

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0670

RHIC Beam Use Request For Runs 18 and 19

The STAR Collaboration

- BUR on Isobars (chiral effect)
- BUR on Au+Au @ 27 GeV (global Lambda polarization)

Zhangbu Xu

(Brookhaven National Lab)

- BUR on BES-II
- BUR on FXT
- Performance in run17 Goals and Performance
- Summary

May 15, 2017

BUR charges from ALD/BNL

Dear RHIC Spokespersons:

I am writing to request that you submit the annual Beam Use Request for the RHIC runs in 2018 and 2019 and related material.

We currently anticipate, assuming favorable budget conditions, runs of 15 cryoweeks (including 2 weeks for the Coherent electron Cooling test) in FY2018 and 24 cryo-weeks each in FY2019 and FY2020. Less favorable, but still likely, budget conditions would only allow for a combined run of 20 cryo-weeks in FY2019/FY2020. The beam use request should consider both possibilities.

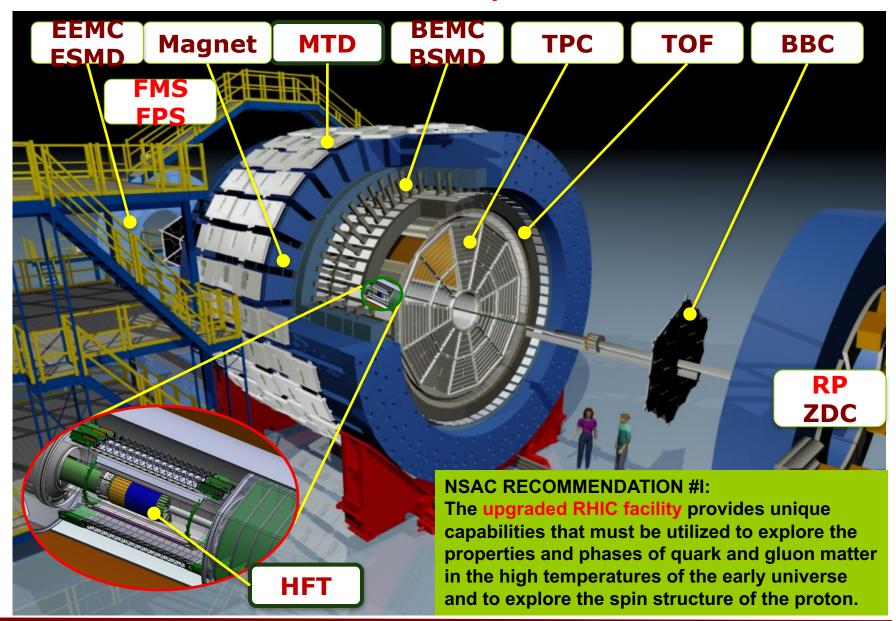
The submissions are due by May 15, 2017. Since PHENIX has ended data taking and sPHENIX has not yet started construction, I expect to receive a BUR from STAR only.

I also ask STAR and PHENIX to report on the status of analyses of data from previous RHIC runs, especially the runs in 2014-16. In addition, I invite the STAR and sPHENIX Collaborations to present letters of intent for proposals of modest forward upgrades to their detectors for data taking after 2021 for consideration by the PAC.

Contents

1	Hig	hlights	from STAR Program	8
	1.1	STAR		8
		1.1.1		g
		1.1.2	Transverse Spin Program	C
		1.1.3	Status of Run 17	1
	1.2	STAR	Heavy-Ion Highlights	4
		1.2.1	Open Heavy Flavor	4
		1.2.2	Quarkonia	6
		1.2.3	Jets	ç
		1.2.4	Exploration of the Phase Diagram in BES-I	ç
		1.2.5	Search for the First-Order Phase Transition	
		1.2.6	Elliptic Flow of the QCD Medium	
		1.2.7	Rapidity Correlations	
		1.2.8	Global Hyperon Polarization	
		1.2.9	First Fixed Target Results	
			Chiral Magnetic Effect	
			Chiral Magnetic Wave	
2	Rur	18 R	equest 3	3
	2.1	Collisi	ons of Isobaric Nuclei	3
		2.1.1	Chiral Magnetic Effect	3
		2.1.2	Dilepton Production at Very Low Transverse Momenta	1
	2.2	Au+A	u Collisions at 27 GeV	g
		2.2.1	Global Polarization Measurements at 27 GeV	g
		2.2.2	Dilepton Measurements at 27 GeV	C
	2.3	Au+A	u Collisions at 3 GeV	2
3	Rur	19 R	equest 4	3
	3.1	Struct	ure of the QCD Phase Diagram	3
		3.1.1	Search for the Critical Point: Fluctuation Measurements 4	3
		3.1.2	Search for the First-Order Phase Boundary: Measurement of Baryon	
			Directed Flow	
		3.1.3	Onset of Deconfinement: the Disappearance of QGP Signatures 4	
		3.1.4		0
	3.2		vements in the Coverage of Phase Space and the Determination of	
			-Out Parameters	2
	3.3	Propo	sal for BES-II	
	3.4		XT Program	
			Motivation for the FXT Program	5
		3.4.2	FXT Physics Program	6
		3.4.3	FXT Beam Request	g
4	Stat	tus of s	STAR Upgrades for Runs 18 and 19 6.	1
	4.1		ner TPC (iTPC)	2
	4.2		vent Plane Detector (EPD)	
	4.3		adcap TOF (eTOF)	

Two Highest Priorities for the next two RHIC runs (run 18 and 19) focus on two compelling programs key to RHIC mission


Run 18: isobar collisions at 200 GeV Decisive test of role of magnetic field in charge separation measurements

Run 19: Initiating the BES-II Higher BES energies + Fixed Target (FXT) program

C	omputing at STAR		67
5.1	1 STAR Workflow and Computing Resources	. 1	67
5.3	2 Datasets overview and Prioritization process	. 1	68
5.3	3 Production computing resource estimates for the purpose of the BUR	. 1	69

3

STAR Detector System

X10³ increases in DAQ rate since 2000, most precise Silicon Detector (HFT 2014-16) 4

Run 18 BUR Executive Summary

Run	Energy	Duration	System	Goals	priority	Sequence
	√s _{NN} =200 GeV	3.5-wk	Zr+Zr	1.2B minbias	1	1
18		3.5-wk	Ru+Ru	1.2B minbias	1	2
	√s _{nn} =27 GeV	3-wk	Au+Au	1B minbias	2	3
	√s _{NN} =3 GeV(FXT)	2 days	Au+Au	100M minbias	3	4

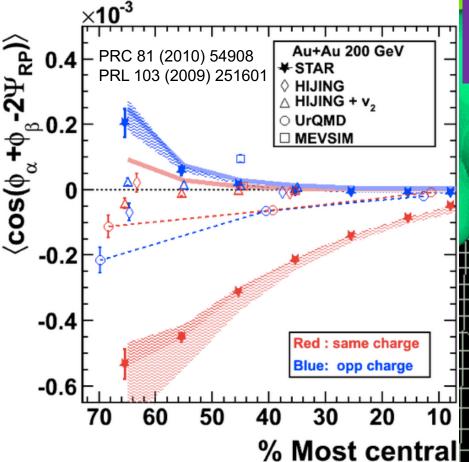
1. Isobar collisions:

study the CME contribution to charge separation ${}^{96}_{44}Ru$, ${}^{96}_{40}Zr$: charge different by 10% (44 vs 40), everything else the "same"

2. Au+Au @ 27 GeV:

High Statistics Λ and $\overline{\Lambda}$ Global Polarization Measurement Event-Plane Detector (EPD) presence important

3. Au+Au @ 3 GeV:


Fluctuation measurement at energies between HADES and BES-I Significant statistics in FXT mode with large acceptance Competition with BM@N (NICA) scheduled for 2019

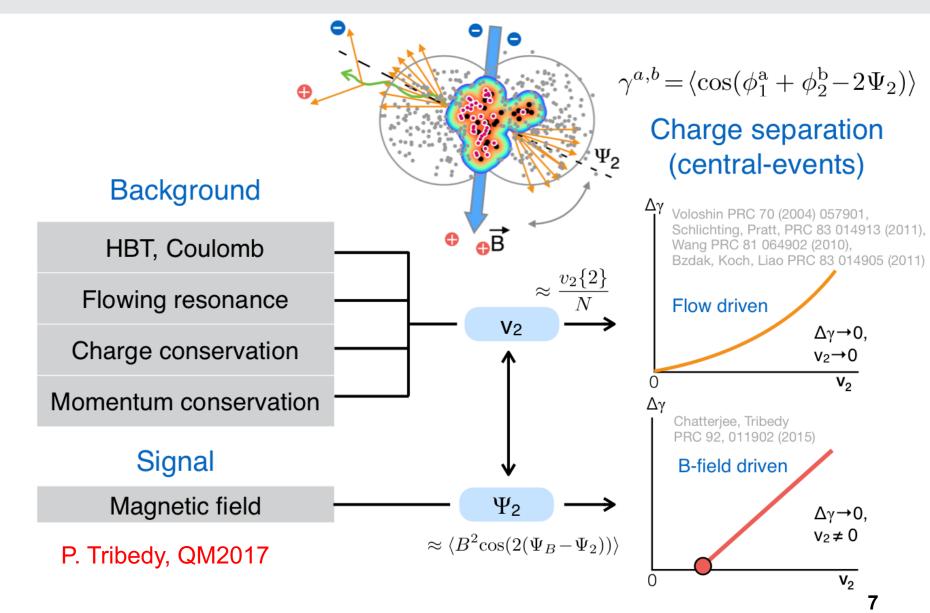
Observing Topological Charge Transitions

To observe in the lab

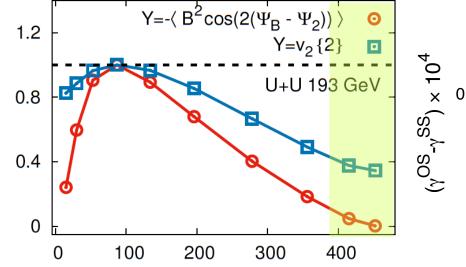
- add massless fermions
- apply a magnetic field

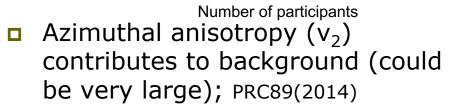
Paul Sorensen: QM2017 CME task force report: arXiv: 1608.00982 Talk by Yuji Hirono (afternoon)

A required set of Extraordinary Phenomena:

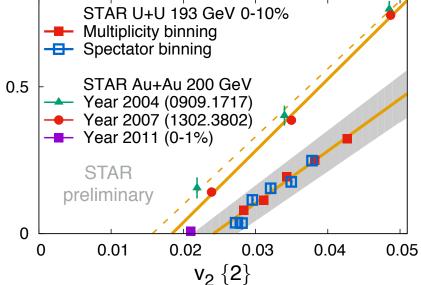

- **QCD** Topological Charge
- + Chiral Symmetry Restoration
- + Strong Magnetic Field

Observable: Chirally restored quarks separated along magnetic field


Experimental strategy: Measure 2 particle correlations (++,--,+-) WRT reaction plane; 1/3 observed values reproduced by conventional models

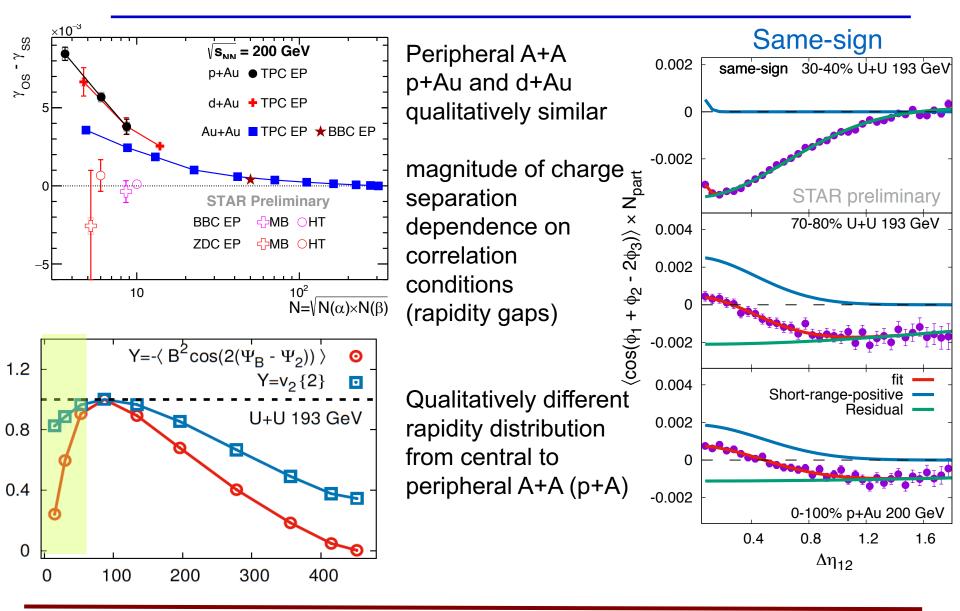

A decade of disentanglement

Signal & Backgrounds of charge separation



Charge separation depends on final-stage shape v₂

 magnetic field which drives the signal, Qualitatively have similar centrality dependence.



U+U and Au+Au central data: different dependence on v_2 ; Intercept at non-zero v_2

Not just driven by final-stage background correlations?

Qualitative assessment is not likely to disentangle the two effects; STAR seeks to provide precision test

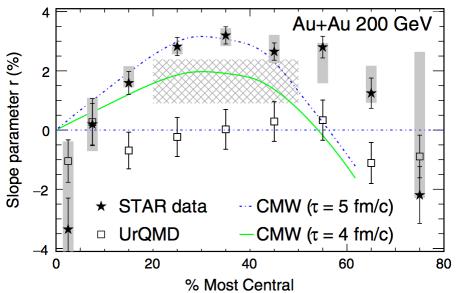
Charge Separation depends on initial systems

Separation appears in many forms

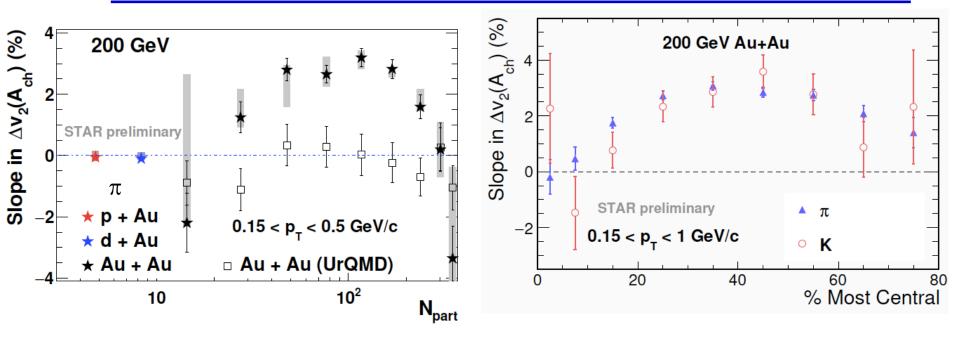
PRL113(2014) 60 - 80% ----κ=1 **κ = 1.5 BES II error projection** -10 30 - 60% - H_{os}) × 10 (H_{ss} Pb+Pb Au+Au 10 - 30% 0.5 n STAR preliminary 10³ 10² 10 √s_{NN} (GeV)

peak between 10-200GeV

Has a predicted dependence on Global charge asymmetry: Chiral Magnetic Wave

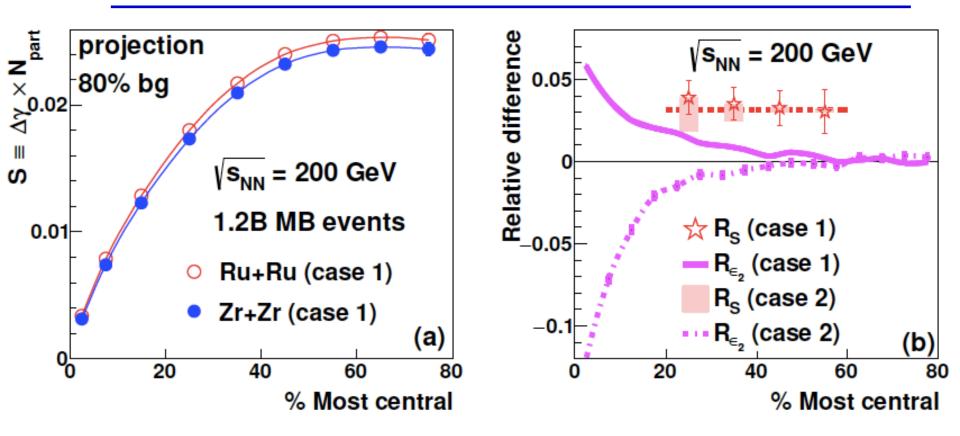

Editors' Suggestion

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions


L. Adamczyk *et al.* (STAR Collaboration) Phys. Rev. Lett. **114**, 252302 (2015) – Published 26 June 2015

A possible signature of chiral symmetry restoration, in the form of a chiral magnetic wave in the quark-gluon plasma, has been observed in heavy-ion collisions at RHIC. Show Abstract +

Strangeness (PID) distinguish models

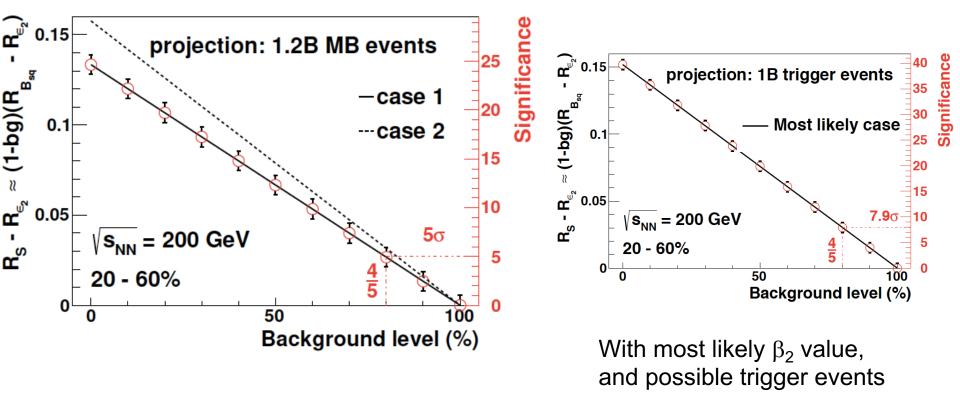

"... We demonstrate that the STAR results can be understood within the **standard viscous hydrodynamics** without invoking the **CMW**..."

"... the slope r for the kaons should be negative, in contrast to the pion case, and the magnitude is expected to be larger... Note that in these predictions are integrated over $0 < pT < \infty$. In order to properly test them, a wider pT coverage is necessary..."

— Y. Hatta et al. Nuclear Physics A 947 (2016) 155

Measured kaon slope is positive: contradicts the conventional model prediction without CMW

A decisive test with Isobars



CAD attempts to locate enriched Ruthenium-96 source Possible with the refurbished Oak Ridge Isotope Facility, Run with natural abundance reduces luminosity by x5 Can reach 1.2 Billion events within 3.5 weeks of operation

PRC 94(2016)041901

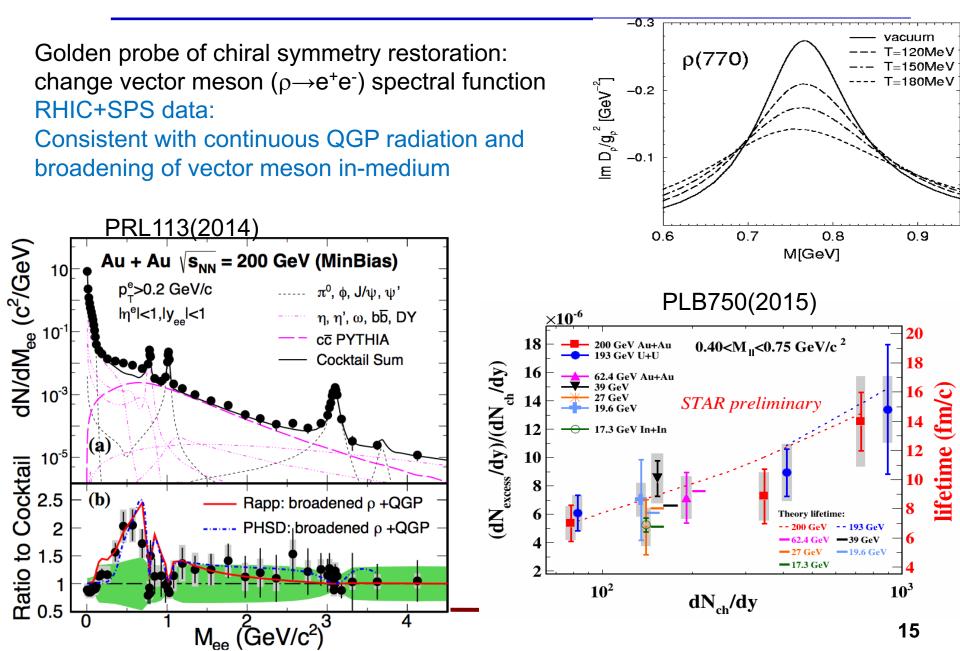
Projections for Isobar

With 1.2B minbias events each species 5σ significance if 80% observed correlation is background

Chiral Symmetry & Magnetic Field

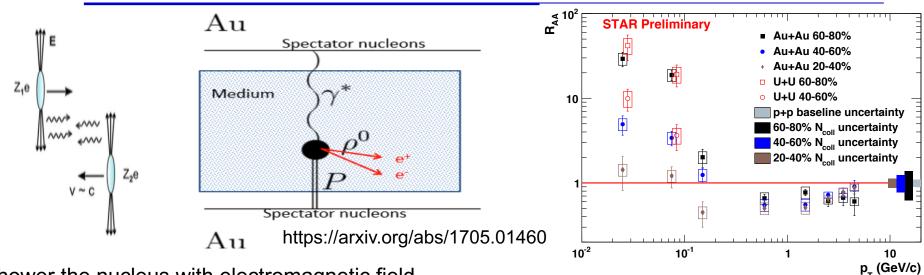
Two other Extraordinary phenomena to make this possible (QCD topology reflects in charge separation)

Disentangle and assess necessary conditions

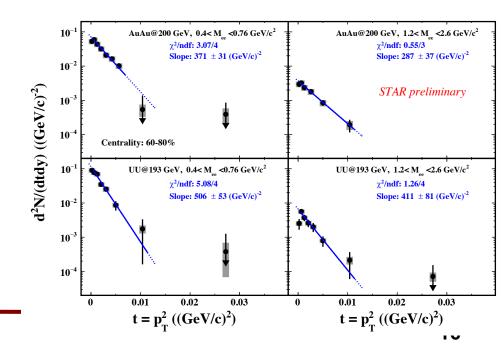

Chiral Symmetry Restoration

 low-mass dilepton excess (change of vector meson ρ spectral function)

Strong Magnetic Field


- Coherent photo-production of J/Ψ and low-mass dilepton in non-central A+A collisions
- Global Hyperon Polarization

QCD phase transition is a chiral phase transition


Coherent photoproduction

in violent non-central A+A collisions?

Shower the nucleus with electromagnetic field and test the effect with isobar collisions:

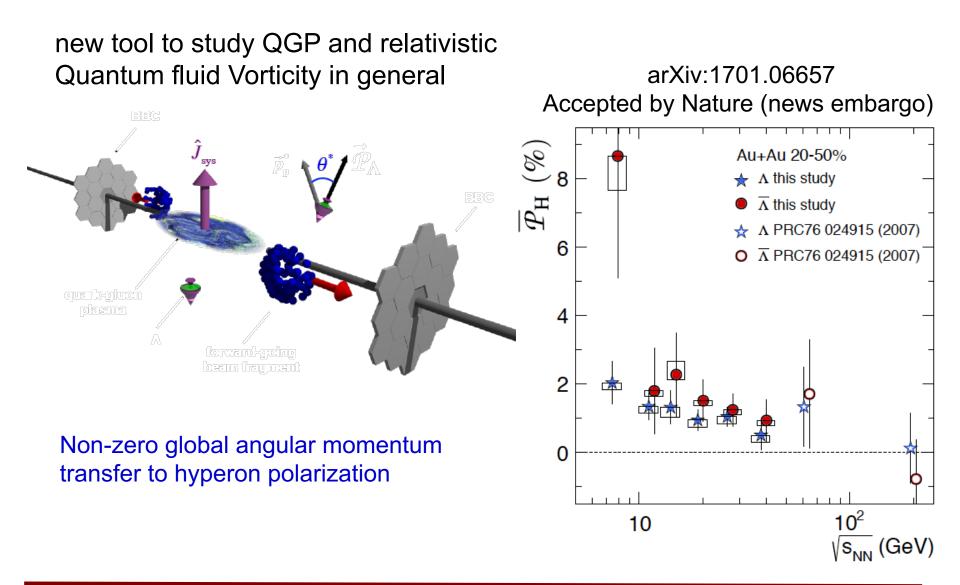
- Non-central but not UPC photoproduction
- Large enhancement of dilepton and J/Ψ production at very low p_T (<150MeV)
- Consistent with strong electromagnetic field interacting with nucleus target collectively
- Test with Isobar collisions (dilepton at LMR) Photon-photon (Z⁴)
 Photon-Pomeron (Z²)
 Hadron-Hadron (Z⁰)
 LMR excess B-field driven (Z²)

Au+Au at 27GeV

Run	Energy	Duration	System	Goals	priority	Sequence
	√s _{NN} =200 GeV	3.5-wk	Zr+Zr	1.2B minbias	1	1
18		3.5-wk	Ru+Ru	1.2B minbias	1	2
	√s _{nn} =27 GeV	3-wk	Au+Au	1B minbias	2	3
	√s _{NN} =3 GeV(FXT)	2 days	Au+Au	100M minbias	3	4

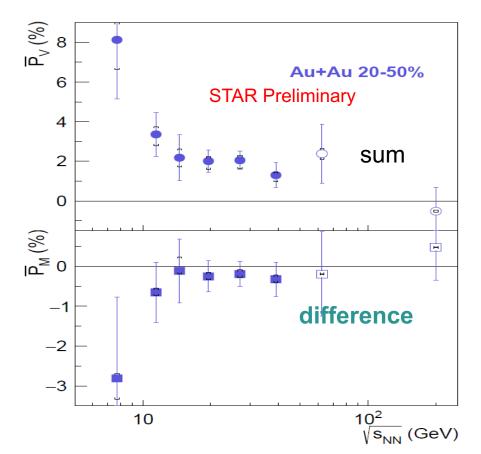
1. Isobar collisions:

study the CME contribution to charge separation $\frac{96}{44}Ru$, $\frac{96}{40}Zr$: charge different by 10% (44 vs 40), everything else the "same"

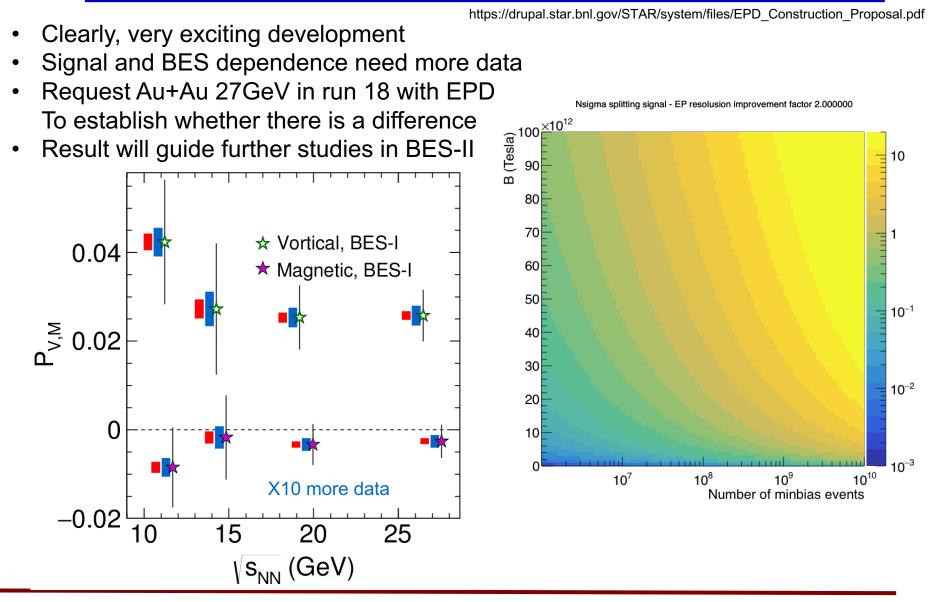

2. Au+Au @ 27 GeV:

High Statistics Λ and $\overline{\Lambda}$ Global Polarization Measurement Event-Plane Detector (EPD) presence important

3. Au+Au @ 3 GeV:


Fluctuation measurement at energies between HADES and BES-I Significant statistics in FXT mode with large acceptance Competition with BM@N (NICA) scheduled for 2019

Global Hyperon Polarization



QCD fluid responds to external field

- Positive Global Hyperon Polarization indicating a spin-orbit (Vortical) coupling
- Current data not able to distinguish Lambda/AntiLambda polarization difference,
- (potentially) Direct measure of Magnetic Field effect
- Need >x10 more data (3σ at current central value)

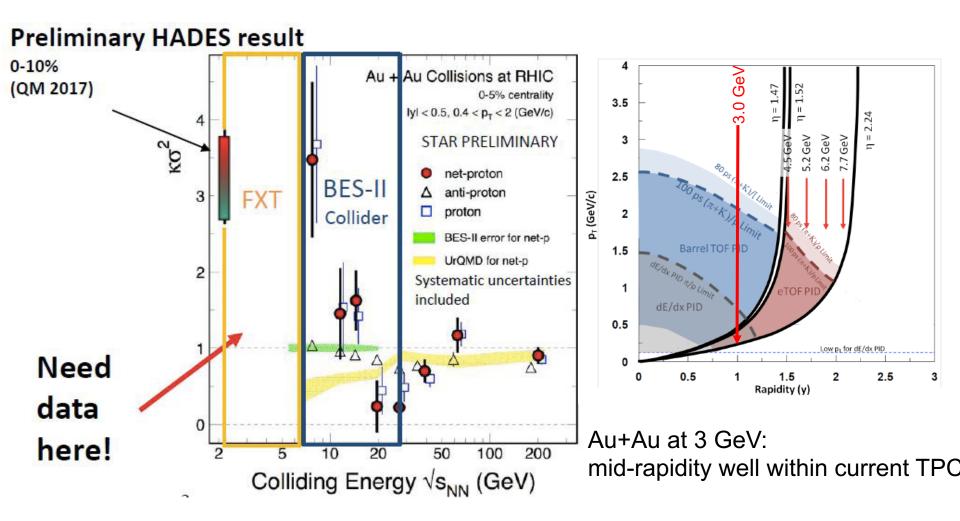
Global Lambda Polarization Projection

Run 18 BUR Executive Summary

Energy	Duration	System	Goals	priority	Sequence
√s _{NN} =200 GeV	3.5-wk	Zr+Zr	1.2B minbias	1	1
	3.5-wk	Ru+Ru	1.2B minbias	1	2
√s _{NN} =27 GeV	3-wk	Au+Au	1B minbias	2	3
	2 davs	Au+Au	100M minbias	3	4
		√s _{NN} =200 GeV 3.5-wk 3.5-wk √s _{NN} =27 GeV 3-wk	√s _{NN} =200 GeV 3.5-wk 3.5-wk Ru+Ru √s _{NN} =27 GeV 3-wk Au+Au	$\sqrt{s_{NN}}=200 \text{ GeV}$ 3.5-wk $Zr+Zr$ 1.2B minbias 3.5 -wkRu+Ru1.2B minbias $\sqrt{s_{NN}}=27 \text{ GeV}$ 3-wkAu+Au1B minbias	$\sqrt{s_{NN}}=200 \text{ GeV}$ 3.5-wk $Zr+Zr$ 1.2B minbias1 3.5 -wkRu+Ru1.2B minbias1 $\sqrt{s_{NN}}=27 \text{ GeV}$ 3-wkAu+Au1B minbias2

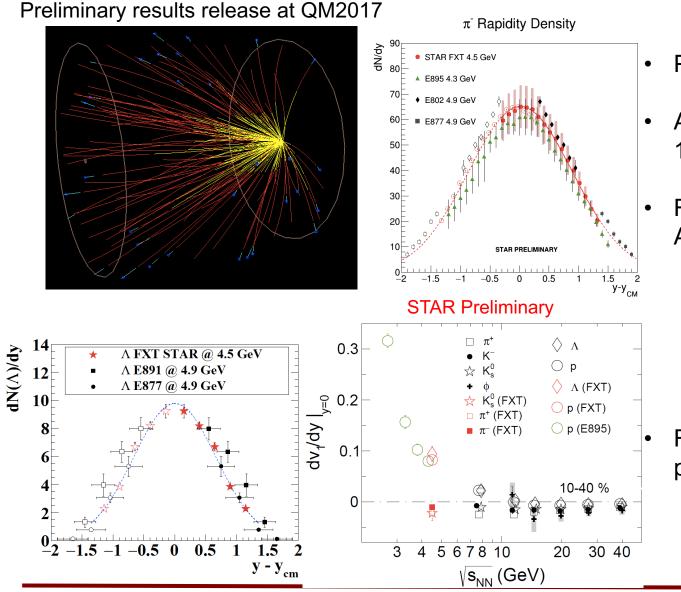
1. Isobar collisions:

study the CME contribution to charge separation $\frac{96}{44}Ru$, $\frac{96}{40}Zr$: charge different by 10% (44 vs 40), everything else the "same"


2. Au+Au @ 27 GeV:

High Statistics Λ and $\overline{\Lambda}$ Global Polarization Measurement Event-Plane Detector (EPD) presence important

3. Au+Au @ 3 GeV:


Fluctuation measurement at energies between HADES and BES-I Significant statistics in FXT mode with large acceptance Competition with BM@N (NICA) scheduled for 2019

Net-proton Fluctuation at low energies

With high statistics, establish a bridge between BES and world program at fixed target (HADES/CBM/NICA/JPARC)

FXT Pilot Runs were Successful

- Pilot Run in run 14-15
- A couple of hours beam;
 1.3 Million 0-30% events
- Results consistent with AGS results:
 - Spectra,
 - HBT,
 - v₁ slopes,
 - V₂,
 - fluctuations

Ready to make it part of a BES program

Run 19 BUR Executive Summary

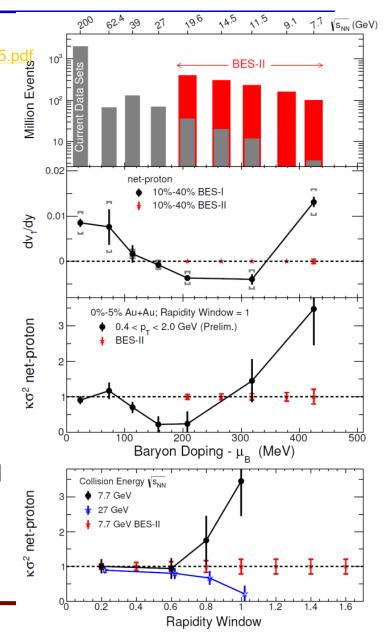
Beam Energy	$\sqrt{s_{NN}}$ (GeV)	Run Time	Species	Number Events	Priority	Sequence
(GeV/nucleon)						
9.8	19.6	4.5 weeks	Au+Au	400M MB	1	1
7.3	14.5	5.5 weeks	Au+Au	300M MB	1	3
5.75	11.5	5 weeks	Au+Au	230M MB	1	5
4.6	9.1^{-1}	4 weeks	Au+Au	160M MB	1	7
9.8	4.5 (FXT)	2 days	Au+Au	100M MB	2	2
7.3	3.9 (FXT)	2 days	Au+Au	100M MB	2	4
5.75	3.5 (FXT)	2 days	Au+Au	100M MB	2	6
31.2	7.7 (FXT)	2 days	Au+Au	100M MB	2	8
19.5	6.2 (FXT)	2 days	Au+Au	100M MB	2	9
13.5	5.2 (FXT)	2 days	Au+Au	100M MB	2	10

1. Au+Au @ 11.5 – 19.6 GeV:

Commencement of the RHIC BES-II at high-end of BES-II energies; The goal of BES-II is to turn BES-I observed trends and features into definitive conclusions and new understanding.

2. Au+Au FXT:

Multiple measurements at energies between World FXT programs and BES-II Significant statistics in FXT mode with large acceptance

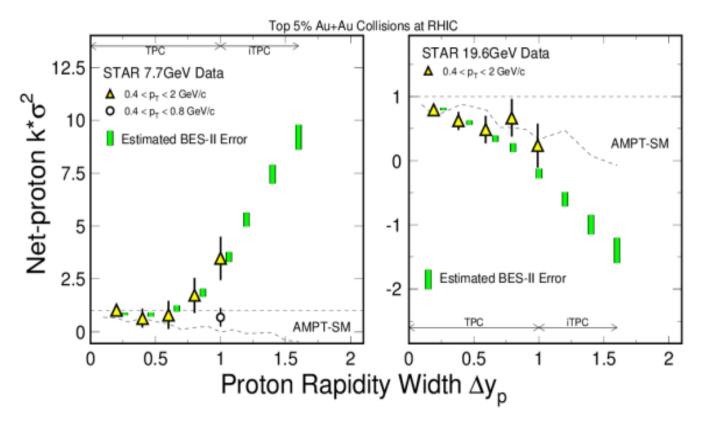

Highlights of BES-II and Upgrades in LRP 2015

Strong Endorsement by the NSAC 2015

Strong Endorsement by the reduction in the QGP pressure, with consequences for flow patterns and droplet lifetimes that have long been anticipated in collisions that form QGP not far above the crossover region. (See second panel of Figure 2.10.)

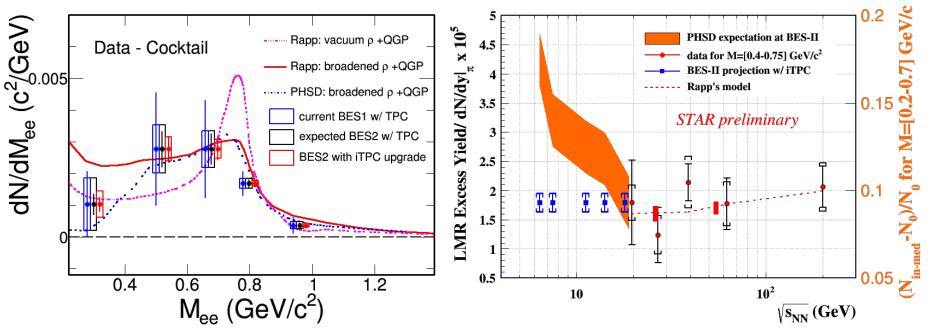
The detector upgrades planned for BES-II focus on maximizing the fraction of the particles in each collision that are measured, which is particularly important for fluctuation observables.

The trends and features in BES-I data provide compelling motivation for a strong and concerted theoretical response, as well as for the experimental measurements with higher statistical precision from BES-II. The goal of BES-II is to turn trends and features into definitive conclusions and new understanding.

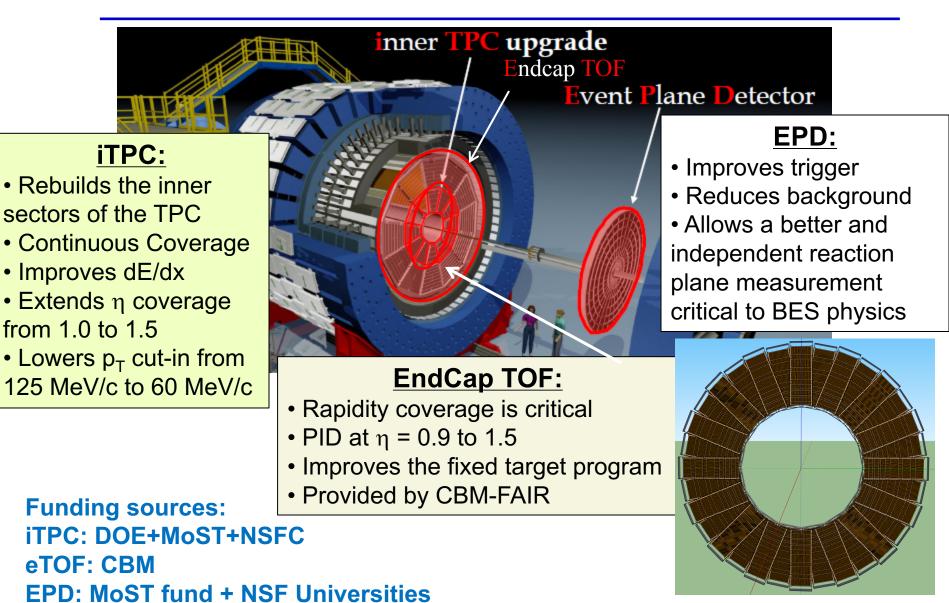


BES-II Physics highlights (I):

net-proton Kurtosis

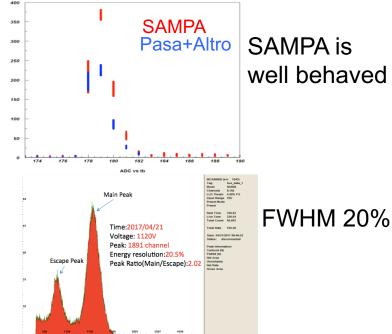

Reach the necessary rapidity width of the correlation/fluctuation (~1-2 unit)

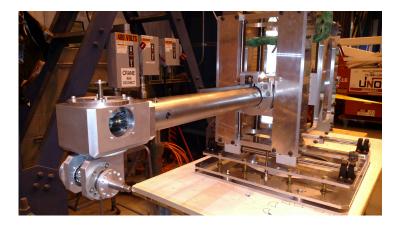
B. Ling and M. Stephanov, Phys.Rev. C93 (2016) 034915


BES-II Physics highlights (II):

Di-electron measurements

- > Systematically study di-electron continuum from $\sqrt{S_{NN}}$ = 7.7 19.6 GeV
- Inner Time Projection Chamber (iTPC) upgrade: reduce systematic and statistical uncertainties
- Distinguish models with different ρ-meson broadening mechanisms (Rapp's method vs. PHSD)
- Study the total baryon density effect on LMR excess yield in BESII

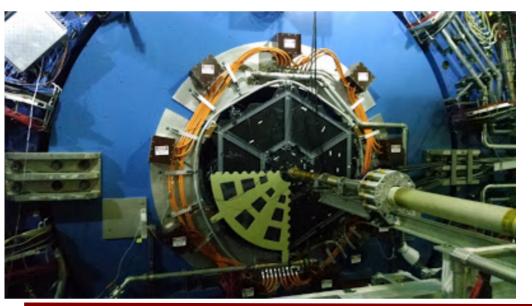

Major Upgrades for BES-II

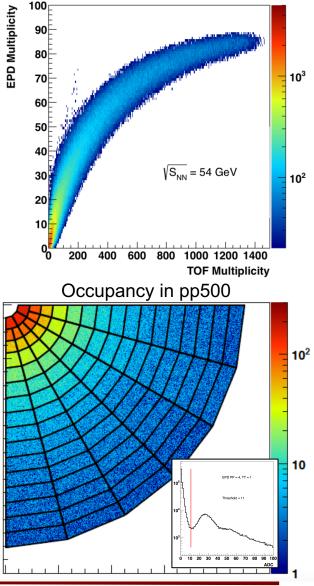


iTPC Project Status

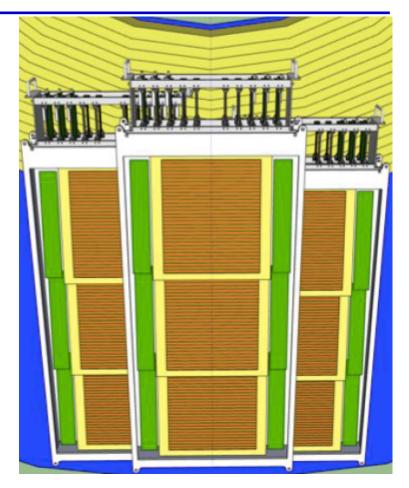
SAMPA FEE (WMP2)

- 2FEEs and RDO installed on one inner most row of TPC
- Running through USB port with beam
- 200 chips for a sector this summer
- ALICE MWP3 pre-production ~September 2017; 4000 chips afterward
- Sectors (strongback+padplane+WMPC)
 - First two sectors completed at LBL and arrived at SDU in June 5
 - Complete in July and back to BNL
- Insertion tool
 - Completed at UIC and arrived at BNL in May 12
- Reviews and Reports
 - DOE TCSM review 09/12/2017
 - MWPC readiness review at SDU 12/05/2017
 - LBL and SDU conducted local multiple reviews
 - Monthly Phone calls with DOE since 01/2017
 - Quarterly reports to DOE





Event Plane Detector (EPD)


- 3 final sectors (1/8) in run 17
- Completed for run 18
- Lehigh+OSU (NSF fund)
- Project funded by MoST (USTC)

Endcap TOF Status

- Two prototype modules with readout installed in run 17
 - CBM Triggerless Electronics interface with STAR DAQ/TRG systems
 - Collected 64M events with eTOF
 - Provides performance for final design choices
- Run 18 plans on one full Sector
 - 3x32-strip MRPC with final readout electonics
 - Installation: 10-11/2017
- Complete installation in 11/2018
- Complete BES-II program with full eTOF coverage

Additional NSFC fund for eTOF modules and physics: proposal review in 07/07/2017

2016 BUR → Run 17

Run	Energy	Duration	System	Goals	priority	Sequence
	√s _{NN} =500 GeV	13-wk	Transverse p+p	A_N of W [±] , γ , Drell-Yan, L=400 pb ⁻¹ , 55% pol	1	1
		1-wk	p+p	RHICf		2
17		2-wk	CeC			
	$\sqrt{s_{NN}}$ =62.4 GeV	4-wk	Au+Au	Jets, dileptons, NPE 1.5B MB	3	3
18	√s _{NN} =200 GeV	3.5-wk	Ru+Ru	1.2B MB	2	4
10	√s _{NN} =200 GeV	3.5-wk	Zr+Zr	1.2B MB	2	5
	√s _{nn} =27 GeV	2-wk	Au+Au	>500M MB	3	6

Options from guidance:

- 1) 24 cryo-weeks in run 17, 13 weeks in run 18
- 2) 19 cryo-weeks in run 17, 13 weeks in run 18
- 3) If only 15 weeks in run 17, all for pp500

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0657

C-A Operations FY17

			М	ay 8, 201	17					E	Bill C	hrist	ie
							FY 2	2017					
Program Element	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
AGS-Booster/EBIS Startup (break 12/23 - 1/3)			Dec 12_										
RHIC Cryo scrub & Cooldown to 45 K				Jan 6		-	21	week	s		1		
RHIC Cryo Cooldown/Warm-up					Feb 6	÷.	Feb 9			June 30	•	Jul 3	
RHIC Cryo Operation													
RHIC Cryo off													
RHIC STAR						2 wk	1	3.7 wks		May 30			
RHIC Research with $\sqrt{s} = 510 \text{ GeV/n}$ pp						-	Physics declared	running I Feb. 23n	d	Ĺ	Jun 21		
RHIC Research RHICf E= 255 GeV/n p													
RHIC Research with √s = 53.5 GeV/n AuAu			Nov 11	Nov 30	Dec 22								
CeC PoP Experiment E= 40 GeV/n Au			1					Tentativ					
					Jan 3								
NSRL (NASA Radiobiology)					×								
BLIP (Isotopes)													
BLIP (Other)													
Shutdown (RHIC)													

To allow for timely LINAC repair, plan is to switch fro pp running to AuAu running on May 30th, and then come back to pp running on June 21st.

Run 17 Spin Program BUR and Projections

In this Beam Use Request the STAR Collaboration presents four compelling and prioritized scientific programs for the 2017 and 2018 RHIC runs.

STAR's **highest scientific priority** is the first significant measurement of the sign change of the Sivers function, as compared to the value measured in semi-inclusive deep inelastic scattering experiments, through measurements of single spin asymmetries in $W^{+/-}$, Z, direct photon and Drell-Yan production in transversely polarized $\sqrt{s} = 500 \text{ GeV}$ p+p collisions. This measurement will also shed light on the size and nature of the evolution of these transverse momentum dependent distributions. The sign change measurement is a fundamental test of QCD and is being pursued by other experiments, making a timely measurement imperative. We therefore request **13 weeks of 500 GeV** p+p running in Run17.

Year	#	Milestone
2015	' HP13 ' (new)	Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton
		scattering.

NSAC Milestone (HP13)

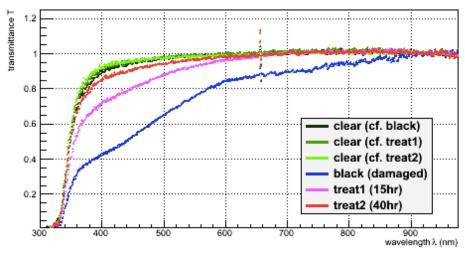
 2013 HP8 Measure flavor-identified q and q contributions to the spin of the via the longitudinal-spin asymmetry of W production. 2013 HP12 Utilize polarized proton collisions at center of mass energies of 20 (update of 500 GeV, in combination with global QCD analyses, to determine if HP1, met have appreciable polarization over any range of momentum fraction in 2008) between 1 and 30% of the momentum of a polarized proton. 	
2013 HP12 Utilize polarized proton collisions at center of mass energies of 20 (update of 500 GeV, in combination with global QCD analyses, to determine if HP1, met have appreciable polarization over any range of momentum fraction in 2008) between 1 and 30% of the momentum of a polarized proton.	proton
· · · · · · · · · · · · · · · · · · ·	f gluons
2015 HP13 Test unique QCD predictions for relations between single-transver (new) phenomena in p-p scattering and those observed in deep-inelastic scattering.	•

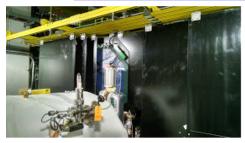
 A_N of W^{\pm} , γ , DY in pp 500 are all sensitive to the Sivers sign-change. STAR can access all three world-class measurements in the proposed 2017 Run – **Significant discovery potential before 2020!**

Forward Detector preparation for run 17

Forward Meson Spectrometer (FMS) + FMS Pre-shower + FMS Poster-Shower

Installation of pre-shower for run 15


FMS radiation damage cured by UV lights


- 1. All three detector subsystems:
 - existing FMS, Pre-shower Add new post-shower
- 2. Add UV lights to cure FMS radiation

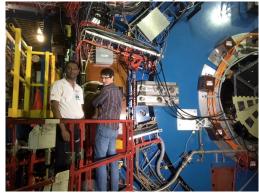
https://drupal.star.bnl.gov/STAR/system/files/STAR.FM S_.Postshower.v2.pdf

PbGI transparency after UV curing

Hardware Additions for Run 17

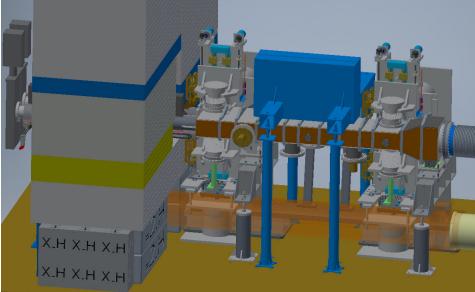
FMS Post Shower

RHICf


eTOF Prototype

- * EIC Calorimeter R&D setup
- 1. FMS UV curing system
- 2. FMS post Shower
- 3. RHICf
- 4. EPD quadrant
- 5. eTOF prototype (2 modules)
- 6. Original (low mass) beam pipe
- 7. iTPC prototype RDO and FEE
- 8. Prototype Digital Electronics Platform (DEP)
- 9. Forward/EIC calorimeter R&D
- 10. New QT with TAC built in EPD, MTD
- Selectable trig crate readout
 TPC HV PS

FMS UV Curing system



Event Plane Detector (EPD) quadrant

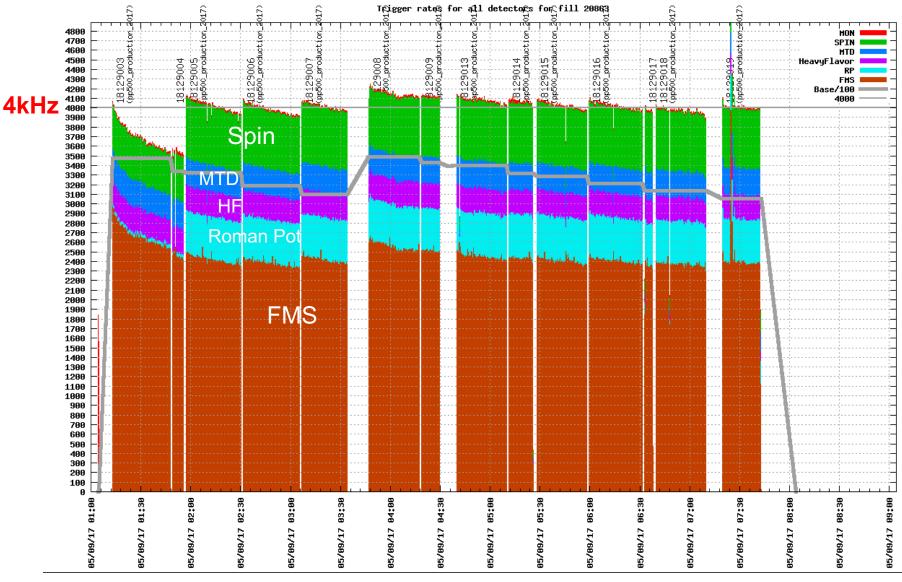
Original (low mass) center cone

RHICf Installation on the West side of STAR

The RHICf setup is a position sensitive calorimeter system to be positioned just in front of the ZDCs on the West side of STAR.

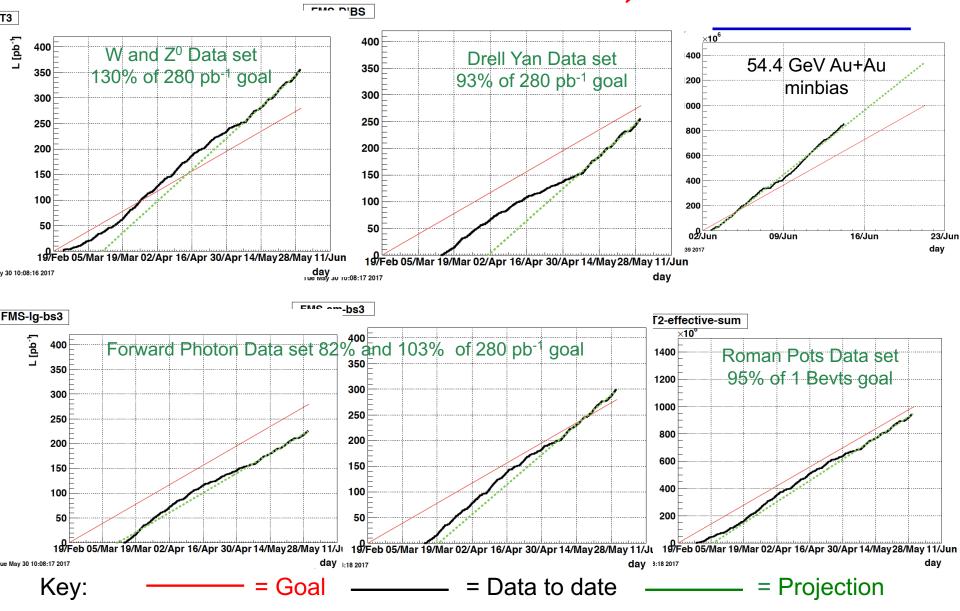
It will measure cross sections for particles traveling in the Blue beam direction. Integration and radial polarization test went well.

RHICf beam time 06/22-25/2017 RHICf BUR (2016) https://indico.bnl.gov/materialDisplay.py?materialId=4&confld=1761



Run 17 pp510 GeV Trigger Distributions

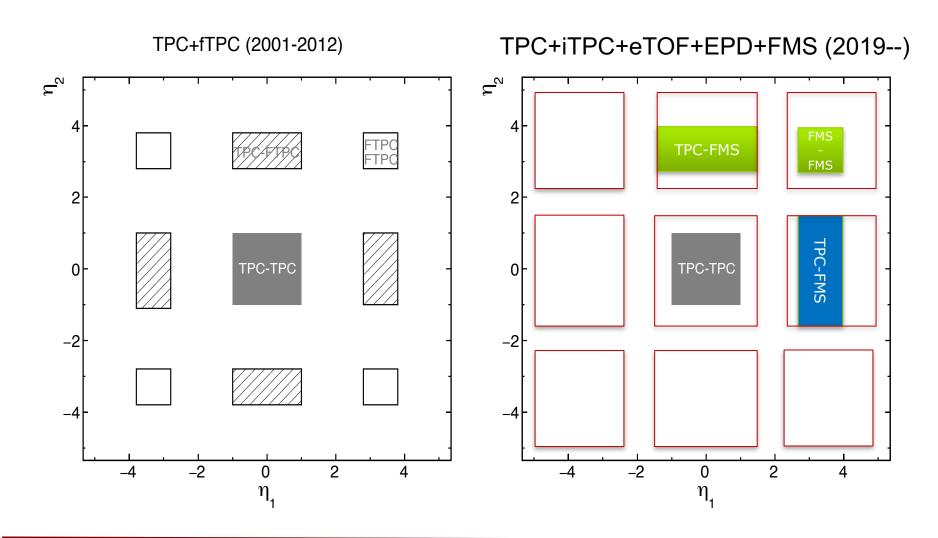
3	RUN	INING	[to]	RCF]			18	13603	7					pp500_p	roductio	n_2017	[PHYS	cs]			ted Tue May		
TAR. DAQ																			Duration	0 day	s, 0 hr, 7 m	iin, 18 s	
AR DAO																	BI	ue	254.9 GeV, 2	20069 ions	, Supplemen	tal Ramp C	omplete
	In pr	ogress						ndy for P									Ye	llow	254.9 GeV, 2	21185 ions	, Supplemen	tal Ramp C	omplete
Menu							Рпу	SICS UN (1	• <i>/m</i> /	[Keep Bea	<i>"</i>]						т	U Clock	9383512.0				
Monitoring Rate Charts																	_						_
Current Rates	Trigge	ar.		DAQ Ev	s DAQ Hz	LO Evts	LO H	Sca Hz	Sca	Dead Built	Xpres	Abt	Err	Trigger	DAQ Evt	s DAQ Ha	LO Evts	LO H	z Sca Hz	Sca De	ad Built	Xpress	Abt E
LED Status Slow Controls	RP_CPT	2		6730	18	6729	17	1022	25 %	6730	6730	0	0	EHT0*BBCMB*L2Egamma	13078	30	13085	35	0	0%	13076	0	0 2
Current RunLog	RP_CPT	2noBBCL		139308	336	139320	332	619	21 %	13930	3 139303	0	5	epd	9722	17	9724	19	81	0 %	9722	9722	0 0
Today's ShiftLog Critical Support	RP_UPC	1		6575	16	6576	16	9766	25 %	6575	6575	0	0	FMS-sm-bs1	12315	25	12314	30	8900	12 %	12315	12315	0 0
BERT	RP_ET			16088	33	16088	37	711701.3	15 %	16088	16088	0	0	FMS-sm-bs2	39867	88	39861	94	797	12 %	39867	39867	0 0
TPC Temperature TPC Anode Scan	RP_Zer	obias		1685	5	1684	5	9383496.5	25 %	1684	1684	1	0	FMS-sm-bs3	29575	71	29567	70	79	20 %	29575	29575	0 0
TPC Gating Grid	внтз			29223	60	29223	58	75	33 %	29223	0	0	0	FMS-lg-bs1	12182	28	12179	29	98536	12 %	12182	12182	0 0
TPC DAQ10K DAQ Plots	BHT3-L	2W		29223	60	29223	58	0	0 %	6394	6394	22829	0	FMS-lg-bs2	39797	85	39801	96	13145	13 %	39796	39796	0 1
Ops Issues	EHT1			6977	13	6978	12	22	23 %	6976	0	0	1	FMS-lg-bs3	148744	367	148708	354	657	15 %	148744	148744	0 0
Alarm Handler Jeff's Plots	EHT1-L	2W		6977	13	6978	12	0	0 %	2200	2200	4776	1	FMS-DIBS	860616	1947	860518	1973	2372	18 %	860612	860612	0 4
561 3 11013	JP2			43727	94	43738	102	130	26 %		0	0	0	FMS-JP2	4086	10	4086	10	4398	15 %	4086	4086	0 0
	JP2*L2	JetHigh		43727	94	43738	102	0	0 %	43727		0	0	FMS-JP1	4225	10	4225	10	35234	13 %	4225	4225	0 0
Status	JP1*VP			26373	64	26376	61	491	17 %		_	0	2	FMS-JP0	3003	8	3002	9	264	34 %	3003	3003	0 0
	JP0*VP	DMB30		37355	81	37363	87	6455	16 %			0	1	FMS-DIJP	440	1	440	1	27	93 %	440	440	0 0
RUNNING	VPDMB			110412	256	110430	269		17 %			0	4	FMS-LED	700	3	699	2	2	0 %	700	700	0 0
18136037	dimuon			146649	324	146679	327	490	20 %		1 146641		8	VPDMB-novtx	746	3	746	2	2288368.1	16 %	745	0	1 0
		arkonium		146649	324	146679	327	0	0 %	959	959	145682		ZDC-trgonly	949	3	949	2	239158.1	0 %	949	0	0 0
Auto Update	BHT1*V			69081	174	69084	173	332	15 %			0	1	BBC	664	1	664	1		25 %	663	0	1 0
	BHT2*B			55948	144	55944	140	167	20 %		-	0	0	BBCE*BBCW*BBCTAC	333	1	332	1		25 %	332	0	1 0
1694		BCMB*L2Bga	amma	55948	144	55944	140	0	0 %	55948		0	0	VPD-100	372	0	373	1	1985074	16 %	371	0	1 0
Run Playback	JPsi*HT			13905	45	13910	43	47	13 %			0	-	ZEROBIAS	668	2	668	2	9383496.5		667	667	1 0
000000 1	EHTO*B			13078	30	13085	35	49	24 %			0	2	ALL	1794370		179414	_				1506411	
< >				10070		10000	55				J.	U.S.	-										
			_																				
	Det			I CPU	Evts					MB/s RDC			State		EvtsIn	Err H		B/s	Written		ree GB		W+S
	TOF	RUNNING		15 % 9		0	2213			6	<u>evb01</u>	RUNN		181503 20			171.		0 GB	6876 [9		26+91	
ine 3:3	BTOW	RUNNING		15 % 1		0	3779			37	evb02	RUNN		181498 1			167.		0 GB	6839 [9		25+90	
	Trigger	RUNNING			794146	1	4210			0	evb03	RUNN		181973 2			195		0 GB	6897 [9	-	23+85	_
						0		8.1	0	8	evb04	RUNN	ING	181584 1	1 6	6 427	193.	5	0 GB	8635 [9		25+10	2
	ETOW	RUNNING			637238	-	3862		-	_					-							36+77	
	PP2PP	RUNNING	15 %	54 % 5	50753	0	1317	3.0		2	evb05	RUNN		190419 10			165.		O GB	13800 [BC	
	PP2PP BSMD	RUNNING READY	15 % 0 %	54% 5 0% 0	50753	0 0	1317 0	3.0 0.0	0	0	evb06	RUNN	ING	190708 10	D 3	445	187.	3	0 GB	13836 [94%]	29+77	
	PP2PP BSMD ESMD	RUNNING READY RUNNING	15 % 0 % 10 %	54% 0% 57%	50753 637885	0 0 0	1317 0 3847	3.0 0.0 71.4	0	0 71	evb06 evb07	RUNN	ING	190708 10 190704 19	D 3	445 437	187.	3 5	O GB O GB	13836 [9690 [9	94%] 4%]	20+87	
	PP2PP BSMD ESMD TPX	RUNNING READY RUNNING RUNNING	15 % 0 % 10 %	54 % 5 0 % 0 57 % 1 85 % 6	637885 645126	0 0 0 34	1317 0 3847 1554	3.0 0.0 71.4 1586.7	0 0 25	0 71 15590	<u>evb06</u> <u>evb07</u> <u>evb08</u>	RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14	D 3 9 3 8 2	445 437 452	187. 187. 179	5	0 GB 0 GB 0 GB	13836 [9690 [9 10367 [94%] 94%] 94%]	20+87 25+83	
	PP2PP BSMD ESMD TPX MTD	RUNNING READY RUNNING RUNNING	15 % 0 % 10 % 12 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6	550753 637885 645126 643812	0 0 0 34 0	1317 0 3847 1554 1541	3.0 0.0 71.4 1586.7 1.6	0 0 25 0	0 71 15590 1	<u>evb06</u> <u>evb07</u> <u>evb08</u> <u>evb09</u>	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 11 190525 24	D 3 9 3 8 2 4 2	445 437 452 430	187. 187. 179 174	5	0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [94%] 4%] 94%] 93%]	20+87 25+83 33+85	
	PP2PP BSMD ESMD TPX MTD GMT	RUNNING READY RUNNING RUNNING RUNNING	15 % 0 % 10 % 12 % 4 % 2 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1	637885 645126 643812 11986	0 0 0 34 0 0	1317 0 3847 1554 1541 270	3.0 0.0 71.4 1586.7 1.6 6.5	0 0 25 0 0	0 71 15590 1 6	evb06 evb07 evb08 evb09 evb10	RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 452 430 4262	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [7639 [6	94%] 44%] 94%] 93%]	20+87 25+83 33+85 686+1	
	PP2PP BSMD ESMD TPX MTD GMT L4	RUNNING READY RUNNING RUNNING RUNNING RUNNING	15 % 0 % 10 % 12 % 2 % 0 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1 0 % -	50753 637885 645126 643812 11986 1/146680	0 0 34 0 0 17	1317 0 3847 1554 1541 270 322	3.0 0.0 71.4 1586.7 1.6 6.5 361.9	0 25 0 0 0 0	0 71 15590 1 6 362	<u>evb06</u> <u>evb07</u> <u>evb08</u> <u>evb09</u>	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 430	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [94%] 44%] 94%] 93%]	20+87 25+83 33+85	
	PP2PP BSMD ESMD TPX MTD GMT L4 FPS	RUNNING READY RUNNING RUNNING RUNNING RUNNING RUNNING	15 % 0 % 10 % 12 % 4 % 2 % 0 % -1 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1 0 % - 56 % 1	550753 .637885 545126 543812 .11986 1/146680 .386445	0 0 34 0 0 17 0	1317 0 3847 1554 1541 270 322 3243	3.0 0.0 71.4 1586.7 1.6 6.5 361.9 4.8	0 25 0 0 0 0 5	0 71 15590 1 6 362 4	evb06 evb07 evb08 evb09 evb10	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 452 430 4262	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [7639 [6	94%] 44%] 94%] 93%]	20+87 25+83 33+85 686+1	
	PP2PP BSMD ESMD TPX MTD GMT L4 FPS RHICF	RUNNING READY RUNNING RUNNING RUNNING RUNNING RUNNING RUNNING READY	15 % 0 % 10 % 12 % 4 % 2 % 0 % -1 % 0 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1 56 % 1 0 % 4	550753 6637885 645126 643812 111986 1/146680 1386445 71	0 0 34 0 0 17 0 0	1317 0 3847 1554 1541 270 322 3243 0	3.0 0.0 71.4 1586.7 1.6 6.5 361.9 4.8 0.0	0 25 0 0 0 0 5 0	0 71 15590 1 6 362 4 0	evb06 evb07 evb08 evb09 evb10	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 452 430 4262	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [7639 [6	94%] 44%] 94%] 93%]	20+87 25+83 33+85 686+1	
	PP2PP BSMD ESMD TPX MTD GMT L4 FPS RHICF ETOF	RUNNING READY RUNNING RUNNING RUNNING RUNNING RUNNING READY RUNNING	15 % 0 % 10 % 12 % 4 % 2 % 0 % -1 % 0 % 2 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1 0 % 1 0 % 1 0 % 1 0 % 1 0 % 1 0 % 1 0 % 4 41 % 6	550753 6637885 645126 643812 111986 1/146680 1.3866455 671 644647	0 0 34 0 0 17 0 0 0	1317 0 3847 1554 1541 270 322 3243 0 1548	3.0 0.0 71.4 1586.7 1.6 6.5 361.9 4.8 0.0 0.6	0 25 0 0 0 0 5 0 0 0	0 71 15590 1 6 362 4 0 0	evb06 evb07 evb08 evb09 evb10	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 452 430 4262	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [7639 [6	94%] 44%] 94%] 93%]	20+87 25+83 33+85 686+1	
	PP2PP BSMD ESMD TPX MTD GMT L4 FPS RHICF	RUNNING READY RUNNING RUNNING RUNNING RUNNING RUNNING RUNNING READY	15 % 0 % 10 % 4 % 2 % 0 % -1 % 0 % 2 % 0 %	54 % 5 0 % 0 57 % 1 85 % 6 14 % 6 13 % 1 0 % - 56 % 1 0 % 4 16 % 2	50753 637885 645126 643812 11986 1/146680 1386445 171 644647 2793	0 0 34 0 0 17 0 0	1317 0 3847 1554 1541 270 322 3243 0 1548 6	3.0 0.0 71.4 1586.7 1.6 6.5 361.9 4.8 0.0	0 25 0 0 0 5 0 0 0 0 0 0	0 71 15590 1 6 362 4 0	evb06 evb07 evb08 evb09 evb10	RUNN RUNN RUNN RUNN	ING ING ING	190708 10 190704 19 190421 14 190525 24 114833 10	0 3 9 3 8 2 4 2 0 1	445 437 452 452 430 4262	187.3 187.4 179 174 110.4	3 5	0 GB 0 GB 0 GB 0 GB 0 GB	13836 [9690 [9 10367 [10331 [7639 [6	94%] 44%] 94%] 93%]	20+87 25+83 33+85 686+1	


41 Triggers Running at a total of about 4200 Hz, accumulating ~ 1.7 GB/sec!

Bandwidth Allocation at 4000Hz

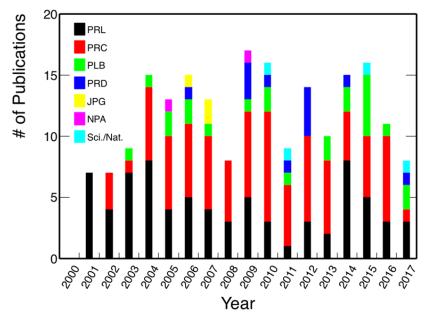
Store from May 9th; https://online.star.bnl.gov/RTS/plotdata/storedPlots2017.php

Run 17 Datasets and Projections



Summary

- Successful run17 (thanks CAD)
- Compelling Spin Program in run17 Three measurements related to TMD evolution and sign change (A_N W^{+/-}, γ, DY)
- Compelling Heavy-Ion Programs for run 18
 - Decisive test of Chiral Magnetic Effect
 - Quantifying the role of external field in Global Hyperon Polarization
 - Bridge the BES-II and world programs (HADES/CBM/NICA/JPARC) with competitive FXT program
- Preparation for BES-II
 - Science cases
 - Detector upgrades
 - New compelling and complimentary measurements (FXT)
- and beyond
 - (3+1D hydro and Cold QCD)
- Maintain track record in Results and Publications
 - Productivities in paper publication and PhD graduations
 - Continue to find external resources (computing), funding (hardware) and attract new members
- Concerns and work in progress
 - Run 17, more than 30 shifts signed up by experienced Russian colleagues (denied entry to BNL)
 - Several (university) detector experts retired; potential single point failures (BNL) persist
 - Maintenance and replacements of aging components (EMC/TRG)
 - Support and guidance for beyond BES-II
 - Budget: potential disastrous funding for Spin (Cold QCD) and HI incapacirate RHIC/STAR program



STAR Collaboration Status

Helen Caines and Zhangbu Xu were elected as co-spokespersons by the STAR Institution Council; New management in July 1, 2017

Data Analyses and publications: Helen Caines' talk Total refereed publications: 200 Total PHD Graduations: 248 Total Citations: 25111

- April 2014 May 2017
- 45 refereed publications
- 50 PhD graduation;
 18 PhD since June 2016

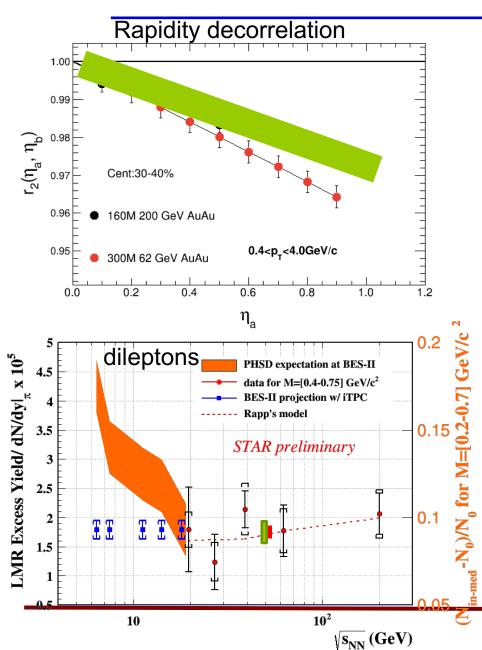
In progress:

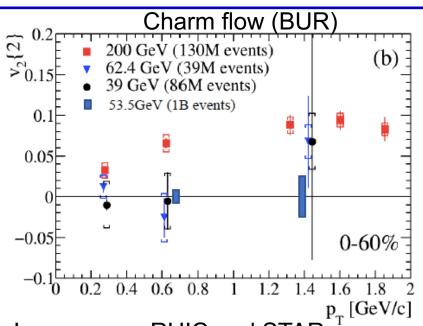
- □ 6 in journal review
- 12 in collaboration (GPC) review process

12 Institutions joined since 2014: SBU, SCSU, Lamar, NCKU, WLCAPP, Lehigh, UCR, TDU, Tsukuba, Heidelberg, Rutgers, Fudan RHICf*, CBM*

Data production and priorities

Total


time


Year	Species	Total #of events (M)	%tage events	Estimate time to delivery	%tage time to	Year	Species	RAW space [PB]	MuDST space [PB]	picoDST [PB]	MuDST total space [PB]	picoDST total space [PB]	reco time, 1.5 passes [m]	Required (+calib time) [m]
10	[]	0100.40	completed	(months)	completion						8.5	1.31		
16	[summary]	9126.46	49.44	3.74	60.45	16	200 GeV	6.96	4.88	0.70	9.28	2.09	14.04	15.20
	Au+Au 200GeV	6543.26	63.25	3.22		10	Au+Au	0.00	1.00	0110	0.20		11101	10.10
	d+Au 200GeV	1181.10	31.58	0.44			200 GeV	0.43	0.53	0.08			1.04	
	d+Au 62GeV	357.91	0.00	0.08			d+Au							
	d+Au 39GeV	642.12	0.00	0.08			Low energy	0.14	0.06	0.01			0.12	
	$d+Au \ 20 GeV$	402.08	0.00	< 0.08			d+Au 500 GeV							
15	[summary]	10997.37	84.31	0.75	86.89	17	p+p	4.85	2.65	0.41	12.53	2.59	11.4	15.34
	$\mathrm{p+p}~200\mathrm{GeV}$	6329.66	93.70	0.19			Low energy							
	$\mathrm{p+Au}\ 200\mathrm{GeV}$	3647.70	78.76	0.33			Au+Au							
	$\mathrm{p+Al}\ 200\mathrm{GeV}$	1015.11	45.61	0.24			(27 GeV)	1.2	0.6	0.09			1.45	
	fixed Target	4.76	100.00	0.00			or $1/2$ time							
14	[summary]	6718.09	84.66	0.39	90.85		62 GeV							
	Au+Au 200GeV	5045.59	96.79	0.22		18	27 GeV	0.32	0.22	0.03	12.76	2.82	0.42	6.48
	He3+Au 200GeV	1260.30	31.29	0.18			Au+Au							
	Au+Au 14.6GeV	412.20	99.38	0.00			200 GeV	0.88	0.65	0.10			1.53	
	na ma modor	112.20	00.00	0.00			Ru+Ru 200 GeV							
							200 Gev Zr+Zr	0.88	0.65	0.10			1.53	
							Various							
Proc	duction cor	19/20		0.35	0.25	0.04	13.01	2.86	1.45	2.95				
				BES-II					2.50					

RCF, NERSC/Cori, Dubna

Utilize picoDST for run 16 (and on) production; Migration of other datasets to picoDST on disk

3 weeks Au+Au at 54.4GeV

In summary, RHIC and STAR are progressing well toward reaching the highest priority goals for RHIC run 17 by May 30. The proposed continued beam operation between June 1 and July 3 will provide unique opportunities for RHICf, CeC, and a dataset crucial for studying the 3-dimension structure of QGP hydrodynamics as well as providing potentially valuable insights to the rare probes at low beam energies.

47

Dependence of v2 and g on EP

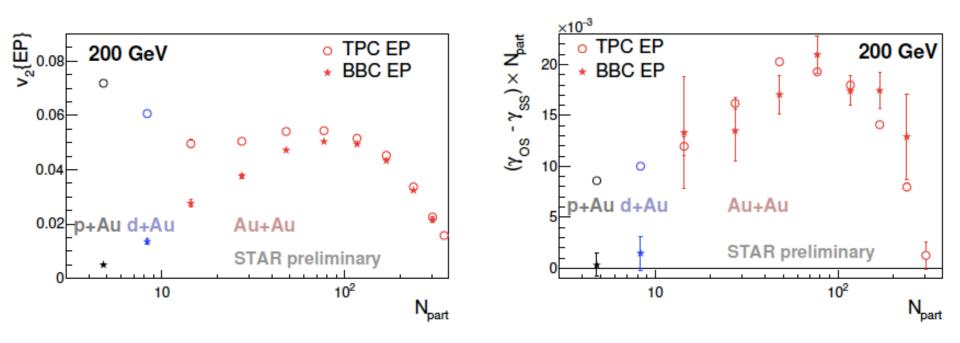


Figure 23: v_2 (left) and $(\gamma_{OS} - \gamma_{SS}) \times N_{part}$ (right) for p+Au, d+Au and Au+Au collisions at 200 GeV, measured with event planes from both TPC and BBC.

к for all energies

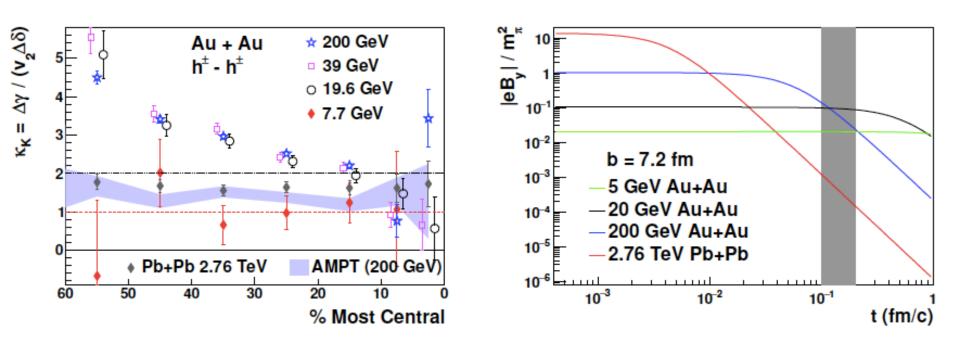
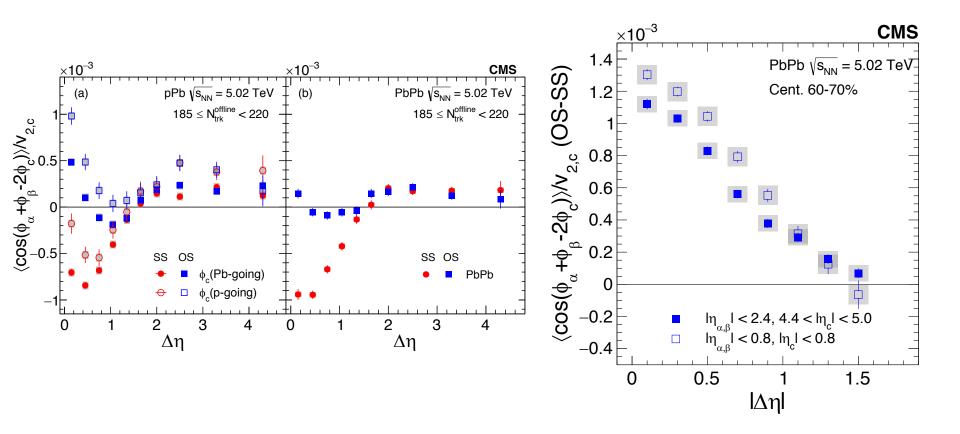



Figure 24: $\kappa_{\rm K}$ vs centrality for Au+Au collisions at 200, 39, 19.6 and 7.7 GeV [80], and for Pb+Pb collisions at 2.76 TeV [81]. The AMPT calculations are also plotted for Au+Au at 200 GeV in comparison.

Figure 25: Magnetic field in a vacuum as a function of the evolution time for Au+Au at 5, 20 and 200 GeV and Pb+Pb at 2.76 TeV [82]. The gray band indicates the presumable initial quark production.

