SPNG Tensor Data Model and Classes

Brett Viren

December 12, 2025

Brett Viren



Topics

o Status of the “TDM” refactoring.
@ Performance

@ Issues found along the way.

Brett Viren



How it started

Updated sketch: U/V vs W assymetry.
@ U+V sees DNNROI
» CrossViews with MP2/MP3 extraction. i
> Reflect 2 choices in ROI processing (more later) e I z

@ W has direct ROI on Wiener Sl it Vo




How it’s going

CLI parameterized ADC->signal SPNG graph.
e “Any” detector (as long as it is PDHD) =
e CPU ("cpu")or GPU ("gpu", "gpul")
o Pgrapher (ST) or TbbFlow (MT)
o Semaphore count (MT + GPU).

test-spng-tpc. jsonnet and
spng/cfg/spng/* . jsonnet




Example job
Generate ADC files!

wire-cell spng/test-detsim. jsonnet \
-A detector=pdhd \
-A input=muon-depos-moved.npz \
-A output=muon-anode%d.npz

Run SPNG

wire-cell spng/test-spng-tpc.jsonnet \
-A detector=pdhd \
-A device=gpu \
-A tpcid=0 \
-A input=muon-anodeO.npz \
-A output=muon-crossviews-anodeO.pkl

!Caveat: as of writing, I see I have broken the test-detsim.jsonnet. Will fix.



Performance

wall core time sem
pgraphercpu 3.6 543 6.2
tbbflow cpu 6.3 190.5 5.4
pgrapher gpu 3.5 54 6.5
tbbflow gpu 84 191 6.0 1
tbbflow gpu 7.2 204 58
tbbflow gpu 53 16.0 57 4

All times are in seconds.
@ coreis std: : clock, counts core-seconds.
e wall is <chrono> counts real time per node.
o time is fish shell’s t ime program, overall job wall time.

Semaphore count only matters with TbbFlow + GPU.
Reminder: Pgrapher is single threaded, TbbFlow is MT.



Comments on performance

o Single thread Pgrapher does well, especially in core-time.

> But: the job has low parallelism at WCT graph level.
» And: Torch CPU parallelism was not constrained.

* Average 15 cores for “pgrapher cpu”.
@ GPU gives about 10x acceleration compared to single-core CPU.

> Meets my hope/goal
» But, I think we can do better!

* Low GPU RAM usage: forget chunking, let’s batch!

Caveat, tests run without compiler optimization of WCT!



Top time takers With Pgrapher, CPU:

[=R=Relelelele ===l Rs - R-R=Relo e NN =X=]

.787
.699

.232
.228

212

.210
.209
. 041
.034
.023
.023
.023
.022
.017
.014
.014
.013

.012
.010

010

.006
.006

0.782 core-sec:
21.434 core-sec:
21.085 core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:
core-sec:

wall-sec,

wall-sec,

wall-sec,

wall-sec, 1.112
wall-sec, 1.172
wall-sec, 0.395
wall-sec, 0.489
wall-sec, 0.384
wall-sec, 0.203
wall-sec, 0.766
wall-sec, 0.162
wall-sec, 0.162
wall-sec, 0.739
wall-sec, 0.643
wall-sec, 0.484
wall-sec, 0.352
wall-sec, 0.202
wall-sec, 0.312
wall-sec, 0.304
wall-sec, 0.432
wall-sec, 0.232
wall-sec, 0.373
wall-sec, 0.255
wall-sec, 0.255

Brett

(WireCell::
(WireCell:

(WireCell::

(WireCell::
(WireCell:
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::
(WireCell::

Sio::FrameFileSource)
:SPNG: : TensorForward)
TensorForward)

KernelConvolve)
ernelConvolve)
ernelConvolve)
ernelConvolve)

: :KernelConvolve)
ernelConvolve)
ernelConvolve)
ernelConvolve)
ernelConvolve)
::KernelConvolve)
:KernelConvolve)

rossViews) "tpcOvO0"
:SPNG: :CrossViews) "tpcOv1"
ensorSetPickleSink) "muon-crossviews-anode0.pkl"
ensorSetPickleSink) "tensors-decon-0.pkl"
ensorSetPickleSink) "tensors-unpack-0.pkl"
ebaseliner) "tpcOv2"
:FrameToTdm) "tpcO0"
ebaseliner) "tpcOv1l"
ebaseliner) "tpcOvO"

"muon-anode0.npz"

"tpcOvl" (<--DNNROI inference)

"tpcOvOo"
(<--MP2/MP3 prep)

(<--apply ROI)

"tpcOgroup_vic2f1£f0" (<--2D decon)
"tpcOgroup_v0c2f1£0"
"tpcOgroup_v2c0f1"

"tpcOvOwiener"

ensorSetPickleSink) "tensors-threshold-0.pkl"

"tpcOv2wiener"
"tpcOvidnnroi"
"tpcOviwiener"
"tpcOvOdnnroi"
"tpcOgroup_v2c0f0"
"tpcOv2gauss"
"tpcOvlgauss"

December 12, 2025

8/16



Top time takers With Pgrapher, GPU:

.791 wall-sec,
.650 wall-sec,
.622 wall-sec,
.212 wall-sec,
.211 wall-sec,
.209 wall-sec,
.191 wall-sec,
.140 wall-sec,
.078 wall-sec,
.067 wall-sec,
.040 wall-sec,
.037 wall-sec,
.013 wall-sec,
.009 wall-sec,
.008 wall-sec,
.004 wall-sec,
.004 wall-sec,
.004 wall-sec,
.004 wall-sec,
.004 wall-sec,
.004 wall-sec,
.004 wall-sec,
.001 wall-sec,

SO0 O0OODO0ODO0OO0DODO0DO0OO0OO0OO0OOCOOCOOO
D000 ODDOO0DODO0OOO0DOOCOOCOOO

.791 core-sec: (WireCell:
.825 core-sec: (WireCell::
.805 core-sec: (WireCell::
.293 core-sec: (WireCell::
.212 core-sec: (WireCell::
.210 core-sec: (WireCell::
.191 core-sec: (WireCell::
.141 core-sec: (WireCell::
.079 core-sec: (WireCell::
.068 core-sec: (WireCell::
.041 core-sec: (WireCell::
.822 core-sec: (WireCell::
.014 core-sec: (WireCell::
.161 core-sec: (WireCell::
.132 core-sec: (WireCell::
.005 core-sec: (WireCell::
.005 core-sec: (WireCell::
.005 core-sec: (WireCell::
.005 core-sec: (WireCell::
.014 core-sec: (WireCell::
.012 core-sec: (WireCell::
.023 core-sec: (WireCell::
.002 core-sec: (WireCell::

:Sio: :FrameFileSource)
CrossViews) "tpcOv1"
rossvViews) "tpcOvO"
ensorSetPickleSink) "tensors-decon-0.pkl"

ensorSetPickleSink) "tensors-unpack-0.pkl"

:TensorSetPickleSink) "muon-crossviews-anode0.pk
(<--DNNROI inference)

ensorForward)

ensorForward)

:KernelConvolve)

ernelConvolve)
ernelConvolve)
ernelConvolve)
:KernelConvolve)
ernelConvolve)
ernelConvolve)
KernelConvolve)
:KernelConvolve)

"tpcOvl"
ebaseliner) "tpcOv2"
Rebaseliner) "tpcOvO0"
ebaseliner) "tpcOv1l"
"tpcOvo"
rameToTdm) "tpcO"
ensorSetPickleSink) "tensors-threshold-0.pkl"

"muon-anode0.npz"

(<--apply ROI)

"tpcOgroup_v2c0f1" (<--2D decon)

hreshold) "tpcOwfull"

"tpcOv2wiener"
"tpcOgroup_v0c2f1£0"
"tpcOvOwiener"
"tpcOviwiener"
"tpcOvidnnroi"
"tpcOvOdnnroi"
"tpcOgroup_vic2f1£0"
"tpcOv2gauss"

December 12, 2025

(<--MP2/MP3 prep)

9/16



Issues along the way

o DNNROI output processmg order

» This was a misunderstanding on my part.

S —r TS



DNNROI output processing order

DNNROI produces a floating point image roughly bounded in [0.0, 1.0] requires 3 operations

T Must threshold FP values to obtain binary {0,1} mask.
U Must upsample/unrebin? by 4x to undo upstream rebin.
A Must apply the ROIs to the Gauss-filtered decon.

May choose at least any of these orderings:
T+A+U or U+T+A or T+U+A

°I say (un)rebin to imply interval domain operation, {up,down}sample means FFT resample method.
Brett Viren December 12, 2025

11/16



DNNROI output processing order implications

T+A+U e cons: Must down-sample Gauss, ROI sizes multiples of 4.
@ pros: no possible ringing
U+T+A e cons: FFT upsample of DNNROI may (or not) cause ringing, any ROI size
@ pros: Gauss is not downsampled, ROI sizes multiples of 4.
T+U+A e cons: ROI sizes multiples of 4.
@ pros: Gauss is not downsampled, no possible ringing.
Details / tracking at:
https://github.com/WireCell/spng/issues/32
Start with T+U+A as this is what OSP does.


https://github.com/WireCell/spng/issues/32

Misunderstanding pessible-bug in past DNNROI inference.

I misunderstood the DNNROI training so redact this slides.
The (non) issue is now:

e DNNROI training and inference scale all three features images by 1/4000.
e I misunderstood that training only scale “loose LF” while inference scaled both.

It is still perhaps odd (to me) to also scale MP2/MP3 by 4000, but the BatchNorm2D will find a
suitable self normalization across the feature dimension.
For reference, I keep the BatchNorm2D slide in backups.



Next up

[J Validate post-CrossView outputs.
0J Configuration:

» Output IFrame from SPNG graph

Make sim and SPNG test files to be “modular”.
A “depo flux splat” subgraph (“true signals”)
An OSP subgraph

Individual and combined main config files.

vV vy vy

0 More rigorous profiling, performance eval.

[J Revisit run-time story (eg containers, CVMFS).

[J Incorporate depo files from Jake and “SPDIR” depos.

[0 Continue DNNROI++ ideas (MPn — CrossViews and Jake’s Multi-UNet)
O ... What else?



FL




BatchNorm2D

DNNROI starts with Conv2D and then has a BatchNorm2D:

r—FElx
y= 7—[ ] +8
VVar[z] + €
E[z], Var[z] mean/variance pixel value across feature dimension.
v, B per-feature learned parameters.

By default, these parameters are all frozen after training.


https://docs.pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html

