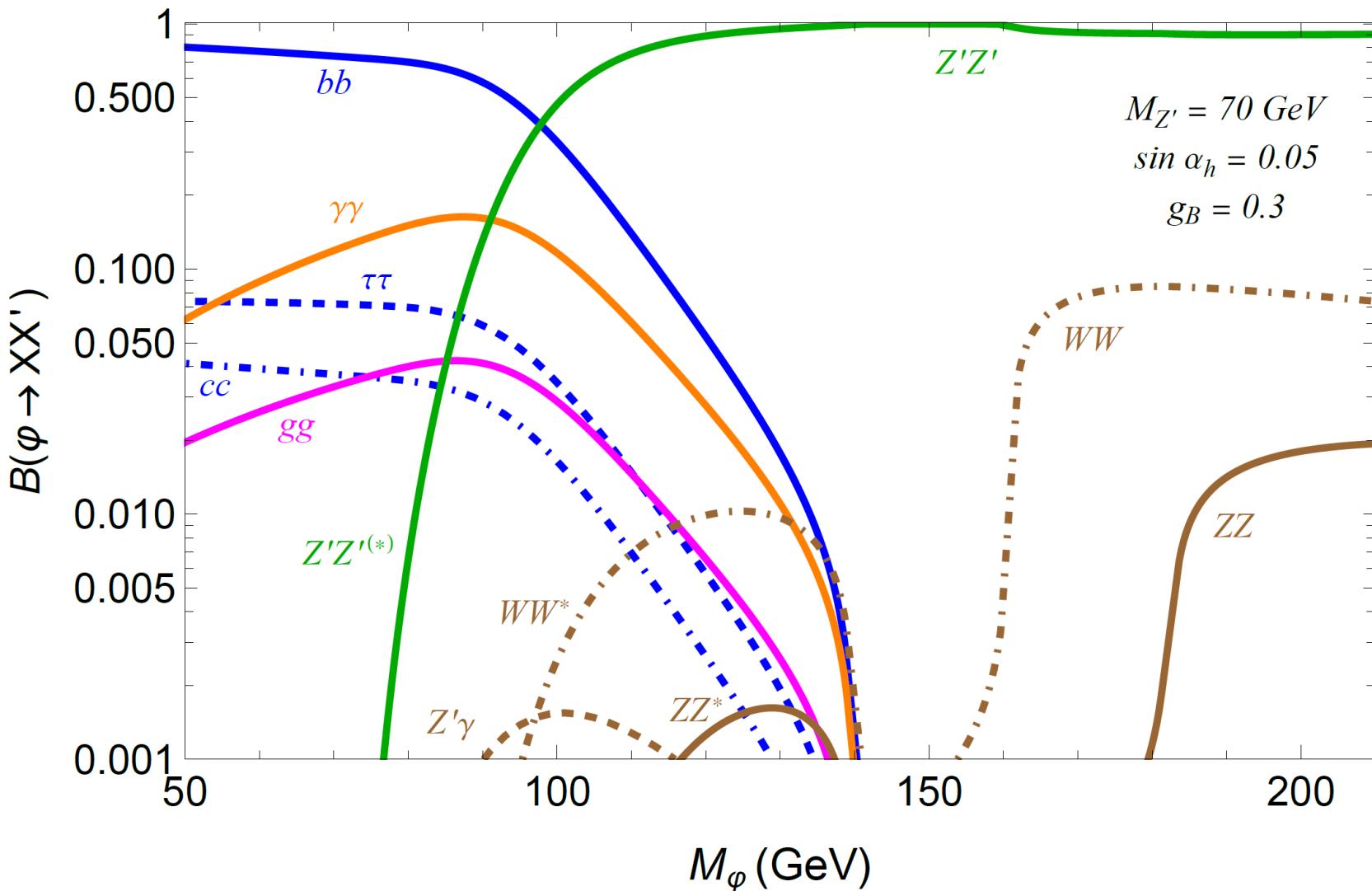


Effect on exotic Higgs decay

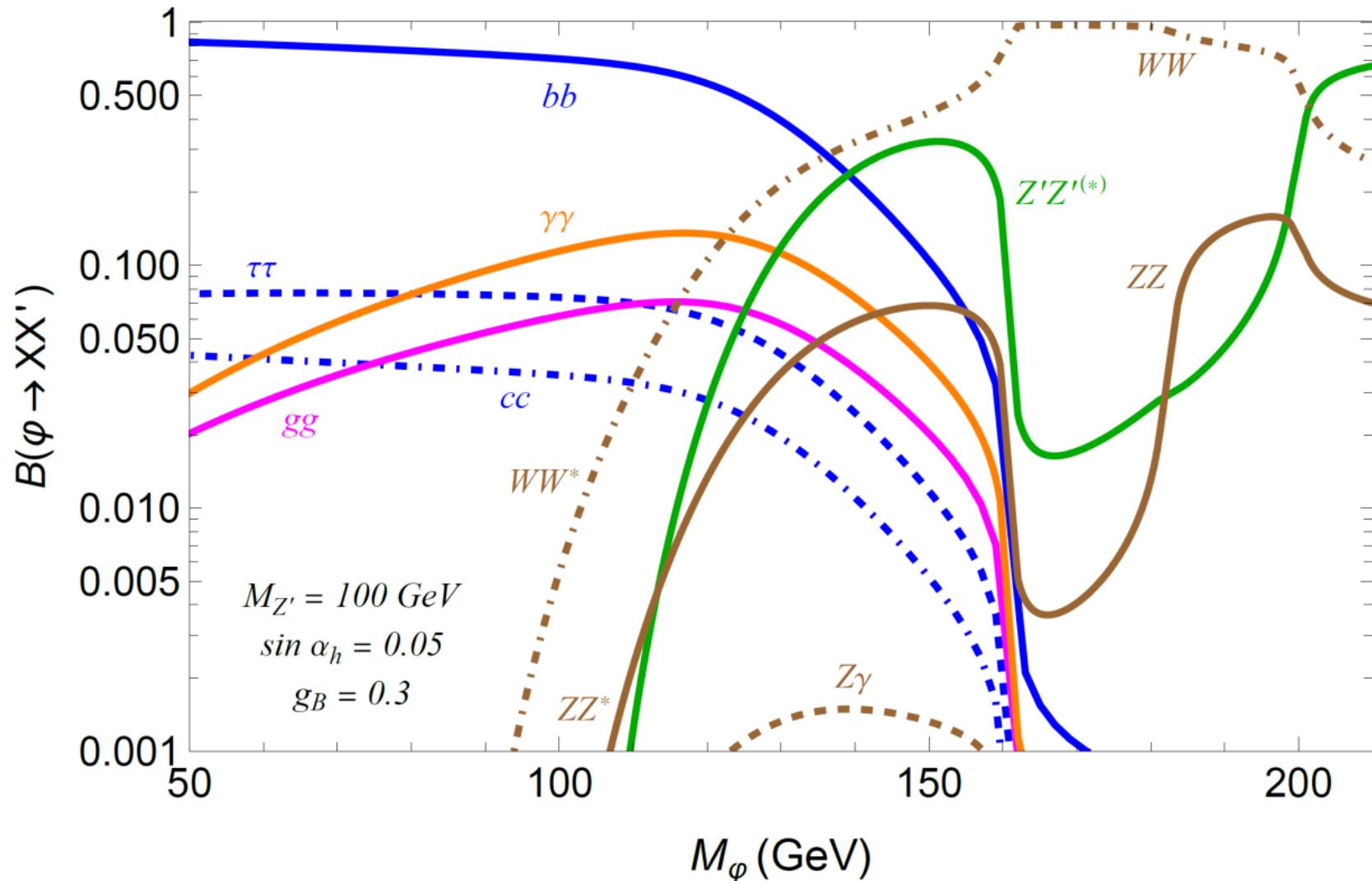
- For $M_\phi < m_h / 2$, must include induced exotic decay constraints



φ decays with h_{SM} mixing ($M_{Z'} = 70$ GeV)

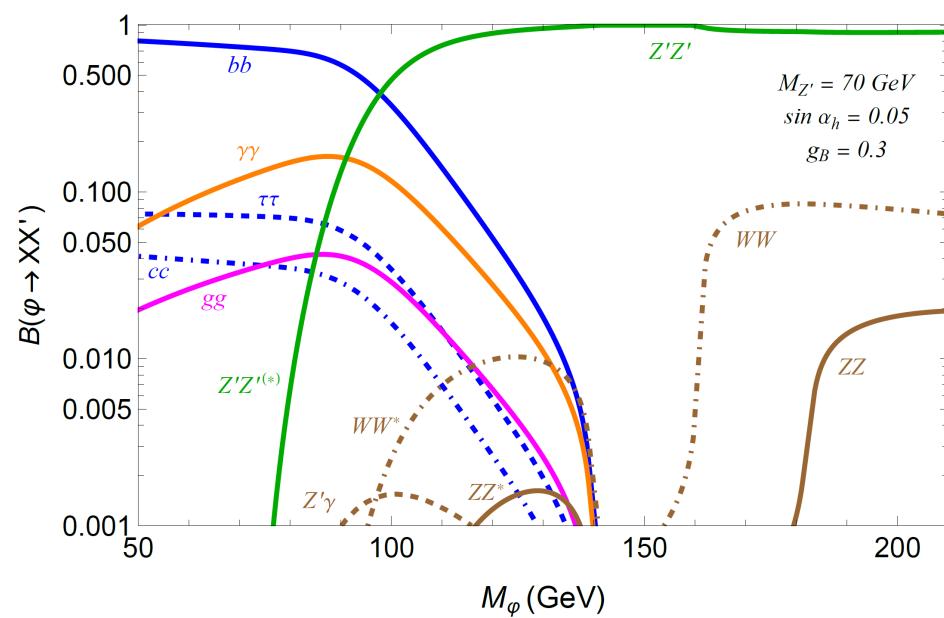
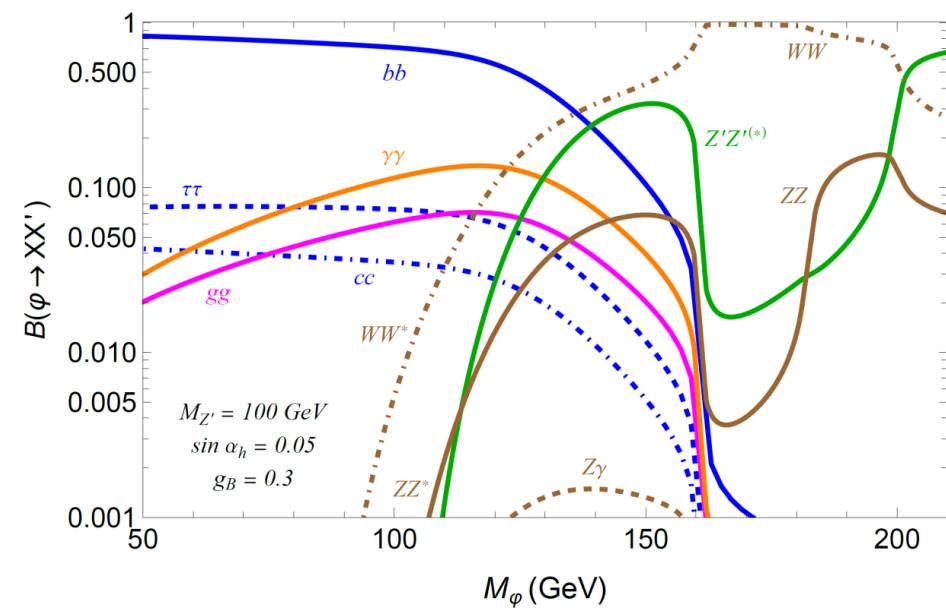


φ decays with h_{SM} mixing ($M_{Z'} = 100$ GeV)

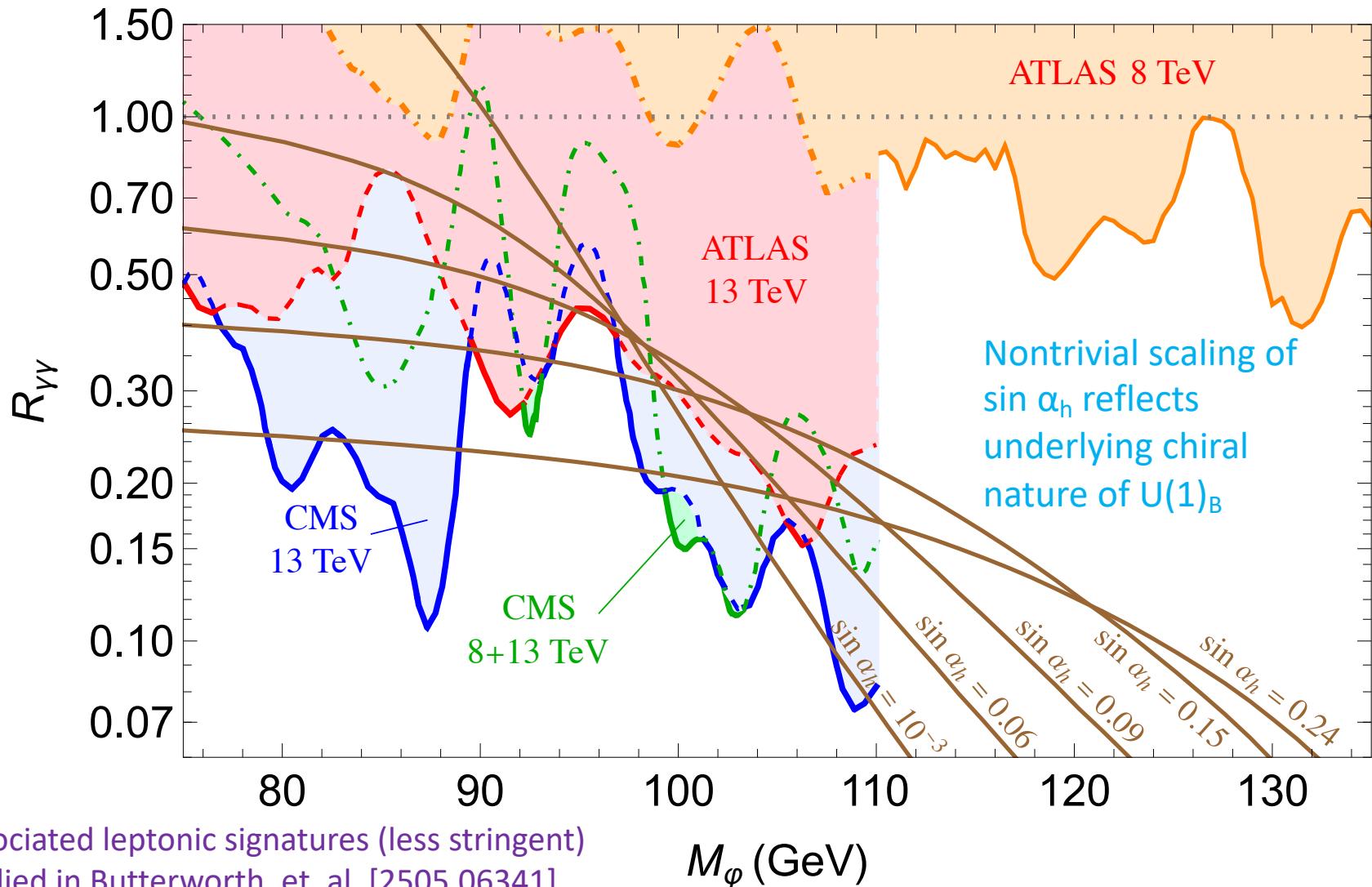


φ decays with h_{SM} : Comparison

- Intermediate mass behavior depends significantly on the $M_{Z'}$ vs. (M_W, M_Z) relative mass ordering



Leading constraints from $R_{\gamma\gamma}$



PROBING NEW $U(1)$ GAUGE SYMMETRIES VIA EXOTIC $Z \rightarrow Z' \gamma$

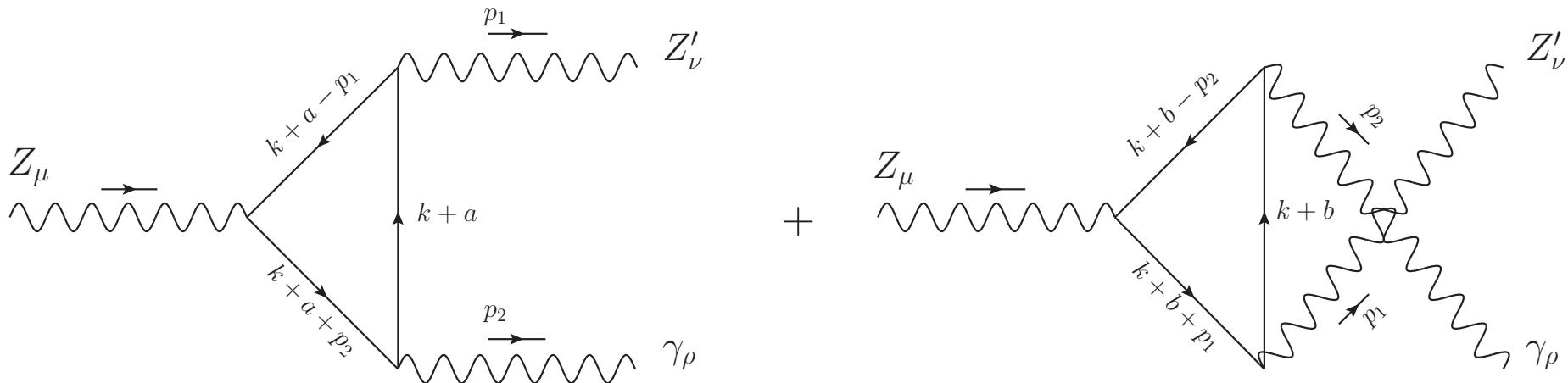
Lisa Michaels, FY, JHEP **03** (2021) [2010.00012]

A NEW METHOD FOR LOOP CALCULATIONS INVOLVING γ_5

FY, [2602.xxxxx]

Triple gauge boson vertex with chiral couplings

- Another important critical one-loop effective amplitude to calculate is the Z - Z' - γ vertex
 - Typically studied via 4-divergences for anomaly cancellation



- Following Weinberg and Dedes, Suxho, allow each diagram to be shifted by $a^\mu = -b^\mu = z p_1^\mu + w p_2^\mu$, using dim. reg. and naïve γ^5

Dedes, Suxho, Phys. Rev. D85 (2012) [1202.4940]

Triple gauge boson vertex with chiral couplings

- Vertex form factor decomposition (Lorentz-covariance)

$$\Gamma^{\mu\nu\rho}(p_1, p_2; w, z) =$$

$$F_1(p_1, p_2)\epsilon^{\nu\rho|p_1||p_2|}p_1^\mu + F_2(p_1, p_2)\epsilon^{\nu\rho|p_1||p_2|}p_2^\mu + F_3(p_1, p_2)\epsilon^{\mu\rho|p_1||p_2|}p_1^\nu + F_4(p_1, p_2)\epsilon^{\mu\rho|p_1||p_2|}p_2^\nu \\ + F_5(p_1, p_2)\epsilon^{\mu\nu|p_1||p_2|}p_1^\rho + F_6(p_1, p_2)\epsilon^{\mu\nu|p_1||p_2|}p_2^\rho + G_1(p_1, p_2; w)\epsilon^{\mu\nu\rho\sigma}p_{1\sigma} + G_2(p_1, p_2; z)\epsilon^{\mu\nu\rho\sigma}p_{2\sigma},$$

– The momentum-shift dependence in vertex is carried in G_1 and G_2 form factors

- Overcomplete basis: can eliminate F_1 and F_2 by redefining F_3, \dots, F_6 and G_1 and G_2

$$-p_1^\mu\epsilon^{\nu\rho|p_1||p_2|} = -p_1^\nu\epsilon^{\mu\rho|p_1||p_2|} + p_1^\rho\epsilon^{\mu\nu|p_1||p_2|} \\ + \epsilon^{\mu\nu\rho\alpha}((p_1 \cdot p_2)p_{1\alpha} - p_1^2 p_{2\alpha}) \\ -p_2^\mu\epsilon^{\nu\rho|p_1||p_2|} = -p_2^\nu\epsilon^{\mu\rho|p_1||p_2|} + p_2^\rho\epsilon^{\mu\nu|p_1||p_2|} \\ - \epsilon^{\mu\nu\rho\alpha}((p_1 \cdot p_2)p_{2\alpha} - p_2^2 p_{1\alpha})$$

Dedes, Suxho, Phys. Rev. **D85** (2012) [1202.4940]

Triple gauge boson vertex with chiral couplings

- Vertex form factor decomposition (Lorentz-covariance)

$$\Gamma^{\mu\nu\rho}(p_1, p_2; w, z) =$$

$$F_1(p_1, p_2)\epsilon^{\nu\rho|p_1||p_2|}p_1^\mu + F_2(p_1, p_2)\epsilon^{\nu\rho|p_1||p_2|}p_2^\mu + F_3(p_1, p_2)\epsilon^{\mu\rho|p_1||p_2|}p_1^\nu + F_4(p_1, p_2)\epsilon^{\mu\rho|p_1||p_2|}p_2^\nu \\ + F_5(p_1, p_2)\epsilon^{\mu\nu|p_1||p_2|}p_1^\rho + F_6(p_1, p_2)\epsilon^{\mu\nu|p_1||p_2|}p_2^\rho + G_1(p_1, p_2; w)\epsilon^{\mu\nu\rho\sigma}p_{1\sigma} + G_2(p_1, p_2; z)\epsilon^{\mu\nu\rho\sigma}p_{2\sigma} ,$$

– The momentum-shift dependence in vertex is carried in G_1 and G_2 form factors

- Ward identities see 4-divergence dependence on form factors

$$(p_{1\mu} + p_{2\mu})\Gamma^{\mu\nu\rho} = (G'_2 - G'_1)\epsilon^{\nu\rho|p_1||p_2|} ,$$

$$- p_{1\nu}\Gamma^{\mu\nu\rho} = (-F'_3 p_1^2 - F'_4 p_1 \cdot p_2 + G'_2)\epsilon^{\mu\rho|p_1||p_2|}$$

$$- p_{2\rho}\Gamma^{\mu\nu\rho} = (-F'_5 p_1 \cdot p_2 - F'_6 p_2^2 + G'_1)\epsilon^{\mu\nu|p_1||p_2|}$$

Triple gauge boson vertex with chiral couplings

- For our specific case, the vector and axial-vector Z and Z' couplings of the virtual fermions appear as

$$(p_{1\mu} + p_{2\mu}) \Gamma^{\mu\nu\rho} = \frac{Q e_{\text{EM}} g g_X}{4\pi^2 c_W} \epsilon^{\nu\rho|p_1||p_2|} ((w - z)(g_v^{Z'} g_a^Z + g_v^Z g_a^{Z'}) + 4m^2 g_v^{Z'} g_a^Z C_0(m))$$
$$-p_{1\nu} \Gamma^{\mu\nu\rho} = \frac{Q e_{\text{EM}} g g_X}{4\pi^2 c_W} \epsilon^{\mu\rho|p_1||p_2|} ((w - 1)(g_v^{Z'} g_a^Z + g_v^Z g_a^{Z'}) - 4m^2 g_v^Z g_a^{Z'} C_0(m))$$
$$-p_{2\rho} \Gamma^{\mu\nu\rho} = \frac{Q e_{\text{EM}} g g_X}{4\pi^2 c_W} \epsilon^{\mu\nu|p_1||p_2|} (z + 1)(g_v^{Z'} g_a^Z + g_v^Z g_a^{Z'}) ,$$

- Dictates “non-decoupling” behavior of virtual fermions via $m^2 C_0(m) \rightarrow -1/2$ in heavy m limit
- Literature typically adopts a fixed choice of w, z to define “covariant” anomaly or “consistent” anomaly
 - Determines the corresponding Wess-Zumino effective operator

Preskill, Annals Phys. **210** (1991)

An observable: chiral gauge anomaly

- Point of departure: construct observable for exotic decay of $Z \rightarrow Z' \gamma$
 - New on-shell amplitude only possible in U(1) gauge extensions
 - Sum over all SM fermions and anomalous necessarily eliminates w, z dependence in total vertex function
 - Conjecture: requiring observables to be w - and z -independent is equivalent(!) to anomaly cancellation condition

FY, [2602.xxxxx]

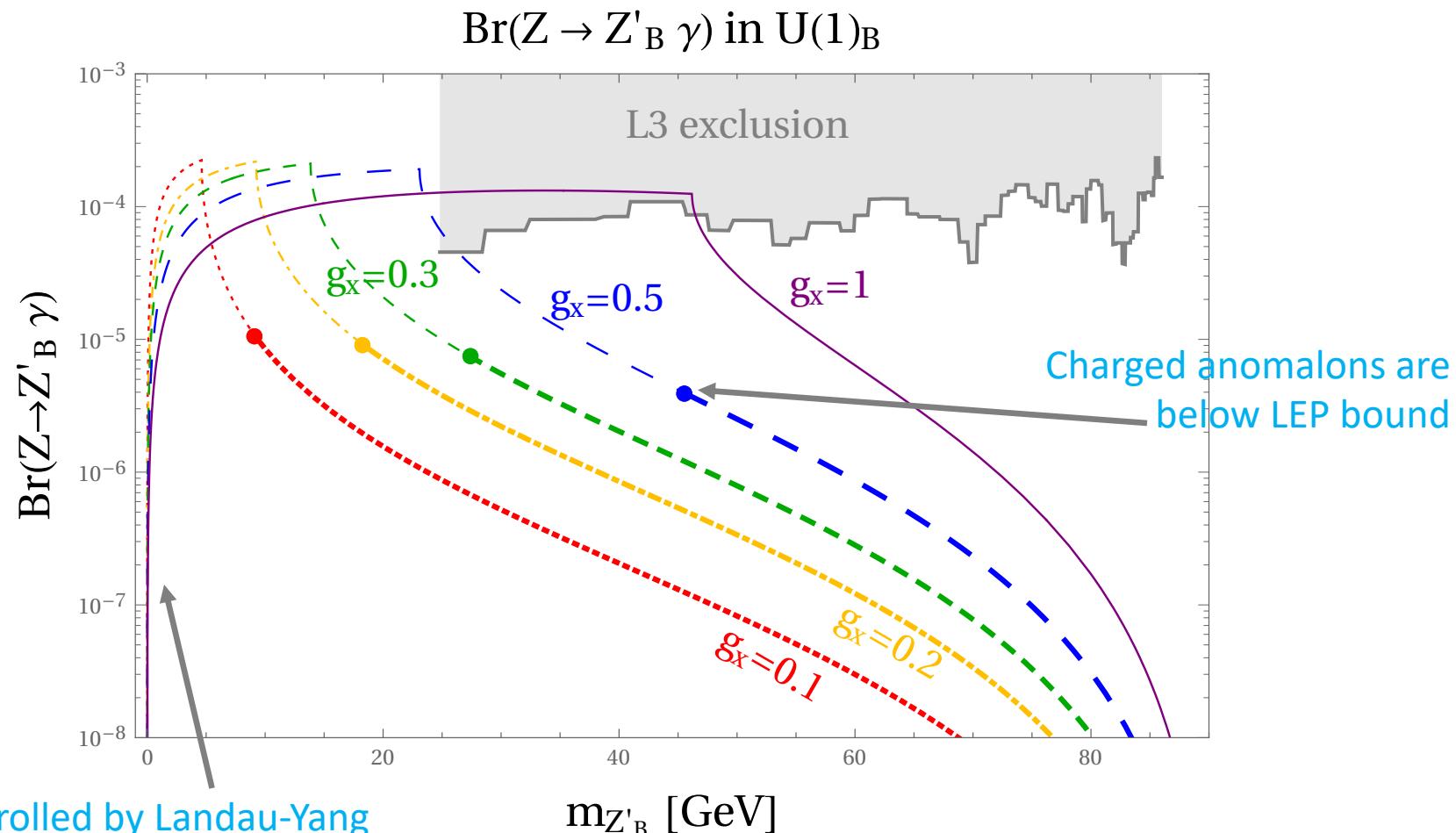
$$\begin{aligned} \Gamma(Z \rightarrow Z'_B \gamma) = & \frac{\alpha_{\text{EM}} \alpha \alpha_X}{96\pi^2 c_W^2} \frac{m_Z'^2}{m_Z} \left(1 - \frac{m_{Z'}^4}{m_Z^4} \right) \\ & \left| - \sum_{f \in \text{SM}} T_3(f) Q_f^e \left[\frac{m_Z^2}{m_Z^2 - m_{Z'}^2} (B_0(m_Z^2, m_f) - B_0(m_{Z'}^2, m_f)) + 2m_f^2 C_0(m_f) \right] \right. \\ & \left. + 3 \left(\frac{m_Z^2}{m_Z^2 - m_{Z'}^2} (B_0(m_Z^2, M) - B_0(m_{Z'}^2, M)) + 2M^2 \frac{m_Z^2}{m_{Z'}^2} C_0(M) \right) \right|^2, \end{aligned}$$

Dim. reg., naïve γ^5 , and momentum-shift independence

- For $Z \rightarrow Z' \gamma$, we showed that an anomaly-free fermion content, using dim. reg., naïve γ^5 and allowing w- and z-momentum-shift dependence, results in a w- and z- independent result
 - Each individual fermion contribution carries momentum-shift dependence and is anomalous
- **Conjecture: requiring observables to be w- and z- independent is equivalent(!) to anomaly cancellation condition**FY, [2602.xxxxx]
 - Closest analogy: shift-dependence in loops with chiral couplings is akin to R_ξ - dependence in SSB loop calculations
 - Provides a new method to handle γ^5 in loop calculations (compared to BHMV, Larin, KKR, etc.), especially relevant for (N)NLO EW precision calculations
 - Restores the central conceit of dim. reg. that finite momentum shifts of loop momenta do not affect calculations

An observable: chiral gauge anomaly

- Exotic Z decay is emblematic of U(1)-gauge extensions



An observable chiral gauge anomaly

- Can also calculate a curious feature: contribution for one generation of a mass-degenerate set of SM fermions and $U(1)_B$ anomalies, consider large mass limit

$$\Gamma(Z \rightarrow Z'_B \gamma)^{\text{non-anom.}} = \frac{3 \alpha_{\text{EM}} \alpha \alpha_X}{32 \pi^2 c_W^2} \frac{(m_Z^2 - m_{Z'}^2)^2}{m_Z m_{Z'}^2} \left(1 - \frac{m_{Z'}^4}{m_Z^4}\right)$$

- Does not decouple, effectively counts the mixed gauge anomaly between chiral SM and $U(1)_B$ gauge symmetries

In contrast to B-L or $L_\mu - L_\tau$ symmetries

- Future work: obeys Adler-Bardeen non-renormalization theorem?

Conclusions

- Effective descriptions of chiral new physics carries rich phenomenology and field theory structure
 - Many features for ϕ collider phenomenology reminiscent of Higgs phenomenology, albeit with important interference effects
 - Effective operator construction for $Z\text{-}Z'\text{-}\gamma$ vertex demonstrates a new formulation of chiral anomaly cancellation
- Beyond effective theories, new $U(1)'$ gauge symmetries offer novel field-theoretic results
 - *e.g.* nearly mass-degenerate $Z\text{-}Z'$ bosons require careful phenomenological treatment to extract consistent constraints
 - Novel aspects of avoided crossing and dispersive seesaw effect

Prisco Lo Chiatto, FY, PRD **111** (2025) [2405.03396]

