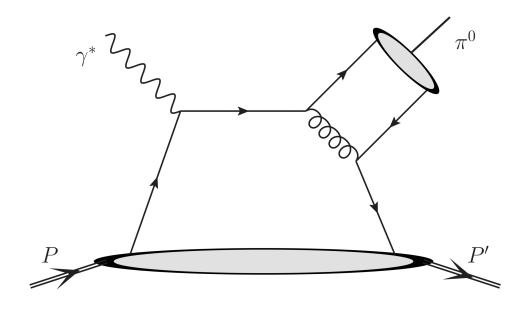


Exclusive π^0 Production in ep Collisions (DV π^0 P)

Jihee Kim (jkim11@bnl.gov)


Brookhaven National Laboratory

2025/12/16
ePIC Physics Forum

Physics Motivation

Exclusive π^0 production

Phys. Rev. Lett. 133, 051901 (2024), arXiv:2312.01309

Hard exclusive production of π^0 mesons

- Provides access to the 3D nucleon structure via GPDs.
- Complementary to DVCS, offering sensitivity to polarized and transversity GPDs.
- Previously studied in fixed-target experiments at JLab, and COMPASS.
- Collider mode (never done before!) at the EIC enables:
 - High proton polarization.
 - Broad kinematic coverage, reaching lower x and higher Q².
- Represents a unique opportunity to probe quark orbital angular momentum (OAM) → within spin program.
- o DVMP π^0 production may serve as a potential background to DVCS.

Physics Goals

Generalized Parton Distributions (GPDs)

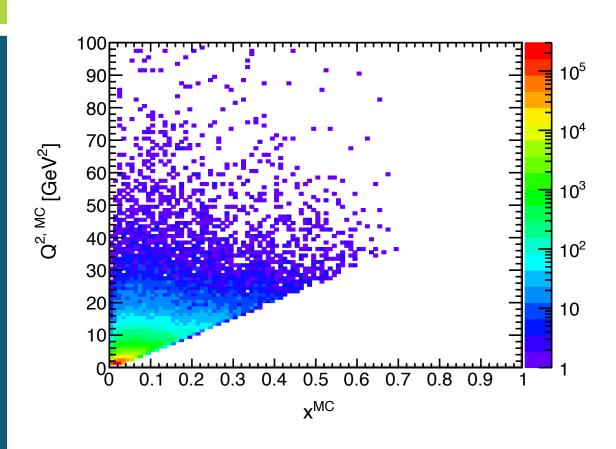
Extract the t-distribution to obtain the quark spatial distribution

Quark Orbital Angular Momentum (OAM)

- Conduct a feasibility study of the longitudinal single-target spin asymmetry.
- Theory proposal¹: Single-target spin asymmetry is sensitive to Quark OAM, yet no experimental measurement exists to date

Physics Background to DVCS

Estimate rate of single-photon mis-identification², which can mimic the DVCS signal


²Phys. Rev. D 112, 036010 (2025), arXiv:2503.05908 **rookhaven**

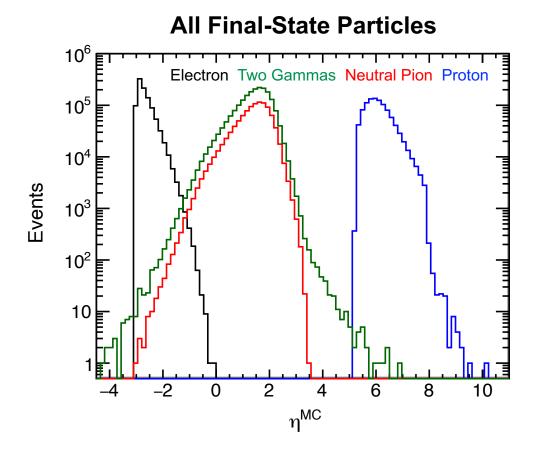
¹Phys. Rev. Lett. 133, 051901 (2024), arXiv:2312.01309

Simulation Sample © COLC

EpIC Monte Carlo Generator

Generation ranges:

$$0 1 < Q^2 < 1000$$


$$0 10^{-5} < x_B < 0.95$$

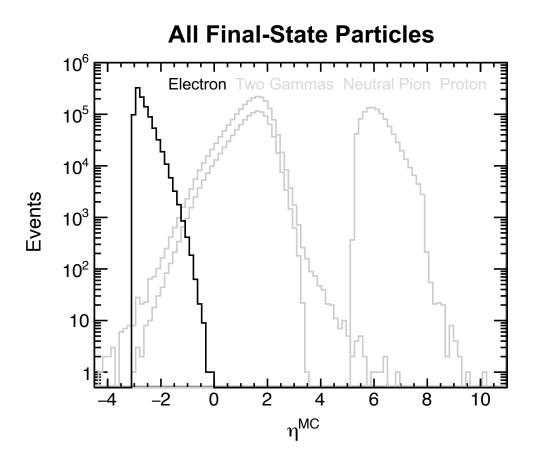
$$\circ$$
 0.01 < t < 1.6

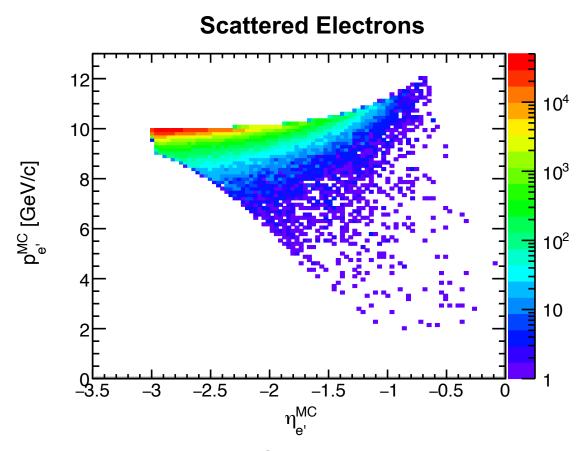
Simulation Setup:

All results are based on ePIC October Simulation Campaign 25.10.2 (10×130 GeV²) + 25.10.3 (5×41 GeV²)

$DV\pi^0P$ Kinematics

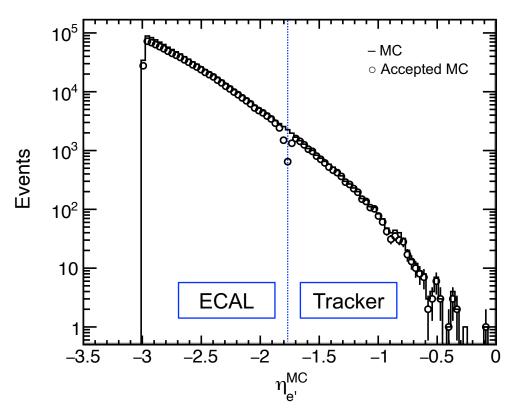
Relatively clean kinematics


Minimal overlap between final-state particles

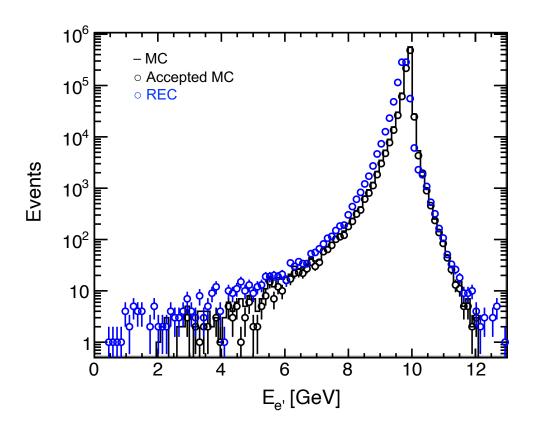

Detector Signatures

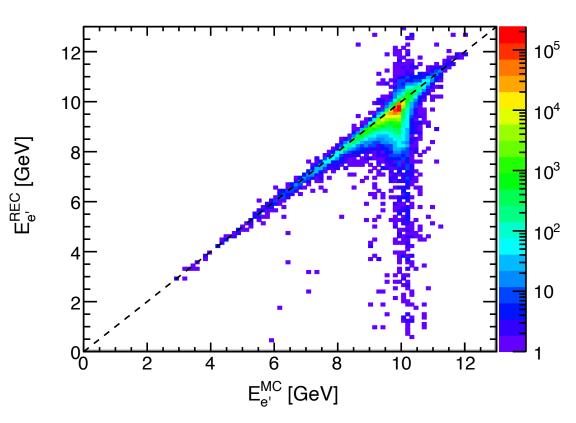
- o Scattered electron:
 - Detected in backward region (Tracker + Calorimeter)
- Neutral pion $(\pi^0 \to \gamma \gamma)$:
 - Detected in mid-rapidity and forward calorimeters
- Scattered proton:
 - Detected in Far-Forward tracker

$DV\pi^0P$ Kinematics – Scattered Electron



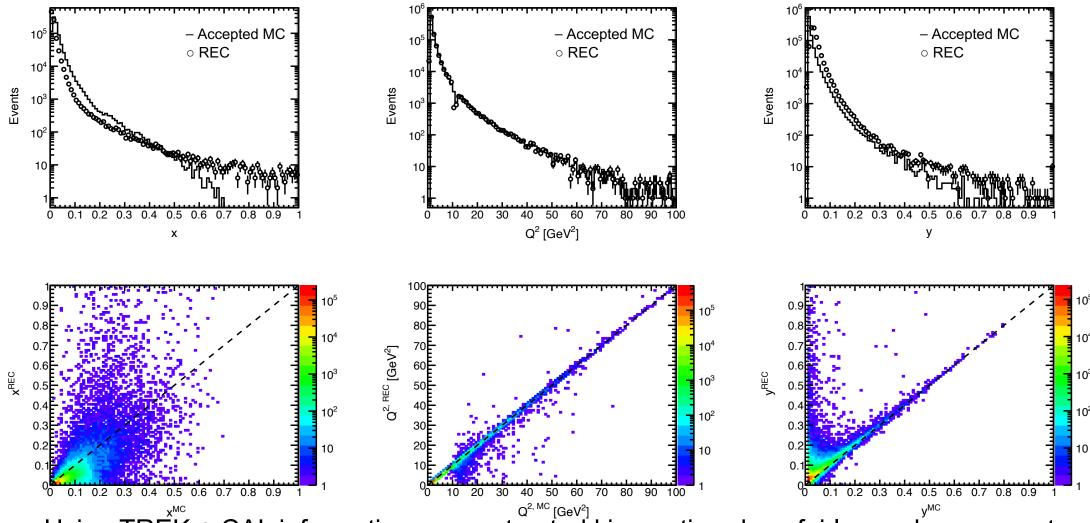
Relatively clean kinematics, with minimal overlap between all final-state particles. Scattered electron momentum remains very close to the incoming beam energy.


$e'_{ m MC}$ Acceptance with E/p Cut



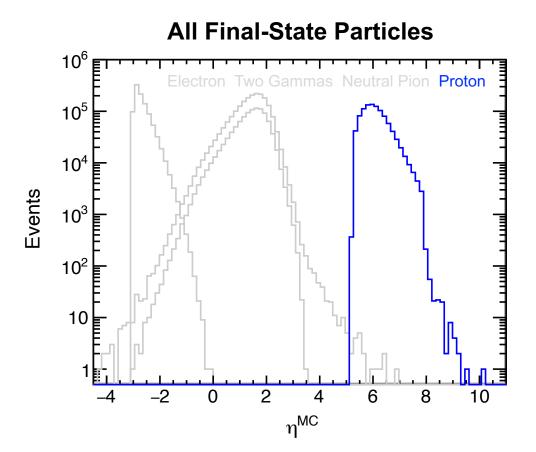
In this analysis, a **truth-associated** E/p **cut** is applied (when applicable). E/p cut: 0.9 < E/p < 1.2. If $10 < Q^2 < 100$, use 0.8 < E/p < 1.2. The **scattered electron acceptance** is approximately **85.7%**.

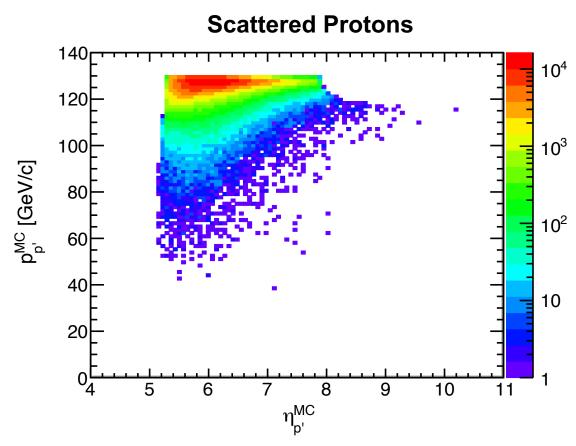
e'_{REC} with E/p Cut



Potential to improve scattered-electron reconstruction and/or refine quality cuts.

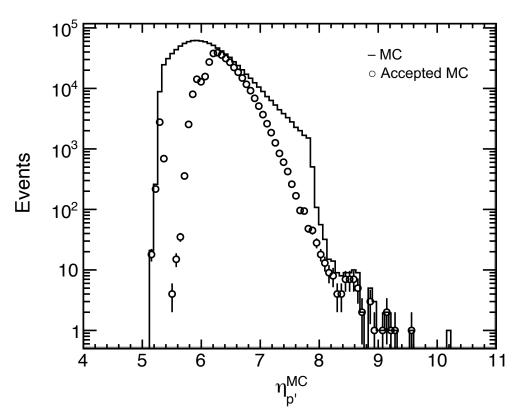
Calorimetry calibration constant factor to adjust energy.

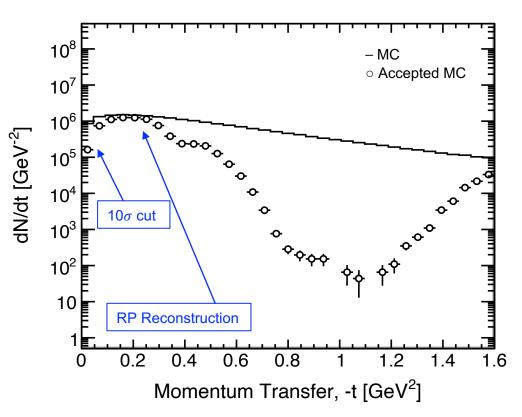

DIS Kinematics After Electron Selection



Using TREK + CAL information, reconstructed kinematics show fairly good agreement.

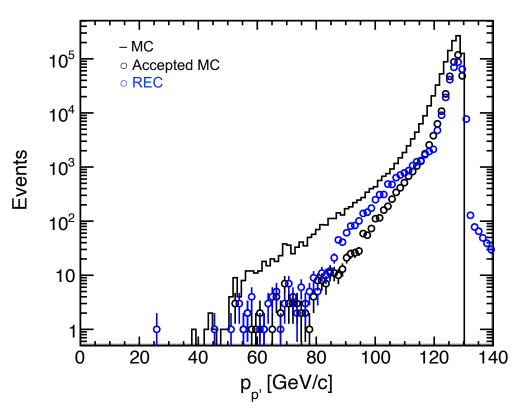
DVπ⁰P Kinematics – Scattered Proton

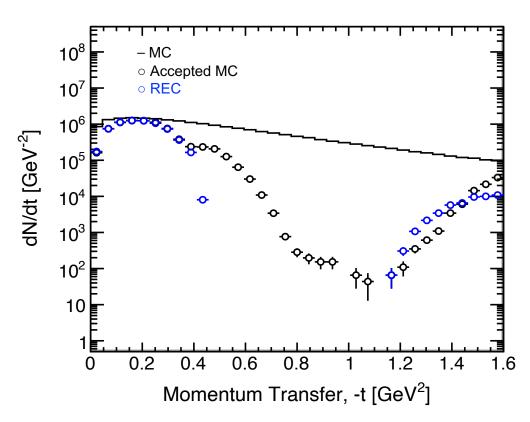



Relatively clean kinematics, with minimal overlap between all final-state particles.

Scattered protons travel to the far-forward region, detected by B0 and Roman Pot detectors.

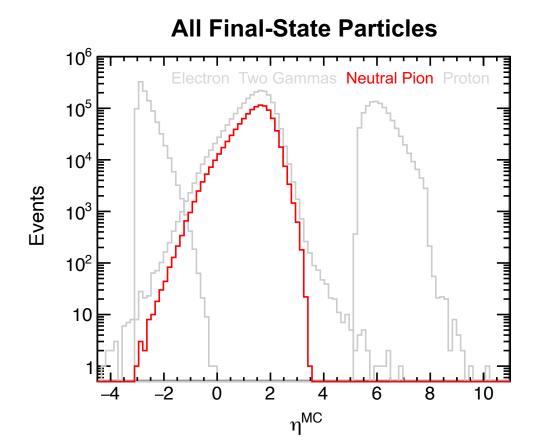
$p'_{\rm MC}$ and $t = (p - p')^2$ Acceptance

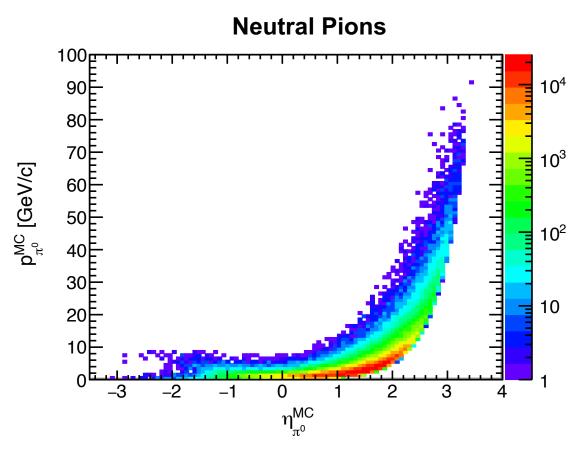




Scattered protons are mostly detected in the **Roman Pot**, not B0. Rather larger acceptance gap between B0 and Roman Pot for p' comparing to 10×100 GeV².

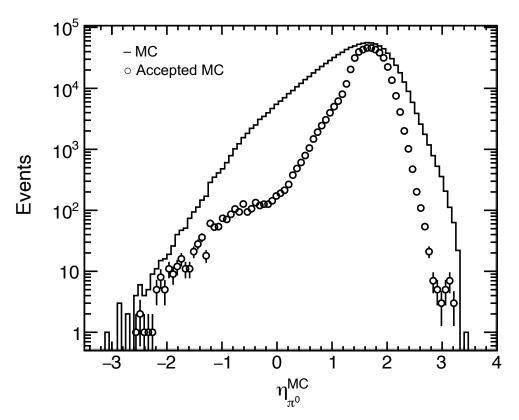
$p'_{\rm REC}$ and $t = (p - p')^2$ Reconstruction





Improvements on p' reconstruction at Roman Pot, which leading better t-reconstruction with BABE.

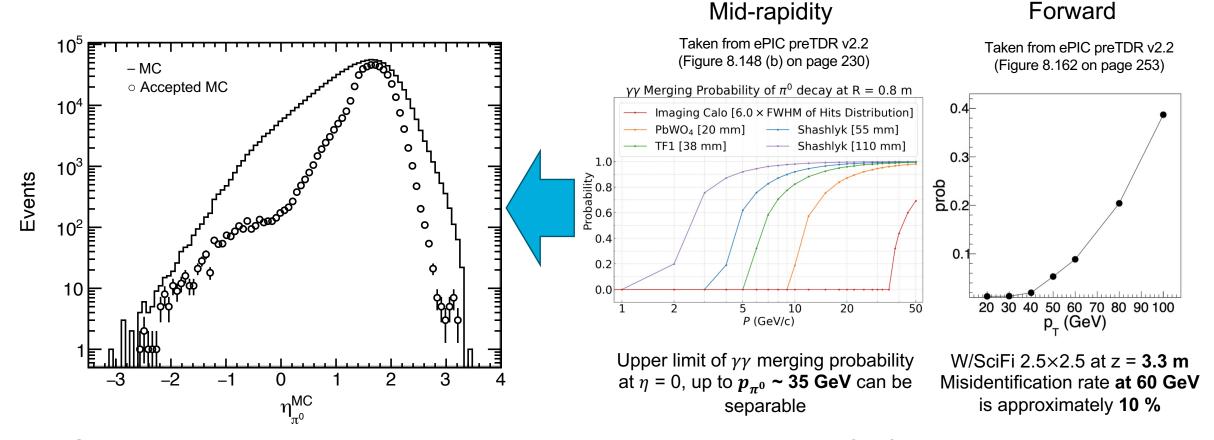
$DV\pi^0P$ Kinematics – Neutral Pion



Relatively clean kinematics, with minimal overlap between all final-state particles.

Neutral pions are boosted into forward region.

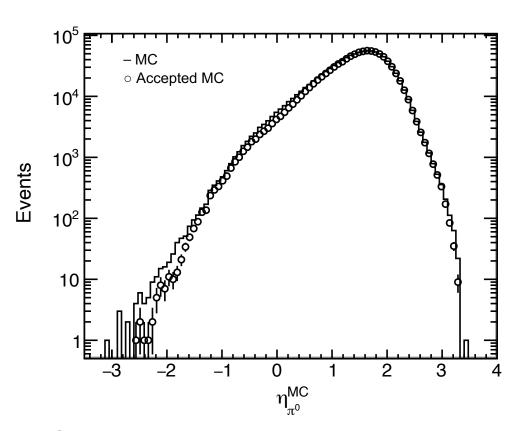
$\pi_{ ext{MC}}^{0}$ Acceptance



Acceptance loss observed in mid-rapidity and forward regions.

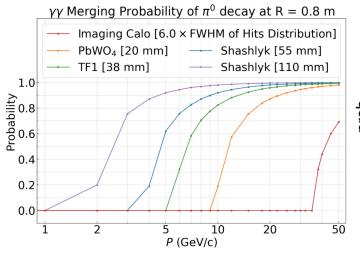
Caused by non-optimized cluster splitting in the current ElCrecon reconstruction pipeline

π_{MC}^{0} Acceptance – Potential Improvement



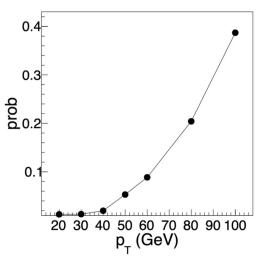
Standalone ML studies in preTDR as a potential improvement for future reconstruction.

Targeting mid-rapidity and forward regions.



π_{MC}^{0} Acceptance – Potential Improvement

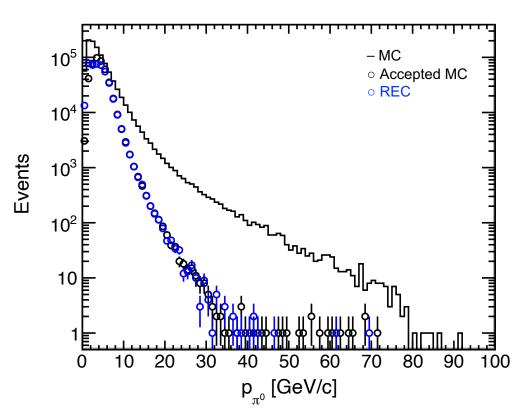
Mid-rapidity

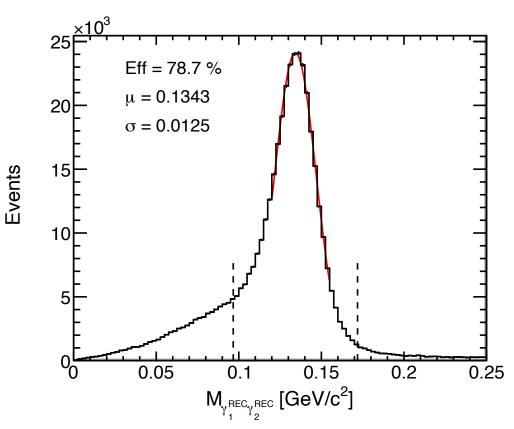

Taken from ePIC preTDR v2.2 (Figure 8.148 (b) on page 230)

Upper limit of $\gamma\gamma$ merging probability at η = 0, up to p_{π^0} ~ 35 GeV can be separable

Forward

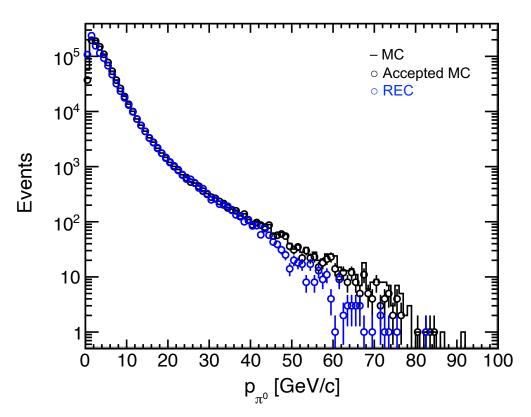
Taken from ePIC preTDR v2.2 (Figure 8.162 on page 253)

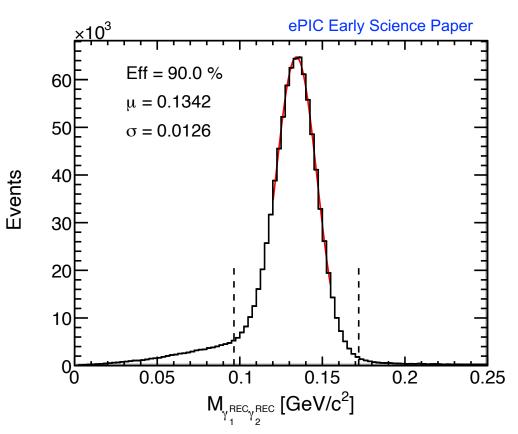



W/SciFi 2.5×2.5 at z = **3.3 m**Misidentification rate **at 60 GeV**is approximately **10 %**

Standalone ML studies implemented as a **potential improvement** for future reconstruction. Targeting **mid-rapidity** and **forward regions**. Acceptance increased from 45 % to 95 %.

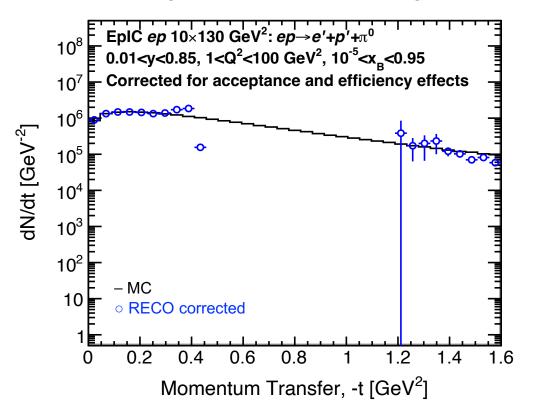
$\pi_{ m REC}^0$ Reconstruction and Invariant Mass





Acceptance loss observed in Low- or high-momentum neutral pions. "Good" reconstructed neutral pions defined as those within $\pm 3\sigma$ of the mean.

$\pi_{ m REC}^0$ Reconstruction and Invariant Mass



Standalone ML studies implemented as a potential improvement for future reconstruction. "Good" reconstructed neutral pions defined as those within $\pm 3\sigma$ of the mean.

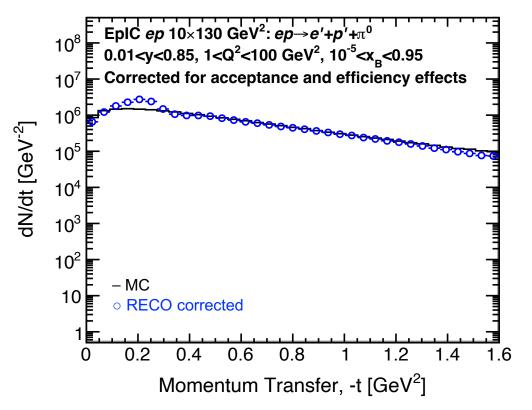
Results – t-distribution $t_{\text{BABE}} = (p - p')^2$

Unpolarized DV π^0 P Sample

- Good Proton Selection:
 - ✓ is reconstructed in B0 or Roman Pot
 - ✓ Within angular acceptance in B0 or Roman Pot

5.5 mrad <
$$\theta_{\text{p in B0}}^{\text{REC}}$$
 < 20 mrad
0 mrad < $\theta_{\text{p in RP}}^{\text{REC}}$ < 5 mrad

- o Good Electron Selection:
 - ✓ With truth-association E/p cut (0.9 < E/p < 1.2)
- Good Neutral Pion Selection:
 - ✓ Within ± 0.04 GeV of M_{π^0} (0.096 < $M_{\gamma\gamma}$ < 0.172)
- Suppress photo production + radiative corrections


✓
$$E - p_z$$
 cut (15 < E/p < 25)

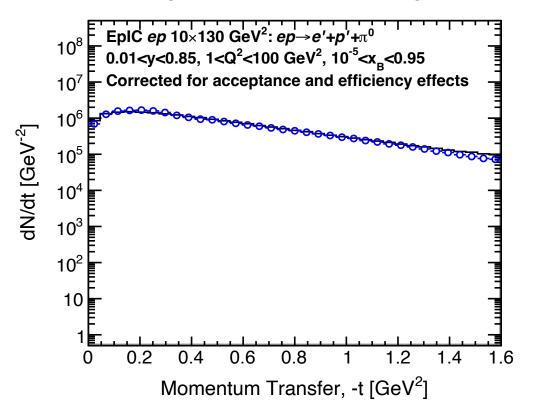
- **Exclusivity** Cut
 - ✓ All final-state particles are reconstructed
- Missing Mass Cut:
 - ✓ With $|M_{Missing}^2| < 1 \text{ GeV}^2$

Results – t-distribution $t_{\text{eXBE}} = (p - p'_{corr})^2$

Unpolarized DV π^0 P Sample

- Good Proton Selection:
 - √ is reconstructed in B0 or Roman Pot
 - Within angular acceptance in B0 or Roman Pot 5.5 mrad $<\theta_{\text{p in B0}}^{\text{REC}}<$ 20 mrad 0 mrad $<\theta_{\text{p in RP}}^{\text{REC}}<$ 5 mrad
- o Good Electron Selection:
 - ✓ With truth-association E/p cut (0.9 < E/p < 1.2)
- Good Neutral Pion Selection:
 - ✓ Within ± 0.04 GeV of M_{π^0} (0.096 < $M_{\gamma\gamma}$ < 0.172)
- Suppress photo production + radiative corrections

✓
$$E - p_z$$
 cut (15 < E/p < 25)


- **Exclusivity** Cut
 - ✓ All final-state particles are reconstructed
- Missing Mass Cut:

✓ With
$$|M_{Missing}^2| < 1 \text{ GeV}^2$$

Results – t-distribution $t_{\text{total}} = t_{\text{BABE}} + t_{\text{eXBE}}$

Unpolarized DV π^0 P Sample

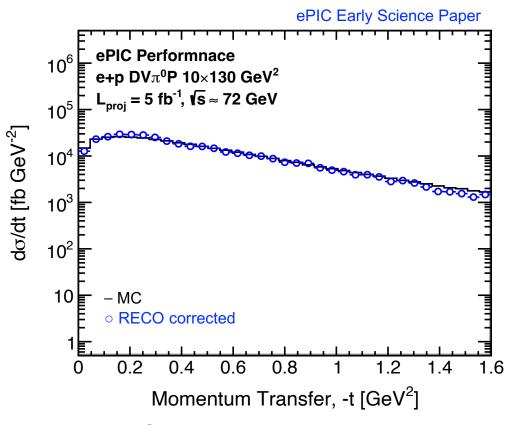
- Good Proton Selection:
 - ✓ is reconstructed in B0 or Roman Pot
 - ✓ Within angular acceptance in B0 or Roman Pot

5.5 mrad <
$$\theta_{\text{p in B0}}^{\text{REC}}$$
 < 20 mrad
0 mrad < $\theta_{\text{p in RP}}^{\text{REC}}$ < 5 mrad

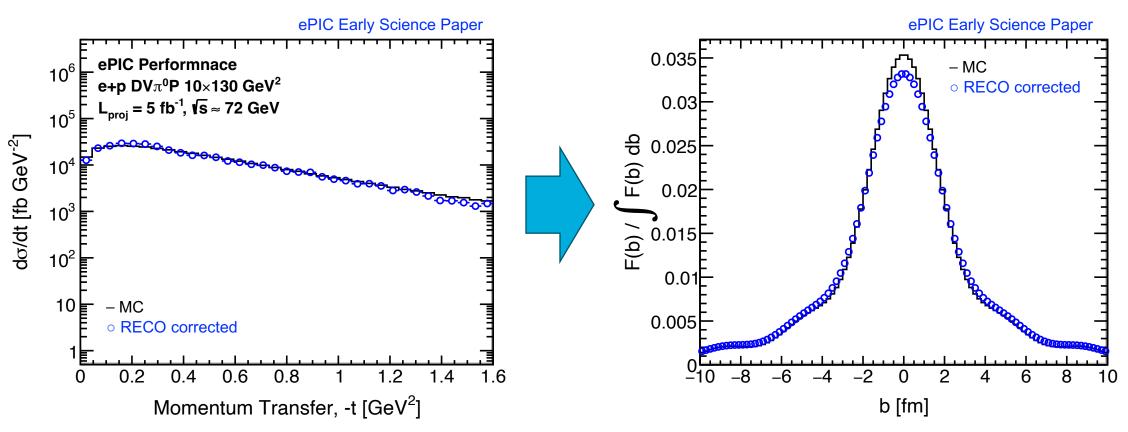
- o Good Electron Selection:
 - ✓ With truth-association E/p cut (0.9 < E/p < 1.2)
- Good Neutral Pion Selection:
 - ✓ Within ± 0.04 GeV of M_{π^0} (0.096 < $M_{\gamma\gamma}$ < 0.172)
- Suppress photo production + radiative corrections

✓
$$E - p_z$$
 cut (15 < E/p < 25)

- **Exclusivity** Cut
 - ✓ All final-state particles are reconstructed
- Missing Mass Cut:
 - ✓ With $|M_{Missing}^2| < 1 \text{ GeV}^2$


Results – Final *t*-distribution

 $\frac{d\sigma}{dt}$ distribution and 5 fb⁻¹ projection


Results – Final t-distribution

 $\frac{d\sigma}{dt}$ distribution \rightarrow Added realistic fluctuations based on Gaussian(mean, error).

Results – Spatial Distribution

Realistic $\frac{d\sigma}{dt}$ distribution \rightarrow Fourier transformation to obtain spatial distribution.

Background Study – Inclusive DIS and Physics

Approach – Inclusive DIS Background

$_{\odot}$ Goal: Estimate inclusive DIS background to DV π^0 P channel

- ep inclusive DIS sample provided by Stephen Maple
 /gpfs02/eic/maples/RECO_pythia6_ep_early_science/ on RCF @ BNL
- o Two samples of $10 \times 130 \text{ GeV}^2$ with $1 < Q^2 < 10$ and $10 < Q^2 < 100$
- Objective: Identify inclusive DIS events that mimic exclusive π^0 process

Selection Criteria:

- \circ An event has four final-state particles (i.e. e', p', and $2\gamma s$)
 - \circ ReconstructedParticles: three final-state particles (i.e. e' and 2γ s)
 - \circ ReconstructedTruthSeededChargedParticles / ForwardRomanPotRecParticles: (i.e. p')
- An event pass quality cuts
 - \circ Selections based on $\it E/p$ for $\it e'$, $\it M_{\gamma\gamma}$ for $\it \pi^0$, and $\it heta_{\it p'}$ for $\it p'$

Results – ep Inclusive DIS Background

Check if

1) Central Detector:

Exactly three reconstructed particles

1-1) One negative and two neutral charges

2) Far-Forward Detector:

One reconstructed positive-charge particle Passes angular acceptance cut (θ_n^{REC})

3) Electron Candidate:

Passes *Elp* cut

4) Neutral Pion candidate:

Passes $M_{\nu\nu}$ (invariant mass) cut

*Note that no luminosity information is taken into account

Selection	10×130 GeV² 1 < Q² < 10	10×130 GeV² 10 < Q² < 100
1)	11.3232 % (56,616/500,000)	3.3658 % (16,829/500,000)
1-1)	2.1324 % (10,662/500,000)	0.486 % (2,430/500,000)
2)	0.5494 % (2,747/500,000)	0.1132 % (566/500,000)
3)	0.479 % (2,395/500,000)	0.0838 % (419/500,000)
4)	<mark>0.14 %*</mark> (700/500,000)	<mark>0.0114 %*</mark> (57/500,000)

 π^0 s can be produced via multiple processes – this is expected.

Results – ep Inclusive DIS Background

$1 < Q^2 < 10$ for 500k events

- DV π^0 P

 $\sigma_{\rm integrated} \approx 0.017 \text{ nb}$

- DIS

 $\sigma_{\rm integrated} \approx 0.64 \ \mu b$

<u>Scaling factor: 37,647.059</u>

$10 < Q^2 < 100 \text{ for } 500k \text{ events}$

- DV π^0 P

 $\sigma_{\rm integrated} \approx 3.4 \times 10^{-4} \text{ nb}$

- DIS

 $\sigma_{\rm integrated} \approx 0.047 \ \mu b$

<u>Scaling factor: 138,235.29</u>

*Note that no luminosity information is taken into account

Selection	10×130 GeV² 1 < Q² < 10	10×130 GeV² 10 < Q² < 100
1)	11.3232 % (56,616/500,000)	3.3658 % (16,829/500,000)
1-1)	2.1324 % (10,662/500,000)	0.486 % (2,430/500,000)
2)	0.5494 % (2,747/500,000)	0.1132 % (566/500,000)
3)	0.479 % (2,395/500,000)	0.0838 % (419/500,000)
4)	<mark>0.14 %*</mark> (700/500,000)	<mark>0.0114 %*</mark> (57/500,000)

5270.6 %

1575.9 %

Additional selection cut required to reduce DIS background

Additional Cuts

Missing mass $(M_{Missing}^2)$

- Incoming beams are known
- Incoming beam particles (Truth) Final-state particles (Reconstructed) $P_{\text{Missing}}^2 = \left((P_e + P_p) (P_{e'} + P_{p'} + P_{\pi^0}) \right)^2 = M_{\text{Missing}}^2$
- If exclusive π^0 event, P_{Missing}^2 should be close to **0**
- If not, P_{Missing}^2 indicates other particles being produced
- Note: Detector resolution/smearing effects being included 0

Far-Forward Detector Veto

- Scattered proton can be detected at Roman Pot and B0 detectors (possibly Off-Momentum Detector?)
- No activities are expected at Zero Degree Calorimeter 0
- If there are hits, then it is not exclusive π^0 events

Results – ep Inclusive DIS Background

JIHFF KIM

Check if

1) Central Detector:

Exactly three reconstructed particles

1-1) One negative and two neutral charges

2) Far-Forward Detector:

One reconstructed positive-charge particle Passes angular acceptance cut (θ_p^{REC})

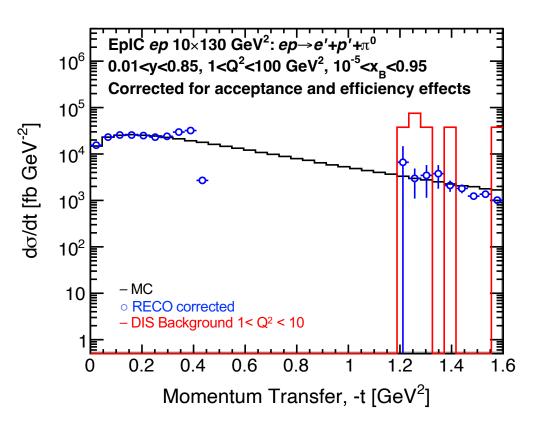
3) Electron Candidate:

Passes *Elp* cut

4) Neutral Pion candidate:

Passes $M_{\nu\nu}$ (invariant mass) cut

5) Missing Mass: ref. $M_{\pi^0}^2 \sim 0.02$ GeV + $E - p_z$


Passes $M_{Missing}^2$ cut $(|M_{Missing}^2| < 1 \text{ GeV}^2)$

6) Far-Forward Detector Veto (ZDC)

*Note that no luminosity information is taken into account			
Selection	10×130 GeV² 1 < Q² < 10	10×130 GeV² 10 < Q² < 100	
1)	11.3232 % (56,616/500,000)	3.3658 % (16,829/500,000)	
1-1)	2.1324 % (10,662/500,000)	0.486 % (2,430/500,000)	
2)	0.5494 % (2,747/500,000)	0.1132 % (566/500,000)	
3)	0.479 % (2,395/500,000)	0.0838 % (419/500,000)	
4)	0.14 %* (700/500,000)	0.0114 %* (57/500,000)	
5)	0.0032 %* (16/500,000)	0.0004 %* (2/500,000)	
6)	0.002 <mark>(0.0016) %*</mark> (10(8)/500,000)	<mark>0.0002 %*</mark> (1/500,000)	

Results – t-distribution $t_{\text{BABE}} = (p - p')^2$

- Good Proton Selection:
 - ✓ is reconstructed in B0 or Roman Pot
 - ✓ Within angular acceptance in B0 or Roman Pot

5.5 mrad <
$$\theta_{\text{p in B0}}^{\text{REC}}$$
 < 20 mrad
0 mrad < $\theta_{\text{p in RP}}^{\text{REC}}$ < 5 mrad

- o Good Electron Selection:
 - ✓ With truth-association E/p cut (0.9 < E/p < 1.2)
- Good Neutral Pion Selection:
 - ✓ Within ± 0.04 GeV of M_{π^0} (0.096 < $M_{\gamma\gamma}$ < 0.172)
- Suppress photo production + radiative corrections

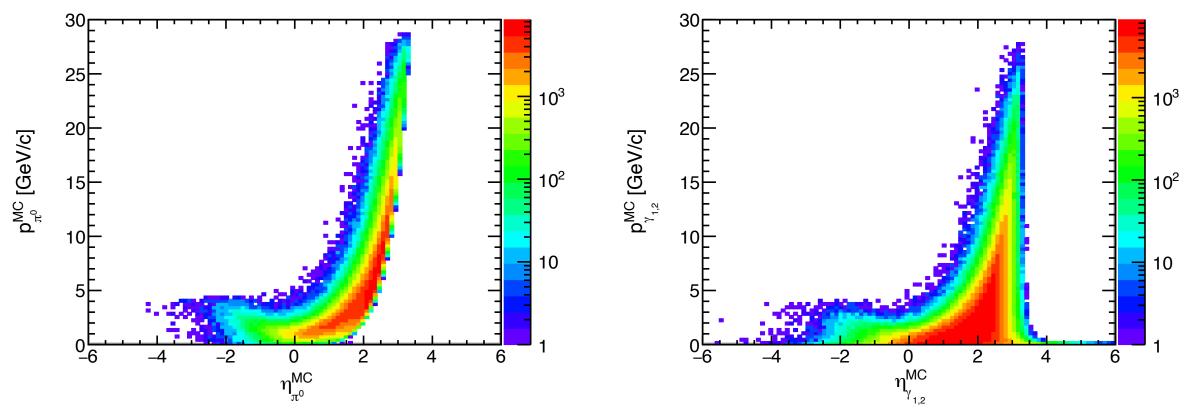
✓
$$E - p_z$$
 cut (15 < E/p < 25)

- Exclusivity Cut
 - ✓ All final-state particles are reconstructed
- Missing Mass Cut:
 - ✓ With $|M_{Missing}^2| < 1 \text{ GeV}^2$

Approach – Physics Background to DVCS

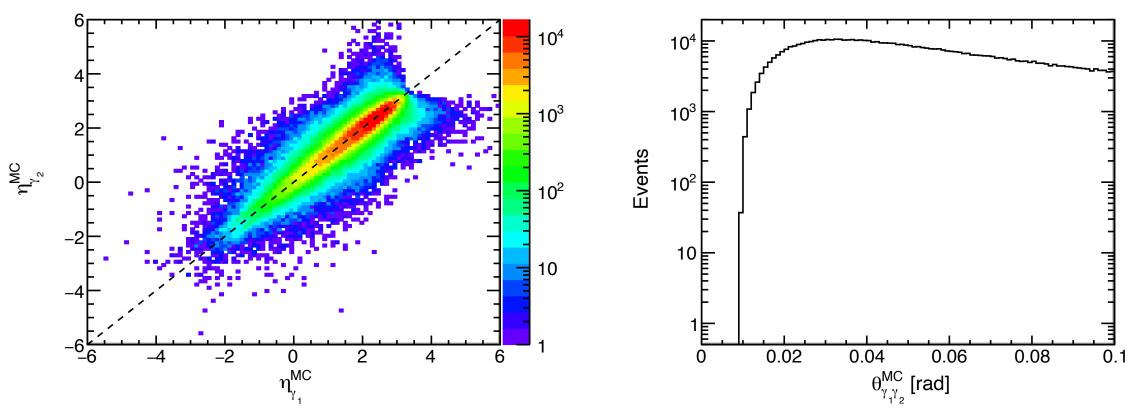
- Main goal: Estimate single photon misidentification from October Simulation Campaign 5×41 GeV² comparing to DVCS
 - Where one of gammas from π^0 is mis-identified as DVCS γ
 - Geometrical acceptance, energy thresholds, and granularity

Method


- EM Calorimeter information: EcalEndcapN / EcalBarrel / EcalEndcapP
- Truth ID used to exclude scattered electron
- Minimum cluster energy cut at 0.1 GeV
- Look for reconstructed events with 1 cluster formed

References:

https://indico.bnl.gov/event/26526/contributions/103508/attachments/60126/103303/ePIC exclusive diffraction tagging mtg JKIM 20250224.pdf Phys. Rev. D 112, 036010 (2025) https://doi.org/10.1103/fy8y-bjc9


π^0 and 2γ Kinematics – p vs η

(Left) π^0 and (Right) decaying two γ s π^0 dominates in the forward

2γ Kinematics – η vs η and $\theta_{\gamma\gamma}$

 $\gamma\gamma$ are concentrated **within similar pseudo-rapidity** and threshold of $\theta_{\gamma\gamma}$ is around 0.01 rad Very few events where we simply lose a photon by geometric acceptance

Initial Results

5×41 GeV ²	# of Events	Misidentification
	327,621 / 975,885	0.335717

Above summary shows estimated misidentification ($\pi^0 \to DVCS$)

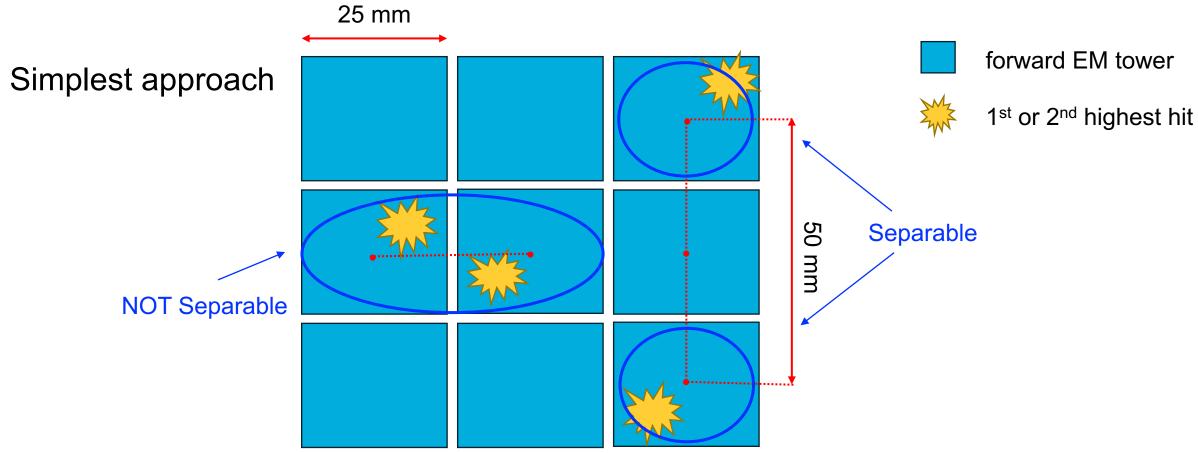
Current reconstruction pipeline in ElCrecon

Initial Results

5×41 GeV ²	# of Events	Misidentification
	327,621 / 975,885	0.335717

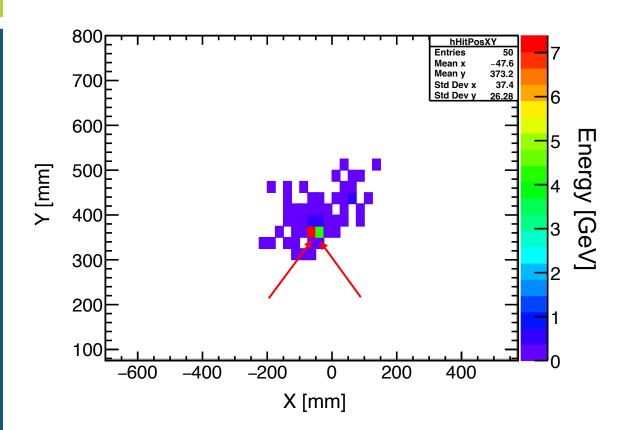
Above summary shows estimated misidentification ($\pi^0 \to DVCS$)

Current reconstruction pipeline in ElCrecon


There is still room for improvement!

- Optimal reconstruction parameters (ex. cluster-splitting)
- Granularity of forward EMCAL ~ 0.015 rad (ex. tower size)

Forward EMCAL tower size: 25 mm and distance from IP: 3,290 mm


Look for Separable Events in Forward

If distance between two highest hits is at least twice tower size (50 mm) to be separable

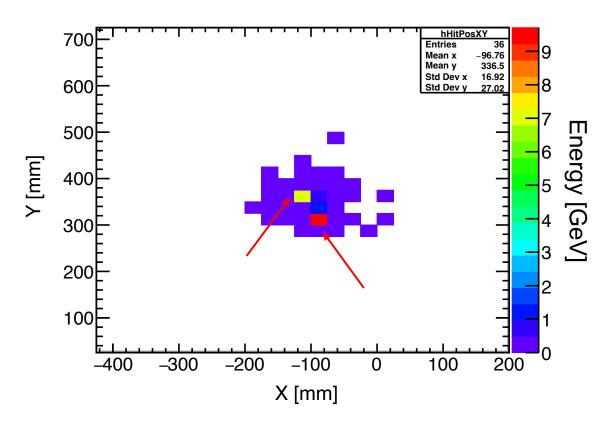
Example for 5 GeV × 41 GeV Event

Using current reconstruction pipeline

→ 1 cluster reconstructed

MC information

 $\rightarrow \theta_{\nu\nu}^{\rm MC} \sim 0.028 \ {\rm rad}$


Distance between two highest hit towers

→ ~ 25 mm

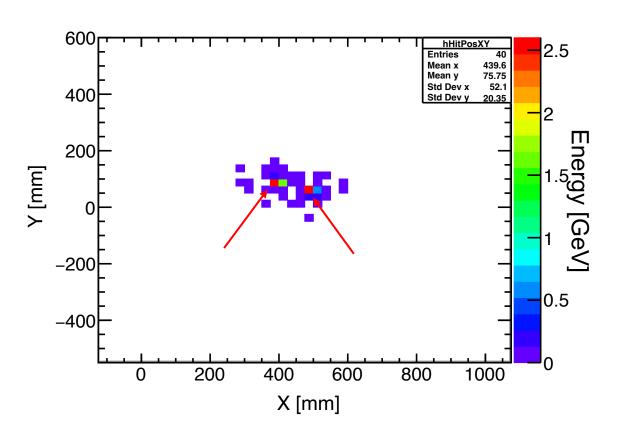
This event may NOT be identified as two clusters at hit-level.

Example for 5 GeV × 41 GeV Event

Using current reconstruction pipeline

→ 1 cluster reconstructed

MC information


$$\rightarrow \theta_{\gamma\gamma}^{\rm MC} \sim 0.014 \text{ rad}$$

Distance between two highest hit towers

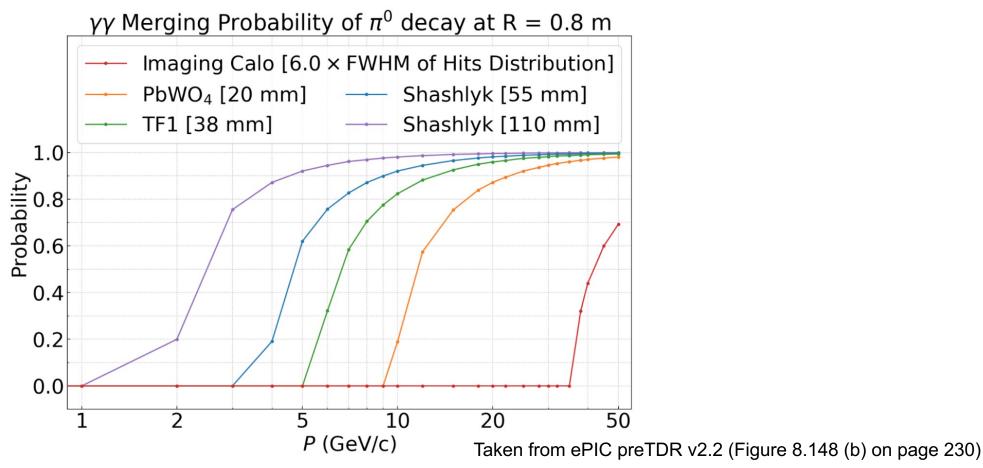
This event can be identified as two clusters at hit-level.

Example for 5 GeV × 41 GeV Event

Using current reconstruction pipeline

→ 1 cluster reconstructed

MC information


$$\rightarrow \theta_{\gamma\gamma}^{\rm MC} \sim 0.029 \ {\rm rad}$$

Distance between two highest hit towers

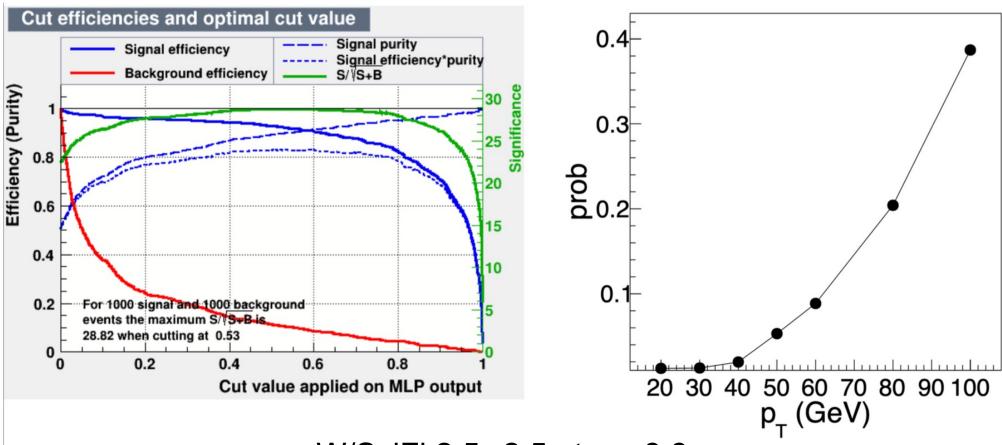
This event can be identified as two clusters at hit-level.

Look for Separable Events in Barrel

Upper limit of $\gamma\gamma$ merging probability at $\eta=0$, up to $p_{\pi^0}\sim 35$ GeV can be separable

Intermediate Results

5×41 GeV²	# of Events	Misidentification	# of Events	Misidentification
3/41 GeV	327,621 / 975,885	0.335717	116,184 / 975,885	0.119055


Above summary shows estimated misidentification ($\pi^0 \to DVCS$)

- Current reconstruction pipeline in ElCrecon
- Potential improvement in Forward (hit-level) & Barrel ML

Potential Improvement in Forward

Taken from ePIC preTDR v2.2 (Figure 8.162 on page 253)

W/SciFi 2.5×2.5 at z = 3.3 m Misidentification rate at 60 GeV is approximately 10 %

Final Results

5×41 GeV ²	# of Events	Misidentification	# of Events	Misidentification	# of Events	Misidentification
3×41 GeV	327,621 / 975,885	0.335717	116,184 / 975,885	0.119055	1,156 / 975,885	0.00118457

Above summary shows estimated misidentification ($\pi^0 \to DVCS$)

- Current reconstruction pipeline in ElCrecon
- Potential improvement in Forward (hit-level) & Barrel ML
- Potential improvement in Forward ML

Cross-section considerations:

Pure DVCS $\sigma_{\rm integrated} \approx 0.47$ nb (All DVCS ~ 1.88 nb), and DV π^0 P $\sigma_{\rm integrated} \approx 0.18$ nb. Scaling factor: DVCS vs DV π^0 P ~ 1 : 0.096 \Rightarrow **1.14** %.

Summary Analysis Note: https://doi.org/10.5281/zenodo.17943008

- Studied exclusive π^0 production physics channel at EIC
 - Extracted t-distribution using t_{BABE} and t_{eXBE} methods.
 - Derived quark spatial distribution.

Inclusive DIS Background

- As this is expected, π^0 s can be produced via multiple processes.
- All remaining events has multiple π^0 s already.
- Even with cross-section scaling on sample, the background level is 60 % at low Q^2 region. But it has t-dependency and mostly in high-t region.
- The background contains only one event, leading to a 100% statistical uncertainty. As a result, completely suppressing background is challenging.

Physics Background to DVCS

- Single-photon misidentification estimated at ~ 11.9% (conservative estimate).
- Cross-section considerations:
 - Pure DVCS $\sigma_{\text{integrated}} \approx 0.47 \text{ nb}$ (All DVCS ~ 1.88 nb), and DV π^{0} P $\sigma_{\text{integrated}} \approx 0.18 \text{ nb}$.
 - Scaling factor: DVCS vs DV π^0 P ~ 1 : 0.096 \Rightarrow 1.14 % background contribution.
- So far, results appear consistent with *EIC DVCS paper.

Backup Slides

Method L

- How the method works
 - ▶ Calculate p of outgoing A': $p_{A'} = p_A (p_V + p_{e'} p_e)$
 - ▶ Express and correct the outgoing nucleus in light cone variables:

$$p_{A'}^+ = E_{A'} + p_{z,A'}$$

$$p_{T,A'}^2 = p_{x,A'}^2 + p_{y,A'}^2$$

- $p_{A'}^- = (M_A^2 + p_{T,A'}^2)/p_{A'}^+$ where $p_{A'}^-$ is now modified by using the true mass M_A^2 .
- ▶ The corrected 4-momentum of the outgoing nuclei is now

$$p_{A'}^{\text{corr}} = \left[p_{x,A'}, p_{y,A'}, (p_{A'}^+ - p_{A'}^-)/2, (p_{A'}^+ + p_{A'}^-)/2 \right]$$

- ▶ In short, you are using the true invariant mass of the nucleus to compensate the smearing in the larger component of the electron 4-momentum by modifying E_{A'} and p_{z,A'} simultaneously.
- Now simply: $t_{\rm corr} = \left| p_A p_{A'}^{\rm corr} \right|^2$

Experiment – COMPASS@CERN

Table 2 Summary of the estimated relative systematic uncertainties for the |t| and ϕ -dependent cross sections and the integrated cross section. The values are given in percent. Note that the uni-directional uncertainty σ_{\uparrow} is a positive number, and σ_{\downarrow} is a negative number.

Source	σ_{\uparrow}^{t}	$-\sigma_{\downarrow}^{t}$	σ^ϕ_\uparrow	$-\sigma_{\downarrow}^{\phi}$	σ_{\uparrow}	$-\sigma_{\downarrow}$
μ^+ flux	2	2	2	2	2	2
μ^- flux	2	2	2	2	2	2
ECAL threshold	5	5	5	5	5	5
acceptance	4	7	4	7	4	7
kinem. fit	0	7	0	7	0	7
ω background	0	1	0	1	0	1
rad. corr.	2	5	2	5	2	5
Lерто norm.	5-28	3-11	5-51	3-21	8	3
yield mismatch	4–13	3–7	0-12	3–12	9	5
\sum	12-29	13-18	12-53	13-25	14	14

Phys. Lett. B805 (2020) 135454; arXiv:1903.12030

Table 2: Summary of the estimated relative systematic uncertainties on the measured |t| and ϕ -dependent cross sections and on the extracted cross-section contributions $\frac{d\sigma_U}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt}$ and $\frac{d\sigma_{TT}}{dt}$ in the full kinematic range. The values are given as a percentage. Note that the uni-directional uncertainty σ_{\uparrow} (σ_{\downarrow}) has to be used with positive (negative) sign.

source	σ_{\uparrow}^{t}	σ_{\downarrow}^{t}	σ^ϕ_\uparrow	$\sigma_{\downarrow}^{\phi}$	$\sigma_{\mathrm{U}\uparrow}$	$\sigma_{\mathrm{U}\downarrow}$	$\sigma_{\mathrm{TT}\uparrow}$	$\sigma_{\text{TT}\downarrow}$
μ^+ flux	2	2	2	2	2	2	2	2
μ^- flux	2	2	2	2	2	2	2	2
acceptance	4	4	4	4	4	4	4	4
ECAL0 threshold	5 - 7	1	4 - 8	1	5	1	4	1
ECAL1 threshold	1 – 2	1	1 – 3	1	1	1	1	1
χ^2 of kinematic fit	3	5	2.0 - 5.6	4.0 - 8.8	3	5	3	4
LEPTO background	6 - 10	6 - 10	6 - 16	6 - 16	8.3	8.3	1	1
LEPTO normalisation	2 - 3	2 - 3	2 - 5	2 - 5	2.6	2.6	2	2
ω background	0	1.5 - 2.7	0	1.4 - 5.7	0	2.4	0	2.4
radiative corrections	6	3	6.3	3.6	6	3	2	2
Σ	12 – 16	10.1 – 13.1	11.6 – 22.4	9.6 - 20.1	13.3	11.7	7.7	7.1

Phys. Lett. B870 (2025) 139832; <u>arXiv:2412.19923</u>

Experiments – Hall A and CLAS@JLab

Typical total systematic uncertainty:

4 - 8 %

10 %

(depends on kinematic setting)

Table 5.5: Systematic errors for exclusive π^0 cross-section. The DIS study error includes the systematic from radiative correction, electron identification, and spectrometer acceptance.

Systematic	Value (%)
Exclusivity Cuts	0.5
DIS study	3.5
Clustering threshold	0.5
Photon Energy cut	0.5
Total Quadratic (helicity-independent)	3.6
Beam polarization	1
Total Quadratic (helicity-dependent)	3.75

Phys. Rev. Lett. 127, 152301 (2021); arXiv:2011.11125

TABLE IV. Summary table of systematic uncertainties. B denotes bin-to-bin and O indicates overall uncertainties.

Source	Bin-to-bin or overall	Average uncertainty (%)		
Proton ID	В	~2.5		
Fiducial cut	В	~4.7		
Cut on energy of photon detected in the EC	В	~1.6		
Cut on missing mass of the $e'\gamma\gamma$	В	~2.5		
Cut on invariant mass of 2 photons	В	~2.9		
Cut on missing energy of the $ep'\gamma\gamma$	В	~3.2		
Radiative corrections	В	~2.9		
Total beam charge on target	0	<1		
Target length	0	0.2		
Absolute normalization	O	6.0		

Phys. Rev. C90, 025205 (2014); arXiv:1405.0988

