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Topics

o Status of the “TDM” refactoring.
@ Performance

@ Issues found along the way.
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How it started

Updated sketch: U/V vs W assymetry.
@ U+V sees DNNROI
» CrossViews with MP2/MP3 extraction. i
> Reflect 2 choices in ROI processing (more later) e I z

@ W has direct ROI on Wiener Sl it Vo




How it’s going

CLI parameterized ADC->signal SPNG graph.
e “Any” detector (as long as it is PDHD) =
e CPU ("cpu")or GPU ("gpu", "gpul")
o Pgrapher (ST) or TbbFlow (MT)
o Semaphore count (MT + GPU).

test-spng-tpc. jsonnet and
spng/cfg/spng/* . jsonnet




Example job
Generate ADC files!

wire-cell spng/test-detsim. jsonnet \
-A detector=pdhd \
-A input=muon-depos-moved.npz \
-A output=muon-anode%d.npz

Run SPNG

wire-cell spng/test-spng-tpc.jsonnet \
-A detector=pdhd \
-A device=gpu \
-A tpcid=0 \
-A input=muon-anodeO.npz \
-A output=muon-crossviews-anodeO.pkl

!Caveat: as of writing, I see I have broken the test-detsim.jsonnet. Will fix.



Performance

wall core time sem
pgraphercpu 3.6 543 6.2
tbbflow cpu 6.3 190.5 5.4
pgrapher gpu 3.5 54 6.5
tbbflow gpu 84 191 6.0 1
tbbflow gpu 7.2 204 58
tbbflow gpu 53 16.0 57 4

All times are in seconds.
@ coreis std: : clock, counts core-seconds.
e wall is <chrono> counts real time per node.
o time is fish shell’s t ime program, overall job wall time.

Semaphore count only matters with TbbFlow + GPU.
Reminder: Pgrapher is single threaded, TbbFlow is MT.



Comments on performance

o Single thread Pgrapher does well, especially in core-time.

> But: the job has low parallelism at WCT graph level.
» And: Torch CPU parallelism was not constrained.

* Average 15 cores for “pgrapher cpu”.
@ GPU gives about 10x acceleration compared to single-core CPU.

> Meets my hope/goal
» But, I think we can do better!

* Low GPU RAM usage: forget chunking, let’s batch!

Caveat, tests run without compiler optimization of WCT!



Top time takers With Pgrapher, CPU:
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Top time takers With Pgrapher, GPU:
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Issues along the way

o DNNROI output processmg order

» This was a misunderstanding on my part.

S —r TS



DNNROI output processing order

DNNROI produces a floating point image roughly bounded in [0.0, 1.0] requires 3 operations

T Must threshold FP values to obtain binary {0,1} mask.
U Must upsample/unrebin? by 4x to undo upstream rebin.
A Must apply the ROIs to the Gauss-filtered decon.

May choose at least any of these orderings:
T+A+U or U+T+A or T+U+A

°I say (un)rebin to imply interval domain operation, {up,down}sample means FFT resample method.
Brett Viren December 12, 2025
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DNNROI output processing order implications

T+A+U e cons: Must down-sample Gauss, ROI sizes multiples of 4.
@ pros: no possible ringing
U+T+A e cons: FFT upsample of DNNROI may (or not) cause ringing, any ROI size
@ pros: Gauss is not downsampled, ROI sizes multiples of 4.
T+U+A e cons: ROI sizes multiples of 4.
@ pros: Gauss is not downsampled, no possible ringing.
Details / tracking at:
https://github.com/WireCell/spng/issues/32
Start with T+U+A as this is what OSP does.


https://github.com/WireCell/spng/issues/32

Misunderstanding pessible-bug in past DNNROI inference.

I misunderstood the DNNROI training so redact this slides.
The (non) issue is now:

e DNNROI training and inference scale all three features images by 1/4000.
e I misunderstood that training only scale “loose LF” while inference scaled both.

It is still perhaps odd (to me) to also scale MP2/MP3 by 4000, but the BatchNorm2D will find a
suitable self normalization across the feature dimension.
For reference, I keep the BatchNorm2D slide in backups.



Next up

[J Validate post-CrossView outputs.
0J Configuration:

» Output IFrame from SPNG graph

Make sim and SPNG test files to be “modular”.
A “depo flux splat” subgraph (“true signals”)
An OSP subgraph

Individual and combined main config files.

vV vy vy

0 More rigorous profiling, performance eval.

[J Revisit run-time story (eg containers, CVMFS).

[J Incorporate depo files from Jake and “SPDIR” depos.

[0 Continue DNNROI++ ideas (MPn — CrossViews and Jake’s Multi-UNet)
O ... What else?
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BatchNorm2D

DNNROI starts with Conv2D and then has a BatchNorm2D:

r—FElx
y= 7—[ ] +8
VVar[z] + €
E[z], Var[z] mean/variance pixel value across feature dimension.
v, B per-feature learned parameters.

By default, these parameters are all frozen after training.


https://docs.pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html

