

EDMS Document Number

3398222

Versatile Link Plus Project URL

<https://espace.cern.ch/project-Versatile-Link-Plus/SitePages/Home.aspx>

Date: 21 January 2026

Revision No. v.1.0

Versatile Link Plus Technical Note

LDQ10 and IpGBT I²C issue

Executive Summary

A functional issue has been identified in the LDQ10 quad laser driver used in the VTRx+ module [1]. A specific I²C bus condition that can occur at reset-time is able to place the LDQ10 into an invalid internal state in which it does not acknowledge I²C transactions, an issue which is deterministic when the triggering condition is met. In systems where the IpGBT is the I²C master, the likelihood of encountering this condition depends on IpGBT startup behaviour, device-to-device variation, and environmental conditions (temperature, supply voltage, radiation dose). It should be noted that even though I²C communication with the LDQ10 is lost, the laser driver remains operational in terms of data transmission with the first channel enabled with its default settings (laser bias and modulation active).

The issue is observed when the LDQ10 is reset while SDA and SCL are both low, followed by a release of SCL before SDA (or when their release happens simultaneously). Recovery is possible by resetting the LDQ10 with at least one I²C line high or by forcing an additional SCL high-low-high sequence while keeping SDA high prior to resuming normal I²C traffic. To minimize risk, the LDQ10 should be released from reset after the IpGBT, e.g., by driving LDQ10 RSTN from IpGBT RSTOUTB or from an IpGBT GPIO to enable remote reset capability. A firmware-based mitigation using only the existing IpGBT I²C master has been developed and validated. The updated firmware has been made available in the GBT-SC gitlab repository.

<i>Prepared by</i>	<i>Checked by</i>	<i>Approved by</i>
S. Kulis, J. Troska CERN/EP-ESE 1211 Geneva 23 Switzerland <i>szymon.kulis@cern.ch</i>	K. Wyllie, F. Vasey S. Baron, S. Biereigel	—

Document History

Rev. No	Date	Pages	Description of Changes
1.0	21 Jan 2026	All	First Version

Contents

Introduction	4
Detailed problem description	4
Exposure and mitigation	5
Wider impact	5
Conclusion	5
Acknowledgements	5

Introduction

User reports and follow-up investigations of the VTRx+ module have revealed a functional issue in the LDQ10 quad laser driver [1]. Under specific conditions in systems where the IpGBT [2] acts as the I²C master*, this issue causes I²C communication with the LDQ10 to become non-functional in that the LDQ10 does not acknowledge (or act upon) I²C transactions. The issue is inherent to the LDQ10 design and is expected to occur deterministically whenever the triggering conditions are met. Whether the issue manifests in a given system depends on the startup behaviour of the IpGBT I²C master, which can include a stochastic (device-dependent) element. The probability of occurrence of the triggering condition varies between devices and is influenced by environmental conditions such as temperature, supply voltage, and radiation dose. While the occurrence rate cannot be reliably modelled, there is little anecdotal evidence from the user community to suggest that it occurs widely or often. The biggest risk is to systems which do not include a means to remotely reset the VTRx+ module (for example via an IpGBT GPIO or RESETOUTB). It is worth noting that even when I²C communication with the LDQ10 is disrupted after power-up, the laser driver remains operational in terms of data transfer with the first channel enabled and configured with default settings, i.e., laser bias and modulation remain active. If the issue is triggered after a successful configuration (for reasons outlined later in this document), the LDQ10 remains operational in terms of data transfer and the previously programmed settings persist.

Detailed problem description

The LDQ10 issue is related to the implementation of its I²C interface, including the use of clock-gating techniques. It has been observed that if the LDQ10 is reset (via the external RSTN pin or its internal power-on reset (POR)) while both I²C lines (SDA and SCL) are held low, and if SCL is released before or simultaneously with SDA, the LDQ10 internal state machine can become corrupted such that it will not reply to I²C communication. Recovery is possible either by: resetting the LDQ10 again while at least one I²C line is high, or forcing an additional SCL high-low-high sequence while keeping SDA high prior to resuming normal I²C traffic. This malfunction is logical only and does not cause permanent damage or long-term degradation. It should also be noted that this functional issue makes the LDQ10 not fully compliant with the I²C specification [6]. In particular, I²C-bus compatible devices are expected to reset their bus logic upon receipt of a START or repeated START condition such that they anticipate the subsequent target address phase, even if START conditions are not positioned according to the proper format. This behavior is not always correctly implemented by the LDQ10 under the conditions described above. Although the issue was discovered in the context of power-up, the analysis, simulations, and experimental validation that have been carried out indicate that the LDQ10 can be brought into the same non-responsive state even after an initially successful reset sequence. One example is simultaneously pulling both SDA and SCL low for a prolonged interval (on the order of hundreds of nanoseconds or longer). While the IpGBT master is not expected to generate invalid I²C sequences, the susceptibility to external disturbances (e.g., EMC-related and/or radiation-induced single events) should be carefully assessed at the system level and means of recovery from this situation should be foreseen.

A contributing factor is that some functional blocks within the IpGBT I²C master controller do not have an asynchronous reset and may therefore power up in a nondeterministic state. As a result, the IpGBT may temporarily pull SDA and/or SCL low during its reset sequence before releasing both lines when initialization completes.

In summary, the problematic case requires the following sequence:

1. the IpGBT starts up with both SDA and SCL pulled low,
2. the LDQ10 reset is released while both lines are low, and
3. during IpGBT initialization completion, SCL is released before (or simultaneously with) SDA is released.

*Other I²C masters could conceivably cause the same problem, so far the issue has only been observed with the IpGBT

Exposure and mitigation

Systems that externally enforce reset sequencing such that the IpGBT exits reset and releases the I²C lines before the LDQ10 is released from reset are not expected to be affected. In systems where both devices are reset simultaneously, or where the IpGBT is released from reset later than the LDQ10, the issue may occur with a probability driven by the chance that both I²C lines are low at the time of the LDQ10 reset being released. In systems relying solely on the internal POR circuits (i.e., without external reset control) and assuming identical power-supply rise times for the VTRX+ module and the IpGBT (they share the same supply rail), the issue is generally not expected because under the same environmental conditions the LDQ10 POR pulse is longer than the IpGBT POR pulse, which tends to release the IpGBT from reset first. However, due to device-to-device variation, this behavior cannot be guaranteed nor reliably quantified for arbitrary device pairs.

To ensure reliable operation of I²C communication in Versatile Link+ systems, it is recommended to enforce a reset sequence in which the LDQ10 is released from reset later than the IpGBT. This can be achieved by connecting the LDQ10 RSTN pin to the IpGBT RSTOUTB pin. As an alternative, the LDQ10 RSTN pin may be driven by an IpGBT general-purpose I/O to provide remote reset capability.

For systems where the reset sequence cannot be guaranteed and PCB modifications are not feasible, a mitigation that relies solely on the existing IpGBT I²C master and uses the IpGBT-FPGA [3] and GBT-SC [4] cores has been developed, validated, and documented in [5]. The approach requires a specific sequence of IC transactions with tightly controlled timing; therefore, a firmware-based change is proposed to ensure the required timing behavior. In the proposed solution, a new module named `ic_top_with_vtrx_i2c_recovery` is provided. It wraps the existing `ic_top` module and is intended as a drop-in replacement, with the only functional difference being the exposure of two additional control signals:

`vtrx_i2c_recovery_i2c_master_id` and `vtrx_i2c_recovery_trigger`. These signals are used to indicate which IpGBT I²C master the VTRx+ module is connected to and trigger the recovery sequence, respectively. In addition, a `vtrx_i2c_recovery_busy` signal is provided to indicate that the recovery sequence is in progress. This solution removes the need for the user system to implement precise timing control for the recovery sequence. However, in systems that already provide a mechanism to generate precisely timed IC transactions, there is no need to adopt the new wrapper module; users are encouraged instead to implement the recovery sequence documented in the MR [5].

Wider impact

Due to widespread design re-use of the I²C block implementations (both slave and master), all ASIC design teams using the affected blocks have been informed of the potential issue and should assess any impact on their ASICs and systems. The design teams of other ASICs implementing I²C slaves are invited to check their logic test coverage for this particular issue.

Conclusion

The functional issue recently identified in the implementation of the I²C block of the LDQ10 has been investigated and reproduced in functional testing and chip simulation. The lock-up of the I²C slave as a response to certain bus states can be mitigated at the system design level using the design guidelines outlined above. A means of in-system mitigation is provided through an update of the GBT-SC core.

Acknowledgements

The authors are grateful for the assistance of the ATLAS ITk community for bringing the problem to our attention and would like in particular to acknowledge the contribution of Stefan Schmitt (DESY) to the detailed understanding of the impact of signal timing.

References

- [1] Jan Troska, "Versatile Link Plus Technical Specification, part 2.1.3: Quad Laser Driver". Available: https://edms.cern.ch/ui/file/1719330/1/VLplus_quadLDD_spec_v1.5.pdf
- [2] P. Moreira, et all. "IpGBT manual" 2021. Available: <https://cern.ch/lpgbt/>
- [3] "IpGBT-FPGA Core". Available: <https://gitlab.cern.ch/gbt-fpga/lpgbt-fpga>
- [4] "GBT-SC module for FPGA". Available: <https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc/>
- [5] "Add VTRx+ I2C recovery sequencer" Merge Request 11 to GBT-SC core. Available: https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc/-/merge_requests/11
- [6] NXP Semiconductors, *UM10204: I2C-bus specification and user manual*, Rev. 7, Oct. 2021.