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With the Standard Model now complete, we are on a global hunt for New Physics

>

DM, DE

Origin of νs
Baryon asymmetryNew particles, new interactions

+ many more
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In QFT, chiral symmetry permeates…
• As a structural aspect of 4D spacetime
– Rotations and boosts of the Lorentz group can be reshuffled into 

an 𝑆𝑈(2)!×𝑆𝑈(2)" algebra
• Leads to irreducible LH or RH 2-comp. Weyl representations

– Starting point for spinor-helicity formalism for amplitudes

using laws of Nature that are formulated from Poincaré invariance, then the change in energy
is performed such that another frame would observe a change in the particle’s energy and
z-momentum, for example. The power of formulating the laws of Nature with Poincaré
invariance is that we can immediately identify how the non-invariant representations of
Poincaré symmetry can be married together to construct invariant combinations, and the
overall weights of these di!erent invariant combinations will be the fundamental couplings
in our theory.

Hence, the momentum 4-vector of a particle is a good label for our particle, but this
is actually only the real representation of the Lorentz symmetry. Taking into account only
the connected part of Lorentz symmetry (and ignoring the possible discrete generators of
spacetime symmetry which are time-reversal t → ↑t and parity ωx → ↑ωx), the orthochronous
Lorentz group is spanned by the Lie algebra of the generators of angular momentum and
boosts:

[Ji, Jj ] = iεijkJk , (7.9)

[Ji,Kj ] = iεijkKk , (7.10)

[Ki,Kj ] = ↑iεijkJk . (7.11)

A Lorentz transformation then acts on a 4-vector as ” = exp(iϑiJi + iϖjKj) and the group
is SO(1, 3), with Ji as a 4↓4 matrix with the Euler angle rotations in the lower right block
and each of the Ki is a 4↓ 4 matrix with ↑i entries in the corresponding o!-diagonals.

We use the fact that SU(2) has the same algebra as SO(3) to reexpress the commutation
relations as

[J+
i
, J+

j
] = iεijkJ

+
k

, (7.12)

[J→

i
, J→

j
] = iεijkJ

→

k
, (7.13)

[J+
i
, J→

j
] = 0 , (7.14)

with J+
i

= 1
2(Ji + iKi) and J→

i
= 1

2(Ji ↑ iKi). Recognizing that the algebra of the first
two equations is now separated, we interpret this to mean that Lorentz symmetry in 4D
spacetime can be labeled with two independent SU(2) quantum numbers. These represen-
tations, borrowing from our understanding of spin 1/2 and addition of angular momentum,
are built out of half-integer representations but belong to di!erent chirality projections of
spacetime. Hence, we have two di!erent types of spin 1/2 representations for Lorentz sym-
metry: left-handed fermions and right-handed fermions. We will see this distinction when
we do relativistic wavefunctions for spin 1/2 particles, aka the Dirac equation.

Finally, to connect to the spin-statistics theorem, we use the separate representation
theory to build particle representations in quantum theories. Scalars and vectors are the

spin-0 and spin-1 representation taken as
1

2
↔

1

2
= 1↗ 0, while chiral fermions are already

represented from their separate SU(2) representations. When we study their transforma-
tions in regular 2ϱ rotations about any normal Cartesian axis, though, we can see that the
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In QFT, chiral symmetry permeates…
• As a structural aspect of 4D spacetime
• As gauge and global group structure of the SM
– Self-evident with the electroweak gauge group

• No vector-like reps. for fermions and minimal Higgs content enforces no 
tree-level FCNCs, Higgs low-energy theorems, new physics flavor problem

• Chiral couplings are an essential aspect of EW loop calculations
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In QFT, chiral symmetry permeates…
• As a structural aspect of 4D spacetime
• As gauge and global group structure of the SM
– Self-evident with the electroweak gauge group
– Crucial for QCD chiral Lagrangian and hadron spectroscopy

Chiral effective Lagrangian from NF = 3 QCD 
models phenomenology of mesons via quark 
condensate ansatz

Meson spectroscopy leads to famous U(1) 
problem 

Phase counting leads to Strong CP problem
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this way, the axion and all PNGB fields are treated as phases of the instanton diagrams expressed

as quark bilinear products , according to the current transformation of each bilinear.

The starting point is the axion Lagrangian in Eq. (5) just above the QCD confinement scale,

where we replace the GG̃ operator by the ’t Hooft determinantal operator [40, 41],

Ldet = (�1)Nf K4�3Nf

0

@
NfY

i=1

det
�
q̄iLqiR

�
1

A e�icG3
a
Fa + h.c. , (7)

where K is the instanton amplitude, Nf is the number of quarks with PQ-charge (Nf = 3 in

the usual axion story) and we emphasize that we focus on the dynamical field a and drop the ✓̄

constants. To study the instanton contributions to the mass matrix for the axion and the PNGBs

from light quarks in QCD, we necessarily need to close o↵ the determinantal operator into color

singlet contributions using all available chiral symmetry breaking vacuum expectation values (vevs).

In general, the mesons ⇡0, ⌘ and ⌘0 are Goldstone bosons that result from the spontaneous chiral

symmetry breaking due to the quark condensation hq̄qi ⌘ v3. We define the mesons as angular

field excitations around v3, assigning transformation properties according to the appropriate flavor

symmetry generators. For simplicity, we discard the ⌘-meson and its mixing with the other mesons

since it is small. We recognize that the mass mixing from the dynamical strange quark is necessary

suppressed by 1/ms since it provides the leading flavor symmetry breaking from 3-flavor QCD to

2-flavor QCD, and thus we will calculate in an approximate 3-flavor QCD where the mixing from

the strange quark are ignored. Hence, we use the approximation

ūLuR ⇡ |hūLuRi| exp
�
i(✓⇡0 + ✓⌘0)

�
=

v3

2
exp

�
i(✓⇡0 + ✓⌘0)

�
, (8)

d̄LdR ⇡ |hd̄LdRi| exp
�
i(�✓⇡0 + ✓⌘0)

�
=

v3

2
exp

�
i(�✓⇡0 + ✓⌘0)

�
, (9)

s̄LsR ⇡ |hs̄LsRi| exp
�
i✓⌘0

�
=

v3

2
exp

�
i✓⌘0

�
⇠

v3

2
, (10)

for the three light quarks, where ✓⇡0 = ⇡0/F⇡0 , ✓⌘0 = ⌘0/F⌘0 with decay constants F 0
⇡ and F⌘0 . We

see explicitly that the signs above correspond to the particle content of the meson, for example

⇡0 = (ūu � d̄d)/
p

2.

We now build up each contribution to the axion and Goldstone mass matrix from Eq. (5) where

GG̃ is replaced by Eq. (7), following the method proposed in [34, 35]. While the determinantal

expression is IR-divergent, ’t Hooft has shown that this term can be evaluated with the help of

chirality changing source terms [40], known as instanton diagrams. In these diagrams we close

fermion legs around a bubble that symbolizes the instanton using either Yukawa insertions or the
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In QFT, chiral symmetry permeates…
• As a structural aspect of 4D spacetime
• As gauge and global group structure of the SM
• As a possible feature of New Physics

– Anomaly cancellation imposes a self-consistency requirement on NP dofs
– MSSM and chiral superfields
– PQ mechanism and axion solution as well as massless up quark solution to 

nEDM and strong CP
– Fundamental Majorana nature of neutrinos?
– Baryogenesis and new sources of CP violation

• EW sphaleron reprocessing of B+L violation

– + many open questions, e.g. chiral gauge groups at strong coupling
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Goal: study gauged chiral EFT
• Effective Field Theory is perhaps our most powerful 

tool to characterize new physics and BSM 
extensions
– Scale separation affords framework to capture wide 

classes of ultraviolet completions to the SM

• Will particularly focus on gauged chiral extensions 
of SM and their effective description
– Such descriptions generally exhibit non-decoupling
– NP chiral symmetry can be orthogonal to SM chiral 

symmetry
• Exhibit interplay of misaligned Higgsed/unbroken phases
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Global vs. gauged chiral symmetry
• Will focus on gauged chiral symmetries
– Chiral anomalies (Adler-Bell-Jackiw) must cancel in UV
– ‘t Hooft anomaly matching prescribes chiral 

transformations are inherited across phase boundaries
• For example, pion decay to two photons via global (U(1)EM)2 anomaly 

– One goal: construct an observable to “measure” gauge 
chiral anomaly

• Aside: extending SM via a new global chiral symmetry is basis for 
axion physics

Michaels, FY, JHEP 03 (2021) 120 [2010.00021]
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• Introduction and motivation – chiral symmetry as a guiding 
principle for New Physics

• U(1)B model and field content
• Collider physics of new scalar 𝜙
– Zʹ-fusion and Higgsstrahlung production, decay patterns
– Unmixed vs. mixed 𝜙-h scenarios

• Z-Zʹ-𝛾 vertex, measuring a chiral gauge anomaly
– Conjecture: dim. reg., naïve 𝛾5, and momentum-shift invariance

• Conclusions



U(1)B model and field content
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• SM has global U(1)B x U(1)L symmetry
• Can gauge any combination of B and L without modifying Yukawas

– Focus on gauged U(1)B

– Must introduce new EW fields and assign charges to cancel mixed 
anomalies = “anomalons”

– Additionally, choose charges to satisfy the trace condition and 
suppress kinetic mixing

2.1 Scalar responsible for U(1)B breaking and anomalon masses

A renormalizable realization of the U(1)B spontaneous symmetry breaking is the La-

grangian,

L = →1

4
Z

→
µω
Z

→µω + |Dµ!|2 → µ
2

!
|!|2 → ω!|!|4 , (2.2)

where the covariant derivative is

Dµ = εµ → 3i
gB

2
Z

→
µ

, (2.3)

and µ
2

!
< 0 triggers spontaneous breaking of U(1)B via the vev v

→ =
√
|µ2

!
|/ω!, leaving

the radial mode ! = (v→ + ϑ)/
↑
2 (in unitary gauge). The U(1)B interactions for SM

quarks are

Lq =
gB

6
Z

→
µ

∑

q

qϖ
µ
q , (2.4)

where q represent the six SM quark flavors, and the normalization accounts for the baryon

charge (+1/3) of the SM quarks.

Discovering the physical real scalar ϑ at colliders is a necessary requirement to establish

the spontaneous symmetry breaking nature of the Z → boson. Moreover, the ϑ scalar cannot

be too heavy compared to the Z
→ boson, since the ! boson unitarizes longitudinal Z →

scattering [25,28]. The Z
→ mass is MZ→ = 3

gB
2
v
→.

The anomalons have the Yukawa Lagrangian

LYuk = → yLL̄L!
↑
LR → yEĒL!ER → yNN̄L!NR

→ y1L̄LHER → y2L̄RHEL → y3L̄LH̃NR → y4L̄RH̃NL + h.c. , (2.5)

where H is the complex scalar Higgs doublet of the SM. The first line of Eq. (2.5) re-

flects the chiral nature of the anomalons under the U(1)B symmetry and the second line

reflects the chiral nature under the SM gauge symmetries. We can use global U(1) phase

transformations on the fields to ensure that all the Yukawa couplings in (2.5) are real.

Note that Yukawa couplings of anomalons to SM leptons are forbidden by the U(1)B

gauge symmetry. Even after U(1)B breaking, a remnant Z3 (a consequence of the U(1)B

charge of !, z! = 3) symmetry still forbids such couplings. In extended models (not

analyzed here) that include scalars with vevs that carry U(1)B charge 1 or 2, Yukawa

couplings of anomalons to SM leptons would be allowed (see [27] for a study of their

possible e”ects).

5



U(1)B spontaneous symmetry breaking
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• Introduce 𝛷 (B-charge = +3) to spontaneously break U(1)B

– Anomalons have two vevs for mass mechanism

• Set all Yukawas nonzero to avoid accidental Z2 parity (stable 
charged particles)
– Small y1 and y2 couplings give negligible effect on Br(h→γγ)

• Will effective description with anomalons heavy, and 
dynamical Zʹ and 𝜙 dofs
– Contrast 𝜙 vs. other gauge-singlet scalars S (used, e.g., for SFOPTs)
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LR → yEĒL!ER → yNN̄L!NR

→ y1L̄LHER → y2L̄RHEL → y3L̄LH̃NR → y4L̄RH̃NL + h.c. , (2.5)

where H is the complex scalar Higgs doublet of the SM. The first line of Eq. (2.5) re-

flects the chiral nature of the anomalons under the U(1)B symmetry and the second line

reflects the chiral nature under the SM gauge symmetries. We can use global U(1) phase

transformations on the fields to ensure that all the Yukawa couplings in (2.5) are real.

Note that Yukawa couplings of anomalons to SM leptons are forbidden by the U(1)B

gauge symmetry. Even after U(1)B breaking, a remnant Z3 (a consequence of the U(1)B

charge of !, z! = 3) symmetry still forbids such couplings. In extended models (not

analyzed here) that include scalars with vevs that carry U(1)B charge 1 or 2, Yukawa

couplings of anomalons to SM leptons would be allowed (see [27] for a study of their

possible e”ects).
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!
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2
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2
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!
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q
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charge of !, z! = 3) symmetry still forbids such couplings. In extended models (not

analyzed here) that include scalars with vevs that carry U(1)B charge 1 or 2, Yukawa

couplings of anomalons to SM leptons would be allowed (see [27] for a study of their

possible e”ects).
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Cross sections for 𝜙
• First consider case with no φ-h mixing
• Leading production modes are “familiar” 

Higgsstrahlung and Zʹ-fusion

13Felix Yu – Gauged U(1)ʹ Symmetries



Cross sections for 𝜙
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Mild dependence on Zʹ mass
Significant scaling dependence on gB

Higgsstrahlung scales as gB
4

Zʹ-fusion scales as gB
6 (fixed Zʹ mass) 



Current status of dijet resonance searches
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Dobrescu, FY, PRD 109 (2024) 3 [2112.05392]



Decays of 𝜙
• For finite but heavy anomalon limit (M1 = 200 GeV, 

M2 = 250 GeV), only tree-level decay is 𝜙 → ZʹZʹ
– When M𝜙 < 2 MZʹ, one-loop decays of 𝜙 to V1 V2 or V1ff 

are most relevant
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to ω, Z, and Z
→ are generally flavor-violating, as shown in Sec. 2.1. Hence, we present the

corresponding decay width calculations for ω → Z
→
Z, ZZ, and W

+
W

↑ with the reference

matrix elements shown in Fig. 3a for ω decaying to two on-shell massive vectors and

Fig. 3b for ω decaying to a three-body final state of SM particles.

ω

V
µ

1

V
ω

2

P

k + p1

b

ka

k ↑ p2

c

p1

p2

(a) On-Shell two-body decay

ω

V
µ

1

f

f̄

V2

P

k + p1

b

ka

k ↑ p2

c

p1

p2

q2

q3

(b) Decay to three on-shell SM states

Figure 3: Feynman diagrams for ω decay to generic vector boson final states V1, V2,
where the intermediate fermions labeled a, b, and c denote all possible combinations of
anomalons. The diagrams with reversed fermion flow are implicitly included.

The matrix elements for Fig. 3 are then

iMabc(ω → V1V2) = ↑ε
↓
µ
(p1)ε

↓
ω
(p2)

∫
d
4
k

(2ϑ)4

Tr

[
/k +Ma

k2 +M2
a

ϖ
µ(igV1

ab
)

/k + /p
1
+Mb

(k + p1)2 ↑M
2

b

(↑iy
ε

bc
)

/k ↑ /p
2
+Mc

(k ↑ p2)2 ↑M2
c

ϖ
ω(igV2

ca
)

]

(2.31)

and

iMabc(ω → V1ff̄) = ↑ε
↓
µ
(p1)

(
↑igωϑ

(q2 + q3)2 ↑M
2

V2

ū(q2)ϖ
ϑ

(
ig

V2

ff̄

)
v(q3)

)∫
d
4
k

(2ϑ)4

Tr

[
/k +Ma

k2 +M2
a

ϖ
µ(igV1

ab
)

/k + /p
1
+Mb

(k + p1)2 ↑M
2

b

(↑iy
ε

bc
)

/k ↑ /p
2
+Mc

(k ↑ p2)2 ↑M2
c

ϖ
ω(igV2

ca
)

]
,

(2.32)

where V1 and V2 refer to Z
→
Z, ZZ, and W

+
W

↑, respectively. For the three-body decay,

we assume that the final state SM fermions are massless, and the partial width coherently

sums over all accessible SM fermions with their respective gauge couplings to W or Z.

The total matrix elements are readily computed from the above generic matrix elements,

taking into account the flavor-conserving and flavor-violating couplings shown in Sec. 2.
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where V1 and V2 refer to Z
→
Z, ZZ, and W

+
W

↑, respectively. For the three-body decay,

we assume that the final state SM fermions are massless, and the partial width coherently

sums over all accessible SM fermions with their respective gauge couplings to W or Z.

The total matrix elements are readily computed from the above generic matrix elements,

taking into account the flavor-conserving and flavor-violating couplings shown in Sec. 2.
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_

V1V2 = γγ, Zʹγ, WW, ZZ, ZʹZ, Zγ



Decays of 𝜙
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Decays of 𝜙
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One curious feature: Z+ffbar decay 
includes interference with ZZʹ, ZZ, 
and Zγ one-loop amplitudes 



Suite of collider signatures
• Stitch together production and decay

19Felix Yu – Gauged U(1)ʹ Symmetries

(jj)res + (γγ)res
jfjf (γγ)res

(jj)res + [(jj)res + (jj)res]res jfjf + [(jj)res + (jj)res]res



Cross sections with Higgs mixing
• Now, incorporate scalar mixing angle αh

• Current mixing angle constraints from overall signal 
strength – gauge singlet scalar mixing
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2.4.3 Intermediate Mω/MZ→

In the intermediate-Mω/MZ→ range 1.5 ↭ Mω/MZ→ < 2, the competition between the

ω → εε and ω → Z
→
Z

→ ↑
B

→ Z
→
jj branching fractions makes it useful to search for both the

lower-background signals involving a pair of photons and the 6j signals. The latter are

labelled (jj)(jj)jj and (jj)(jj)jfjf , while the former are labelled the same way as in the

low-mass case. For the 6j signals, the background reduction methods discussed for the

high-mass range also apply here, with the only di!erence that only two of the four narrow

jets inside the ω wide jet form a resonance at MZ→ . On the other hand, the diphoton final

state follows the same strategy as the low Mω/MZ→ case.

To close this section, we remark that our focus on ω and Z
→ masses below a few

hundred GeV precludes Z → → tt̄ decays. However, the case where MZ→ ↫ 400 GeV is also

interesting (albeit the branching fraction for Z → → tt̄ remains below 1/6). In particular,

for Mω < MZ→ that case leads to the (εε)(tt̄) signature.

Having analyzed the situation where ω has negligible mixing with the SM Higgs boson,

we now consider the collider phenomenology when mixing is included.

3 E!ects of Higgs mixing

In this section, we consider the phenomenology of the new scalar in the presence of the

Higgs portal coupling |”|2H†
H. The mass mixing between the ω scalar and the SM Higgs

boson h
0

SM
leads to two mass eigenstates: the new physical scalar ϑ and h

0, which is

identified with the discovered Higgs boson with a mass near 125 GeV. Aside from mass

mixing, the Higgs portal coupling leads to exotic decays such as h0 → ϑϑ or ϑ → h
0
h
0,

depending on the scalar masses.

We begin with the full scalar potential,

V (”, H) = ϖ!

(
|”|2 ↑ v

→2
0

2

)2

+ ϖH

(
H

†
H ↑ v

2

0

2

)2

+ 2ϖp|”|2H†
H , (3.1)

where the mass parameters v0 and v
→
0
are real and can be taken positive, the dimensionless

quartic couplings satisfy 0 < ϖ!,ϖH ↭ 1, and the portal coupling ϖp is a real dimensionless

parameter with |ϖp| ↓ 1. Minimizing the potential gives the vacuum expectation values
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(vevs) →!↑ = v
→
/
↓
2 and →H↑ = (0, vh)↑/

↓
2, with

v
→2 = ωH

ω! v
→2
0
↔ ωp v

2

0

ωH ω! ↔ ω2
p

,

(3.2)

v
2

h
= ω!

ωH v
2

0
↔ ωp v

→2
0

ωH ω! ↔ ω2
p

.

Expanding V (!, H) around the vevs gives the scalar mass terms

↔1

2

(
ε , h

0

SM

)(
2ω! v

→2 2ωp vhv
→

2ωp vhv
→ 2ωH v

2

h

)(
ε

h
0

SM

)
, (3.3)

leading to a scalar mixing angle ϑh which satisfies

tan(2ϑh) =
2ωp vhv

→

ω! v→2 ↔ ωH v
2

h

, (3.4)

and defines the scalar mass eigenstates as
(

ϖ

h
0

)
=

(
cosϑh sinϑh

↔ sinϑh cosϑh

)(
ε

h
0

SM

)
. (3.5)

The properties of the physical particle h
0 are modified from the SM predictions by

the above mixing. Given the good agreement of the SM predictions with the increasingly

precise measurements of the Higgs production cross sections and branching fractions per-

formed by the ATLAS and CMS collaborations, it must be that | sinϑh|2 ↗ 1. Thus,

we can expand in ϑh, which simplifies the relations between physical observables and the

vevs. We obtain

sinϑh ↘ ωp vhv
→

ω! v→2 ↔ ωH v
2

h

, (3.6)

and the scalar physical masses:

Mω ≃
√
ω! v

→
(
1 +

2ωp vh

ω!v
→ sinϑh

)
,

(3.7)

Mh ≃
√
ωH vh

(
1↔ 2ωp v

→

ωHvh
sinϑh

)
.

Because the two scalar states are widely separated in mass, their e”ects on observables

are factorized on their distinct pole masses. The complications arising when the mixing

angle is large as well as when the states are nearly degenerate were recently addressed

in [39].

In the remainder of this Section, we analyze the e”ects of the trilinear scalar interac-

tions, and then the modifications of the Higgs boson properties.
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Figure 8: Decay width of the SM-like Higgs boson into ωω
(→), including the 3-body decay

through an o!-shell ω for Mω ↭ Mh/2. The parameters fixed here are MZ→ = 70 GeV
(solid) or 100 GeV (dot-dashed), gB = 0.3, and sinεh = 0.1, 0.05, 0.03. The 0.12”SM(h0)
upper limit (dashed) with ”SM(h0) = 4 MeV on undetected Higgs decays [21].

2-loop contributions induced by the Z
↑
Z

↑
ω coupling), and is shown in Figure 9. Other

mixing-suppressed production modes of ω, analogous with those of the SM Higgs, may

also be relevant. In addition, ω may be pair produced in SM Higgs decays: h → ωω for

Mω < Mh/2.

The constraints for the mixing angle can be calculated from the Higgs signal strengths

µCMS = 1.002± 0.057 in [19] and µATLAS = 1.05± 0.06 in [20]. These give a naive global

average µLHC = 1.026± 0.041, implying

sinεh ↑ 0.24 . (3.17)

To satisfy this bound, we will adopt the choice of sinεh = 0.1, 0.05, or 0.03 in this work.

3.2.1 Production modes for ω

In Figure 9, we show the cross sections for ϑ production with sinεh = 0.05, using

MCFM [41, 42] for the cross sections based on rescaling SM Higgs rates. We can see,

in comparison to the unmixed case in Figure 2, that the dominant production mode be-

comes gluon fusion, gg → ω, for ω masses above 100 GeV and our specified sinεh = 0.05,
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Cross sections with Higgs mixing
• Now, incorporate scalar mixing angle

• Denote scalar mass eigenstates as 𝜑 and h0

– Production cross sections almost factorize according to SM Higgs-
like content vs. NP 𝜙-like content, except VBF modes

– Most decay rates almost factorize similarly
• Important exception: 𝜑 →γγ
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2.4.3 Intermediate Mω/MZ→

In the intermediate-Mω/MZ→ range 1.5 ↭ Mω/MZ→ < 2, the competition between the

ω → εε and ω → Z
→
Z

→ ↑
B

→ Z
→
jj branching fractions makes it useful to search for both the

lower-background signals involving a pair of photons and the 6j signals. The latter are

labelled (jj)(jj)jj and (jj)(jj)jfjf , while the former are labelled the same way as in the

low-mass case. For the 6j signals, the background reduction methods discussed for the

high-mass range also apply here, with the only di!erence that only two of the four narrow

jets inside the ω wide jet form a resonance at MZ→ . On the other hand, the diphoton final

state follows the same strategy as the low Mω/MZ→ case.

To close this section, we remark that our focus on ω and Z
→ masses below a few

hundred GeV precludes Z → → tt̄ decays. However, the case where MZ→ ↫ 400 GeV is also

interesting (albeit the branching fraction for Z → → tt̄ remains below 1/6). In particular,

for Mω < MZ→ that case leads to the (εε)(tt̄) signature.

Having analyzed the situation where ω has negligible mixing with the SM Higgs boson,

we now consider the collider phenomenology when mixing is included.

3 E!ects of Higgs mixing

In this section, we consider the phenomenology of the new scalar in the presence of the

Higgs portal coupling |”|2H†
H. The mass mixing between the ω scalar and the SM Higgs

boson h
0

SM
leads to two mass eigenstates: the new physical scalar ϑ and h

0, which is

identified with the discovered Higgs boson with a mass near 125 GeV. Aside from mass

mixing, the Higgs portal coupling leads to exotic decays such as h0 → ϑϑ or ϑ → h
0
h
0,

depending on the scalar masses.

We begin with the full scalar potential,
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2

)2
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H , (3.1)

where the mass parameters v0 and v
→
0
are real and can be taken positive, the dimensionless

quartic couplings satisfy 0 < ϖ!,ϖH ↭ 1, and the portal coupling ϖp is a real dimensionless

parameter with |ϖp| ↓ 1. Minimizing the potential gives the vacuum expectation values
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leading to a scalar mixing angle ϑh which satisfies
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and defines the scalar mass eigenstates as
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↔ sinϑh cosϑh

)(
ε

h
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)
. (3.5)

The properties of the physical particle h
0 are modified from the SM predictions by

the above mixing. Given the good agreement of the SM predictions with the increasingly

precise measurements of the Higgs production cross sections and branching fractions per-

formed by the ATLAS and CMS collaborations, it must be that | sinϑh|2 ↗ 1. Thus,

we can expand in ϑh, which simplifies the relations between physical observables and the

vevs. We obtain

sinϑh ↘ ωp vhv
→

ω! v→2 ↔ ωH v
2

h

, (3.6)

and the scalar physical masses:

Mω ≃
√
ω! v

→
(
1 +

2ωp vh

ω!v
→ sinϑh

)
,

(3.7)

Mh ≃
√
ωH vh

(
1↔ 2ωp v

→

ωHvh
sinϑh

)
.

Because the two scalar states are widely separated in mass, their e”ects on observables

are factorized on their distinct pole masses. The complications arising when the mixing

angle is large as well as when the states are nearly degenerate were recently addressed

in [39].

In the remainder of this Section, we analyze the e”ects of the trilinear scalar interac-

tions, and then the modifications of the Higgs boson properties.
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Cross sections with Higgs mixing
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Effect on exotic Higgs decay
• For M𝜙 < mh / 2, must include induced exotic decay constraints 
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𝜑 decays with hSM mixing (MZ′ = 70 GeV)
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𝜑 decays with hSM mixing (MZ′ = 100 GeV)
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𝜑 decays with hSM: Comparison
• Intermediate mass behavior depends significantly 

on the MZʹ vs. (MW, MZ) relative mass ordering
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Figure 12: Predicted Rωω → ω(ε ↑ ϑϑ)/ω(H ↑ ϑϑ)SM as a function of Mε for gB = 0.3,
MZ→ = 70 GeV, and sinϖh = 0.24, 0.15, 0.09, 0.06, 10→3 (purple lines). We set the
anomalon masses to 200 GeV and 250 GeV, and the anomalon mixing angles are ϱ = 0.3
and ς = 0.25. The shaded regions are excluded by CMS [44] and ATLAS [45,46] diphoton
resonance searches.

performed in [47]). We show the model prediction for Rωω for five choices of sinϖh = 0.24,

0.15, 0.09, 0.06, and 10→3. The signal cross section includes the Z
↑
ε production rate,

given MZ→ = 70 GeV for the plot and the diphoton signal is inclusive on additional jets.

Importantly, the diphoton signal strength shows a nontrivial scaling dependence on

sinϖh and Mε, as the Rωω curves become lower and flatter as we increase ϖh. This

results from three competing e!ects. First, even for ϖh very small, the Z
↑
ε production

mode and the intrinsic φ decay to diphotons gives a striking diphoton resonance back-to-

back with a dijet resonance. Second, as we increase ϖh, the production rate from gluon

fusion increases as sin2
ϖh while the Z ↑

ε rate decreases as cos2 ϖh. Third, the interference

between the SM Higgs and the φ diphoton decay processes is destructive, because the

dominant mediator for SM Higgs to ϑϑ is the W -boson, while the dominant mediators for

φ to ϑϑ are the charged anomalons, and there is a relative sign in their respective loop

functions. This interference in (3.18) parameterized by ϖh permits a complete cancellation

of the diphoton branching fraction. For the parameter choices in Fig. 12, this cancellation

occurs at 0.55 ↭ sinϖh ↭ 0.7, but such mixing angles are already excluded by the signal

29

Leading constraints from Rγγ
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Nontrivial scaling of 
sin αh reflects 
underlying chiral 
nature of U(1)B

Associated leptonic signatures (less stringent) 
studied in Butterworth, et. al. [2505.06341]
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PROBING NEW U(1) GAUGE SYMMETRIES VIA 
EXOTIC Z → Zʹ 𝜸

Lisa Michaels, FY, JHEP 03 (2021)  [2010.00012]

A NEW METHOD FOR LOOP 
CALCULATIONS INVOLVING γ5

FY, [2602.xxxxx]



Triple gauge boson vertex with chiral couplings

• Another important critical one-loop effective 
amplitude to calculate is the Z-Zʹ-γ vertex
– Typically studied via 4-divergences for anomaly 

cancellation

– Following Weinberg and Dedes, Suxho, allow each diagram to be 
shifted by aμ = -bμ = z p1

μ + w p2
μ, using dim. reg. and naïve γ5
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FIG. 1: The triangle diagrams corresponding to the Z � Z
0
� � vertex function.
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where Q and m are the electric charge and the mass of
the fermion in the loop, gv, ga are the vector and axial
coupling factors to the denoted massive Z and Z

0 gauge
bosons, p1 and p2 are the external outgoing momenta
and k is the loop momentum, as depicted in Fig. 1. We
introduce the arbitrary constant four-vectors a and b as
possible shifts in each diagram because the finite result

from the cancellation of the divergent integrals depends
on the choice of these possible shifts [31]. The explicit
choices of a and b are generally fixed by applying exter-
nal physical conditions, as first applied in Ref. [32]. From
Lorentz and parity symmetry, the most general expres-
sion for the vertex function is the sum of the following
form factors [24],

�µ⌫⇢(p1, p2;w, z) = (16)

F1(p1, p2)✏
⌫⇢|p1||p2|pµ1 + F2(p1, p2)✏

⌫⇢|p1||p2|pµ2 + F3(p1, p2)✏
µ⇢|p1||p2|p⌫1 + F4(p1, p2)✏

µ⇢|p1||p2|p⌫2

+F5(p1, p2)✏
µ⌫|p1||p2|p⇢1 + F6(p1, p2)✏

µ⌫|p1||p2|p⇢2 +G1(p1, p2;w)✏
µ⌫⇢�

p1� +G2(p1, p2; z)✏
µ⌫⇢�

p2� ,

where ✏
⌫⇢|p1||p2| = ✏

⌫⇢↵�
p1↵p2� , etc., we set b = �a

to avoid a non-chiral anomaly [31], and a has been
reexpressed in terms of the external momenta, a

µ =
z p

µ

1 +w p
µ

2 with constant scalar prefactors w and z. The
six form factors F1 to F6 are all finite and hence can be
calculated in any regularization prescription unambigu-
ously: they are w- and z-independent. Moreover, because
of the linear dependence of vectors in a four-dimensional
space, two of these can be eliminated by using the iden-

tity [24],

�p
µ

1 ✏
⌫⇢|p1||p2| = �p
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1 ✏
µ⇢|p1||p2| + p

⇢

1 ✏
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�
(p1 · p2) p1↵ � p

2
1 p2↵

�
, (17)
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�
(p1 · p2) p2↵ � p

2
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�
, (18)

which absorb F1 and F2 into redefinitions of the other
form factors: we denote the redefined form factors as

Dedes, Suxho, Phys. Rev. D85 (2012) [1202.4940]



Triple gauge boson vertex with chiral couplings
• Vertex form factor decomposition (Lorentz-covariance)

– The momentum-shift dependence in vertex is carried in G1 and G2 form factors

• Overcomplete basis: can eliminate F1 and F2 by redefining F3, … F6 and 
G1 and G2
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Dedes, Suxho, Phys. Rev. D85 (2012) [1202.4940]
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the fermion in the loop, gv, ga are the vector and axial
coupling factors to the denoted massive Z and Z

0 gauge
bosons, p1 and p2 are the external outgoing momenta
and k is the loop momentum, as depicted in Fig. 1. We
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possible shifts in each diagram because the finite result
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Triple gauge boson vertex with chiral couplings
• Vertex form factor decomposition (Lorentz-covariance)

– The momentum-shift dependence in vertex is carried in G1 and G2 form factors

• Ward identities see 4-divergence dependence on form factors
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where Q and m are the electric charge and the mass of
the fermion in the loop, gv, ga are the vector and axial
coupling factors to the denoted massive Z and Z

0 gauge
bosons, p1 and p2 are the external outgoing momenta
and k is the loop momentum, as depicted in Fig. 1. We
introduce the arbitrary constant four-vectors a and b as
possible shifts in each diagram because the finite result

from the cancellation of the divergent integrals depends
on the choice of these possible shifts [31]. The explicit
choices of a and b are generally fixed by applying exter-
nal physical conditions, as first applied in Ref. [32]. From
Lorentz and parity symmetry, the most general expres-
sion for the vertex function is the sum of the following
form factors [24],

�µ⌫⇢(p1, p2;w, z) = (16)

F1(p1, p2)✏
⌫⇢|p1||p2|pµ1 + F2(p1, p2)✏

⌫⇢|p1||p2|pµ2 + F3(p1, p2)✏
µ⇢|p1||p2|p⌫1 + F4(p1, p2)✏

µ⇢|p1||p2|p⌫2

+F5(p1, p2)✏
µ⌫|p1||p2|p⇢1 + F6(p1, p2)✏

µ⌫|p1||p2|p⇢2 +G1(p1, p2;w)✏
µ⌫⇢�

p1� +G2(p1, p2; z)✏
µ⌫⇢�

p2� ,

where ✏
⌫⇢|p1||p2| = ✏

⌫⇢↵�
p1↵p2� , etc., we set b = �a

to avoid a non-chiral anomaly [31], and a has been
reexpressed in terms of the external momenta, a

µ =
z p

µ

1 +w p
µ

2 with constant scalar prefactors w and z. The
six form factors F1 to F6 are all finite and hence can be
calculated in any regularization prescription unambigu-
ously: they are w- and z-independent. Moreover, because
of the linear dependence of vectors in a four-dimensional
space, two of these can be eliminated by using the iden-

tity [24],
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which absorb F1 and F2 into redefinitions of the other
form factors: we denote the redefined form factors as

6

F
0
i
, i = 3 to 6, and G

0
1, G

0
2. In contrast, the two form

factors G0
1 and G

0
2 arise from the cancellation of divergent

integrals, and their values depend on the choice of w and
z.

From Eq. (16), the WIs are given by

(p1µ + p2µ)�
µ⌫⇢ = (G0

2 �G
0
1) ✏

⌫⇢|p1||p2| , (19)
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0
6 p

2
2 +G

0
1)✏

µ⌫|p1||p2| . (21)

Following Ref. [24], which implements the calculation
procedure in Refs. [22, 32, 33], we construct the ambigu-
ous parts of G0

1 and G
0
2 by isolating the divergent piece

of the general three-vector vertex associated with the ax-
ial vector anomaly. This divergent piece can be evalu-
ated using a momentum-shift integral identity [33], which
makes the w and z-dependent momentum shifts manifest
in the definitions of G0

1 and G
0
2.

Moving to the specific case in Eqs. (14) and (15), we
calculate the finite form factors of the vertex function
in Mathematica [34] using Package-X [35, 36]. The WIs
become

(p1µ + p2µ)�
µ⌫⇢ =

QeEMggX

4⇡2cW
✏
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0
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a
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a
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QeEMggX
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µ⌫|p1||p2|(z + 1)(gZ
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v
g
Z

a
+ g

Z

v
g
Z

0

a
) , (24)

where

C0(m) ⌘ C0(0,m
2
Z
,m

02
Z
,m,m,m) (25)

is the usual Passarino-Veltman scalar loop function
for the triangle loop, following the Package-X conven-
tion [35–37].

Clearly, each of the WIs in Eqs. 22, 23, and 24 contain
a constant, fermion mass-independent anomaly piece.
Moreover, the WIs for the massive gauge bosons also have
fermion mass-dependent contributions, but only when
the fermion has the corresponding axial-vector coupling.
Since we calculate in the flavor conserving limit, a given
mass eigenstate fermion can only have one non-zero axial-
vector coupling.

At this point, we could naively adopt the method by
Rosenberg [32] to set w and z for each fermion such
that the vector WIs are vanishing and the anomaly con-
tributes only the axial-vector divergence. This would be
wrong, however, because all fermions in the loop must use
the same consistent choice of w and z. The vertex func-
tion we study is the first physical case where this mistake
would become apparent, because the mixed electroweak-
U(1)B anomaly is cancelled by two distinct chiral sectors
of fermions. On the other hand, for the B � L case, the
SM fermions have axial-vector couplings only on the µ

vertex, and thus choosing w and z to make the WIs on
the ⌫- and ⇢-vertices vanish is consistent for all fermions.

Instead, with a UV-complete model, the WI on each
vertex is independent of the choice of w and z. More-
over, when all fermions are massless or otherwise degen-
erate, the WI on each vertex is also vanishing. In fact,
we can provide an equivalent condition for an anomaly-
free model by requiring that the total WIs are vanishing,

independent of w and z, as long as they are chosen the
same for all fermions in the UV-complete model. In other
words, an anomaly-free model is insensitive to the ambi-
guity introduced by the momentum shift intrinsic to di-
mensional regularization, which is a gauge-invariant reg-
ularization prescription, as long as the momentum shift
is applied consistently for all fermions.

In an e↵ective theory where chiral fermions are taken
heavy, the choice of w and z to parametrize the momen-
tum shift in Eqs. (14) and (15) also determine the appro-
priate choice of the Wess-Zumino term [21], which results
from the combination of choosing w and z and taking
m ! 1 in the WIs. Since lim

m!1
m

2
C0(m) = �1/2, the

heavy fermion mass limit in Eqs. 22 and 23 exhibits non-
decoupling.

Explicitly, we consider the Wess-Zumino term for the
hypercharge gauge field B, weak gauge fields W a, and a
general Z 0 field,

LWZ = CBgXg
02
✏
µ⌫⇢�

Z
0
µ
B⌫@⇢B�

� CBgXg
2
✏
µ⌫⇢�

Z
0
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✓
W

a

⌫
@⇢W

a

�
+

1

3
g✏

abc
W
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⌫
W

b

⇢
W

c

�

◆
,

(26)

where the coe�cient of the weak gauge bosons is negative
that of the hypercharge gauge bosons to avoid breaking
the electromagnetic gauge symmetry [11, 25, 26]. Isolat-
ing the vertex involving Z � Z

0
� �, we get

L � �CB

eEMggX

cW
✏
µ⌫⇢�

Z
0
µ
(Z⌫@⇢A� +A⌫@⇢Z�) , (27)



Triple gauge boson vertex with chiral couplings

• For our specific case, the vector and axial-vector Z and Zʹ 
couplings of the virtual fermions appear as

– Dictates “non-decoupling” behavior of virtual fermions via 
𝑚#𝐶$ 𝑚 → −1/2 in heavy m limit

• Literature typically adopts a fixed choice of w, z to define 
“covariant” anomaly or “consistent” anomaly
– Determines the corresponding Wess-Zumino effective operator 
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procedure in Refs. [22, 32, 33], we construct the ambigu-
ous parts of G0
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of the general three-vector vertex associated with the ax-
ial vector anomaly. This divergent piece can be evalu-
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in the definitions of G0
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is the usual Passarino-Veltman scalar loop function
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Clearly, each of the WIs in Eqs. 22, 23, and 24 contain
a constant, fermion mass-independent anomaly piece.
Moreover, the WIs for the massive gauge bosons also have
fermion mass-dependent contributions, but only when
the fermion has the corresponding axial-vector coupling.
Since we calculate in the flavor conserving limit, a given
mass eigenstate fermion can only have one non-zero axial-
vector coupling.

At this point, we could naively adopt the method by
Rosenberg [32] to set w and z for each fermion such
that the vector WIs are vanishing and the anomaly con-
tributes only the axial-vector divergence. This would be
wrong, however, because all fermions in the loop must use
the same consistent choice of w and z. The vertex func-
tion we study is the first physical case where this mistake
would become apparent, because the mixed electroweak-
U(1)B anomaly is cancelled by two distinct chiral sectors
of fermions. On the other hand, for the B � L case, the
SM fermions have axial-vector couplings only on the µ

vertex, and thus choosing w and z to make the WIs on
the ⌫- and ⇢-vertices vanish is consistent for all fermions.

Instead, with a UV-complete model, the WI on each
vertex is independent of the choice of w and z. More-
over, when all fermions are massless or otherwise degen-
erate, the WI on each vertex is also vanishing. In fact,
we can provide an equivalent condition for an anomaly-
free model by requiring that the total WIs are vanishing,

independent of w and z, as long as they are chosen the
same for all fermions in the UV-complete model. In other
words, an anomaly-free model is insensitive to the ambi-
guity introduced by the momentum shift intrinsic to di-
mensional regularization, which is a gauge-invariant reg-
ularization prescription, as long as the momentum shift
is applied consistently for all fermions.

In an e↵ective theory where chiral fermions are taken
heavy, the choice of w and z to parametrize the momen-
tum shift in Eqs. (14) and (15) also determine the appro-
priate choice of the Wess-Zumino term [21], which results
from the combination of choosing w and z and taking
m ! 1 in the WIs. Since lim
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heavy fermion mass limit in Eqs. 22 and 23 exhibits non-
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where the coe�cient of the weak gauge bosons is negative
that of the hypercharge gauge bosons to avoid breaking
the electromagnetic gauge symmetry [11, 25, 26]. Isolat-
ing the vertex involving Z � Z

0
� �, we get

L � �CB

eEMggX

cW
✏
µ⌫⇢�

Z
0
µ
(Z⌫@⇢A� +A⌫@⇢Z�) , (27)

Preskill, Annals Phys. 210 (1991) 



An observable: chiral gauge anomaly

• Point of departure: construct observable for exotic decay of 
Z → Zʹ γ
– New on-shell amplitude only possible in U(1) gauge extensions
– Sum over all SM fermions and anomalons necessarily eliminates 

w, z dependence in total vertex function
• Conjecture: requiring observables to be w- and z-independent is 

equivalent(!) to anomaly cancellation condition

33Felix Yu – Gauged U(1)ʹ Symmetries

8

ation of mass-degenerate SM fermions only occurs in this
case because the SM fermions share the same underlying
chiral symmetry structure which dictates the axial-vector
couplings to the Z boson and vector couplings to the Z

0

boson. Correspondingly, the expected Landau-Yang be-
havior [38, 39] for mZ0 ! 0 is also self-evident in Eq. (32)
and Fig. 2.

C. U(1)B

For gauged U(1)B symmetry, with quark interactions
as in Eq. (1), the analytic behavior of �(Z ! Z

0
B
�) is

markedly di↵erent from the U(1)B�L case. In particu-
lar, since the anomaly cancelling fermions can become
massive independently of the SM Higgs vev, their contri-
bution to the Z � Z

0
� � vertex can be non-decoupling

regardless of the scale set by the Z mass. On the other
hand, in such a case, the anomalons and the Z 0 share the
same chiral symmetry breaking scale, and the infrared
limit of making the Z

0 light necessarily reintroduces the
anomalons into the spectrum too. The anomalon fields
we consider are charged as in Table I.
Assuming the charged anomalons are degenerate and

their masses M arise solely from U(1)B breaking, the
decay width of Z ! Z

0
B
� is

�(Z ! Z
0
B
�) =

↵EM↵↵X

96⇡2c2
W

m
02
Z
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✓
1�

m
4
Z0

m
4
Z

◆

������
X
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T3(f)Q
e
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2
Z

m
2
Z
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2
Z0
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B0(m

2
Z
,mf )�B0(m

2
Z0 ,mf )

�
+ 2m2

f
C0(mf )

�

+ 3

✓
m

2
Z

m
2
Z
�m

2
Z0

�
B0(m

2
Z
,M)�B0(m

2
Z0 ,M)

�
+ 2M2 m

2
Z

m
2
Z0

C0(M)

◆ �����

2

, (34)

where again T3(f) = +1 for up-type quarks and �1 for
down-type quarks. We remark that it is an excellent
approximation (to better than 1%) to set the masses of
the first five flavors of SM fermions as degenerate with
O(1) MeV masses. We also remark that, as required by
anomaly cancellation, there is no w or z dependence in
the physical width.

We show the branching fraction of Z ! Z
0
B
� as a

function of mZ
0
B

for various choices of gX in Fig. 3.
We include the limit on the Z ! Z

0
B
� branching ratio,

where Z
0
B

decays hadronically, which has been probed
at LEP by the L3 collaboration [40, 41]. The Z

0
B

boson
will dominantly decay to a dijet resonance for masses
mZ

0
B

& m⇡ [5, 42], when the anomalons introduced are
heavier than the Z

0
B

boson.

We remark on many interesting features in Fig. 3.
First, since the anomaly cancelling fermions obtain mass
from the spontaneous breaking of the chiral U(1)B sym-
metry, their masses scale with the U(1)B breaking vev set
by mZ

0
B
= 3gXv�. For concreteness, we set M = 4⇡

3
v�p
2

using 4⇡
3 as a fixed value for the Yukawa couplings yL and

yE . Hence, for fixed gX , the anomalons become lighter
as mZ

0
B

decreases: the cusp behavior at the maximum
of each curve then marks when the anomalons develop
imaginary contributions to the loop function by going
on-shell at M = mZ/2. Such light, electrically-charged
anomalons are already excluded, however, by searches
at LEP by the L3 and ALEPH collaborations [43, 44].
Thus, we indicate the LEP direct search bound on the
charged anomalons as a solid circle on each curve, mark-

ing where their masses cross 90 GeV. The parameter
space for the branching fractions left of these circles, indi-
cated by thinner lines, is thus excluded by direct searches
for the charged anomalons. Of course, the anomalon
masses could also receive large contributions from the
SM Higgs vev, which would weaken the direct scaling
relationship between mZ

0
B

and M for a given gX , but
then the contribution to the anomalon masses from the
SM Higgs Yukawa would also a↵ect the h ! �� signal
strength. We evaluate this constraint in Sec. IV, find-
ing that anomalons whose dominant mass contribution
comes from v� enjoy an open parameter space to induce
a branching fraction of O(10�5). Finally, the turnover
feature of the anomalons is also necessary to exhibit the
well-known Landau-Yang behavior [38, 39] as mZ

0
B
! 0.

Applying the L3 and ALEPH constraints [43, 44] on
new electrically charged fermions, the exotic branching
of Z ! Z

0
B
� is necessarily at most O(10�5). If the

L3 and ALEPH constraints were relaxed,2 then the ex-
otic Z ! Z

0
B
� branching fraction maximizes around

O(few)⇥ 10�4, in competition with the exotic Z ! Z
0
B
�

decay probe by L3 [40, 41]. While the hadronic decays of
the relatively light Z 0

B
are more di�cult to reconstruct at

the LHC compared to LEP, the immense statistics and
the additional coincident feature of the jj + � resonance
reconstructing the Z boson make this a promising av-
enue to probe possible anomalous gauge symmetries at

2 For example, see the model considered in Ref. [45].

FY, [2602.xxxxx]



Dim. reg., naïve γ5, and momentum-shift 
independence
• For Z → Zʹ γ, we showed that an anomaly-free fermion content, using 

dim. reg., naïve γ5 and allowing w- and z-momentum-shift 
dependence, results in a w- and z- independent result
– Each individual fermion contribution carries momentum-shift dependence and 

is anomalous

• Conjecture: requiring observables to be w- and z-
independent is equivalent(!) to anomaly cancellation 
condition
– Closest analogy: shift-dependence in loops with chiral couplings is akin to Rξ-

dependence in SSB loop calculations
– Provides a new method to handle γ5 in loop calculations (compared to BHMV, 

Larin, KKR, etc.), especially relevant for (N)NLO EW precision calculations
– Restores the central conceit of dim. reg. that finite momentum shifts of loop 

momenta do not affect calculations
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An observable: chiral gauge anomaly

• Exotic Z decay is emblematic of U(1)-gauge extensions
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L3 exclusion
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(a) Branching fraction Z ! Z0
B� versus mZ0

B
.

(b) Branching fraction Z ! Z0
B� versus v�.

FIG. 3: Branching fraction for Z ! Z
0
B
� for various

choices of gX . The degenerate anomalon masses M are
set to (4⇡/3)v�/

p
2. The dots mark the point where the

anomalon mass equals 90 GeV. The grey (purple, red)
shaded region is excluded by the L3 Z ! (jj)res + �

search [41], and it becomes gX dependent when plotted
versus the vev v�.

the LHC. We note a similar sensitivity improvement in
the exotic decay of the Z to a leptonically decaying Z

0

and a photon could also be expected from the LHC ex-
periments, where the current branching fraction limits at
the O(10�5) level are set by the OPAL collaboration [46].

Finally, we remark that the expression in Eq. (34)
is the first possible non-trivial decay width of a mas-
sive, neutral gauge boson into two further neutral gauge
bosons3. We also note that heavy sectors of anomaly free
sets of fermions, by virtue of the fact that the mixed elec-
troweak anomaly is carried in two distinct vertices, can

3 For a discussion of the Landau-Yang theorem and its applications
to non-Abelian gauge bosons, see Ref. [47].

give a non-decoupling contribution to the partial width,
as noted in Ref. [24]. For illustration, a hypothetical
complete set of heavy, mass-degenerate SM fermions and
anomalons, where the anomalon masses arise solely by
the U(1)B breaking vev, gives a non-decoupling decay
width of

�(Z ! Z
0
B
�)non-anom. =

3↵EM↵↵X

32⇡2c2
W

(m2
Z
�m

2
Z0)2

mZm
2
Z0

✓
1�

m
4
Z0

m
4
Z

◆
. (35)

Of course, the SM-like nature of the 125 GeV Higgs pre-
cludes this scenario, but it is nevertheless a curious fact
that the decoupling of anomaly free sets is not guaranteed
in theories with two sources of chiral symmetry breaking.

IV. COLLIDER SEARCHES FOR ANOMALONS

In this section, we discuss the phenomenology of the
anomalon sector. Since the anomalons have the same
SM gauge quantum numbers as leptons, they share
many of the same phenomenological signatures as fourth-
generation leptons. Given their dominant mass contri-
bution arises from v�, their collider phenomenology also
mimics the electroweakino sector from supersymmetry,
where the charged anomalons are slightly heavier than
the electrically neutral anomalons and exhibit a com-
pressed mass spectrum, as a consequence of the 1-loop
radiative electroweak corrections.
When the anomalon masses receive contributions from

the electroweak vev, they induce corrections to the ob-
served 125 GeV Higgs boson decay into two photons. We
can calculate this correction as a coherent sum of the top
quark, bottom quark, W boson, and the new anomalons.
Since we assume the dominant source of the anomalon
masses comes from v�, they will exhibit decoupling in
the H ! �� partial width.
From Eq. (4), we assume the Yukawa couplings are real

and for simplicity set yE = yL ⌘ y� and y1 = y2 ⌘ yH .
The charged anomalon mass Lagrangian becomes

Lmass � �
y�
p
2
v�ēLeR �

y�
p
2
v�ĒLER

�
yH
p
2
vHĒLeR �

yH
p
2
vH ēLER + h.c. , (36)

and the two Dirac masses are then

M1 =
1
p
2
(y�v� + yHvH) , (37)

M2 =
1
p
2
|y�v� � yHvH | . (38)

The mass eigenstates couple to the SM Higgs with the
Yukawa coupling ±yH , while the Dirac masses depend
on the values of yH , y� and the vev v�.

Controlled by Landau-Yang

Charged anomalons are 
below LEP bound



An observable chiral gauge anomaly

• Can also calculate a curious feature: contribution for one 
generation of a mass-degenerate set of SM fermions  and 
U(1)B anomalons, consider large mass limit

– Does not decouple, effectively counts the mixed gauge 
anomaly between chiral SM and U(1)B gauge symmetries

– Future work: obeys Adler-Bardeen non-renormalization 
theorem?
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(a) Branching fraction Z ! Z0
B� versus mZ0

B
.

(b) Branching fraction Z ! Z0
B� versus v�.

FIG. 3: Branching fraction for Z ! Z
0
B
� for various

choices of gX . The degenerate anomalon masses M are
set to (4⇡/3)v�/

p
2. The dots mark the point where the

anomalon mass equals 90 GeV. The grey (purple, red)
shaded region is excluded by the L3 Z ! (jj)res + �

search [41], and it becomes gX dependent when plotted
versus the vev v�.

the LHC. We note a similar sensitivity improvement in
the exotic decay of the Z to a leptonically decaying Z

0

and a photon could also be expected from the LHC ex-
periments, where the current branching fraction limits at
the O(10�5) level are set by the OPAL collaboration [46].

Finally, we remark that the expression in Eq. (34)
is the first possible non-trivial decay width of a mas-
sive, neutral gauge boson into two further neutral gauge
bosons3. We also note that heavy sectors of anomaly free
sets of fermions, by virtue of the fact that the mixed elec-
troweak anomaly is carried in two distinct vertices, can

3 For a discussion of the Landau-Yang theorem and its applications
to non-Abelian gauge bosons, see Ref. [47].

give a non-decoupling contribution to the partial width,
as noted in Ref. [24]. For illustration, a hypothetical
complete set of heavy, mass-degenerate SM fermions and
anomalons, where the anomalon masses arise solely by
the U(1)B breaking vev, gives a non-decoupling decay
width of

�(Z ! Z
0
B
�)non-anom. =

3↵EM↵↵X

32⇡2c2
W

(m2
Z
�m

2
Z0)2

mZm
2
Z0

✓
1�

m
4
Z0

m
4
Z

◆
. (35)

Of course, the SM-like nature of the 125 GeV Higgs pre-
cludes this scenario, but it is nevertheless a curious fact
that the decoupling of anomaly free sets is not guaranteed
in theories with two sources of chiral symmetry breaking.

IV. COLLIDER SEARCHES FOR ANOMALONS

In this section, we discuss the phenomenology of the
anomalon sector. Since the anomalons have the same
SM gauge quantum numbers as leptons, they share
many of the same phenomenological signatures as fourth-
generation leptons. Given their dominant mass contri-
bution arises from v�, their collider phenomenology also
mimics the electroweakino sector from supersymmetry,
where the charged anomalons are slightly heavier than
the electrically neutral anomalons and exhibit a com-
pressed mass spectrum, as a consequence of the 1-loop
radiative electroweak corrections.
When the anomalon masses receive contributions from

the electroweak vev, they induce corrections to the ob-
served 125 GeV Higgs boson decay into two photons. We
can calculate this correction as a coherent sum of the top
quark, bottom quark, W boson, and the new anomalons.
Since we assume the dominant source of the anomalon
masses comes from v�, they will exhibit decoupling in
the H ! �� partial width.
From Eq. (4), we assume the Yukawa couplings are real

and for simplicity set yE = yL ⌘ y� and y1 = y2 ⌘ yH .
The charged anomalon mass Lagrangian becomes

Lmass � �
y�
p
2
v�ēLeR �

y�
p
2
v�ĒLER

�
yH
p
2
vHĒLeR �

yH
p
2
vH ēLER + h.c. , (36)

and the two Dirac masses are then

M1 =
1
p
2
(y�v� + yHvH) , (37)

M2 =
1
p
2
|y�v� � yHvH | . (38)

The mass eigenstates couple to the SM Higgs with the
Yukawa coupling ±yH , while the Dirac masses depend
on the values of yH , y� and the vev v�.

In contrast to B-L or Lμ – Lτ symmetries



Conclusions
• Effective descriptions of chiral new physics carries 

rich phenomenology and field theory structure
– Many features for 𝜙 collider phenomenology reminiscent of Higgs 

phenomenology, albeit with important interference effects
– Effective operator construction for Z-Zʹ-γ vertex demonstrates a 

new formulation of chiral anomaly cancellation

• Beyond effective theories, new U(1)ʹ gauge symmetries 
offer novel field-theoretic results
– e.g. nearly mass-degenerate Z-Zʹ bosons require careful 

phenomenological treatment to extract consistent constraints
– Novel aspects of avoided crossing and dispersive seesaw effect
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