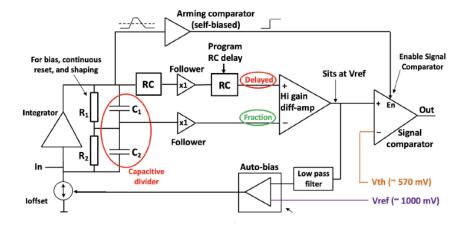
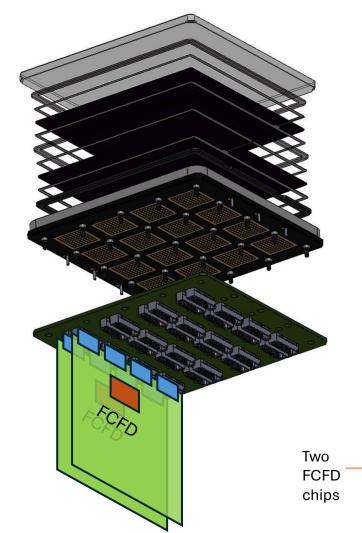
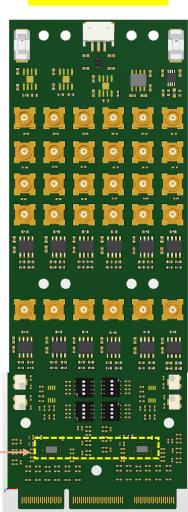

Discussion on pfRICH electronics


Takao Sakaguchi, BNL

Readout Chain

- FCFD is the candidate readout chip.
 - ADC/TDC each channel
 - TDC with CFD
 - 128 channels (in the production version)
 - Power: 2.5V and 1.2V, 2mW/ch
- Digitized output will be sent to RDO via copper cables
 - RDO send data to backend (ROC?) through optical links



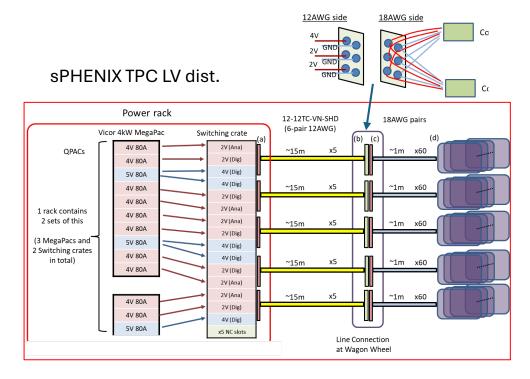

12/11/2025

Granularity

- One HRPPD module = 1024 pads
 - 64 connectors per module for the current design
 - 32 channel per connector.
- An FCFD chip is to have 128 channels
 - One chip per board is minimum. The board will occupy 4 connectors per board (as illustrated)
 - Spanning over a row is a natural choice.
- If there is a mechanical constraint, we should ask for 64 channels version of the FCFD chip?
 - Or use the same chip, with other 64 channels are unused.
- Board configuration on a module is critical for keeping low noise and low cross-talk
 - GND side to face parts side of the other board?

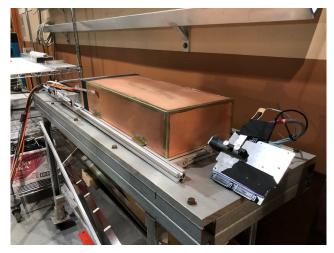
FCFD test card By Raymond

Power distribution


- FCFD chip uses 2.5V and 1.2V.
 - ~2mW/ch = 260mW/chip.
 - Assume equal power split between 2.5V and 1.2V:
 - 52mA for 2.5V, and 108mA for 1.2V
 - We need to regulate from a bit higher voltage.
 - Single voltage: ~3V → 3V*(52+108) =480mW/board
 - Dual voltages: \sim 3V (2.5V), \sim 1.8V (1.2V) \rightarrow 350mW/board
- Connecting one board to one power channel is best
 - Big capacitance on cables from LV module to the board
 - Sizable time constant on turning on the LVs.
 - Resetting a board (via I²C etc) may drop the voltage on the other boards on the same line
 - Unintentional reset of the other boards
- Lower voltage drops calls thicker cables.
 - Needs rigid mechanical design to support them.
 - Close coordination with other mechanical designs is important

From Artur's slides

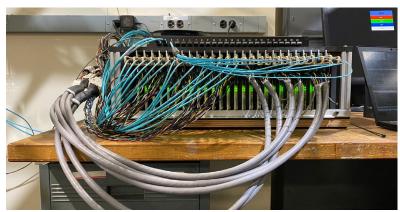
Target power per channel:


Circuit Component	Power per Channel [mW]	Power per ASIC[mW]
Preamp + Discr (low-high power)	2.1 - 3.8	269 - 486
TDC+ADC	0.2	26
Supporting Circuitry	0.2	26
Global Circuitry		200*
Total (high power)		521 - 738

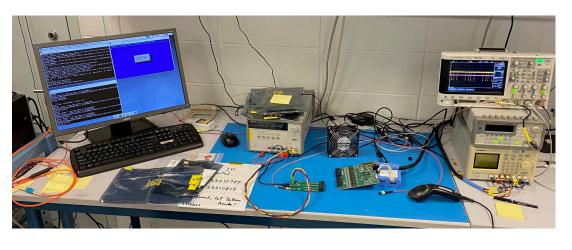
Testing parts used around FCFD

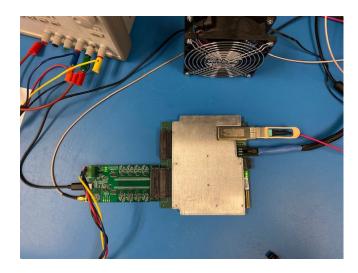
- Magnetic field test
 - Inductor is usually the parts affected by B-field
 - Optical module, DC-DC converter, etc.
 - We should use LDO to regulate powers.
 - · Connectors.
- Radiation hardness test
 - TID with gamma source: there is one in Instrumentation
 - TID with neutrons: Need to go to LANL? (LANSCE)
 - SEU with protons: Needs very high intensity beam to test. Not many places to test. LANSCE may be a candidate.
- Finding the place to test is crucial as this process takes time.
 - Early planning is important.

At superconducting magnet div.

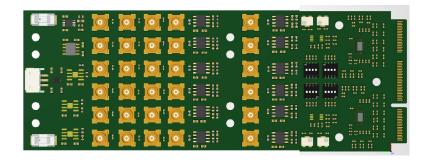

At NSRL

12/11/2025 At Instrumentation


Testbench for electronics and others.


- Injecting known pulse
 - Need high slew-put pulse generator
 - Network analyzer
 - Pulse distribution/controlling board
- DAQ system currently being used is enough
- Burn-in station (for production)
 - We may want to burn ~1 month before we test boards

sPHENIX TPC testbench in physics



12/11/2025 6

Development cycles for FCFD board

- Typical approach: three prototyping + production
 - One small-scale prototype (to come soon)
 - Two full-scale prototype
 - Pre-Production version-> Production
- FCFD is also under development
 - · We could ask for additional feature if we want.
 - LED in addition to CFD?
- Fabrication and test of one prototype takes ~1-1.5 year.
 - ~5 years to close development cycle
- How many boards we should make?
 - Yield is usually 90% at best. I would set 80% for safety.
 - 20% spares will be ideal:
 - 68 tiles * 1.20 / 0.8 = 102 boards?
- Availability of parts changes a lot. We should buy enough parts whenever possible.

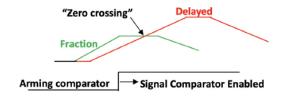
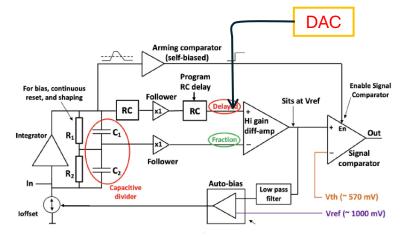



Fig. 2. Diagram showing the Zero Crossing Comparator.

Backup

12/11/2025