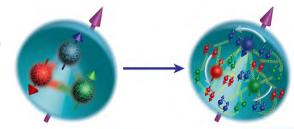

pp, pA & AA PHYSICS WITH THE STAR FORWARD UPGRADE

E.C. Aschenauer

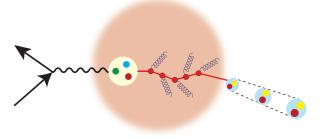
a passion for discovery



Office of Science

THE OBJECTIVES OF THE STAR FORWARD UPGRADE

unique measurements to answer the hot questions in cold QCD


How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?

gluon

recombination

000000

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium?

How do the confined hadronic states emerge from these quarks and gluons?

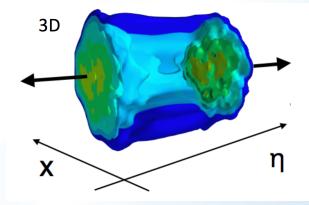
Hermanc

gluon

emission

000000-000000

Qs: Matter of Definition interactions create

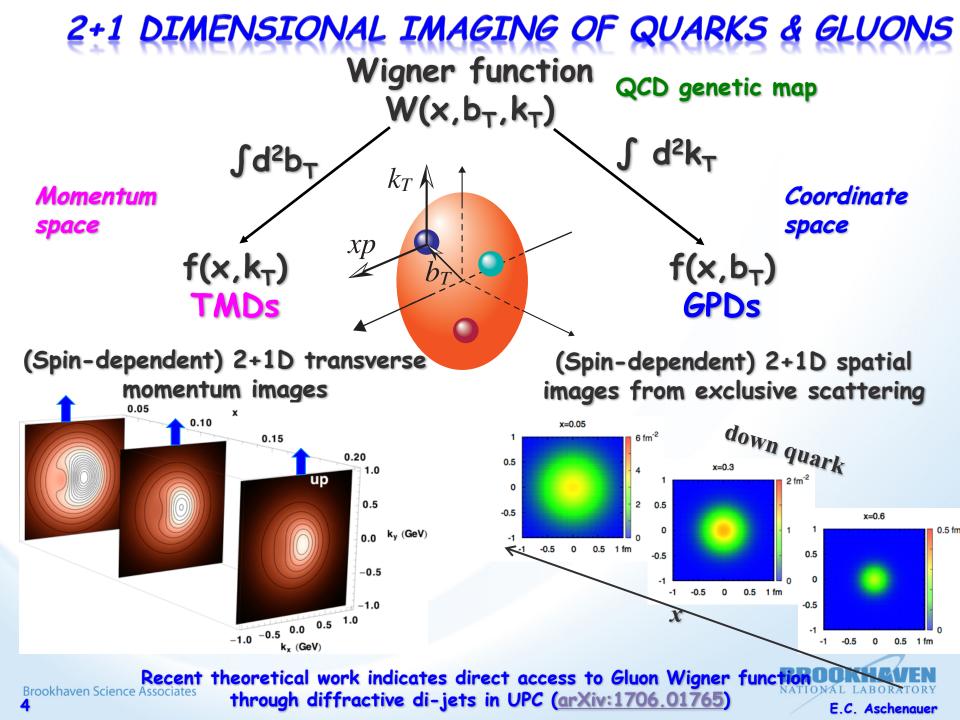

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all model, even the proton?

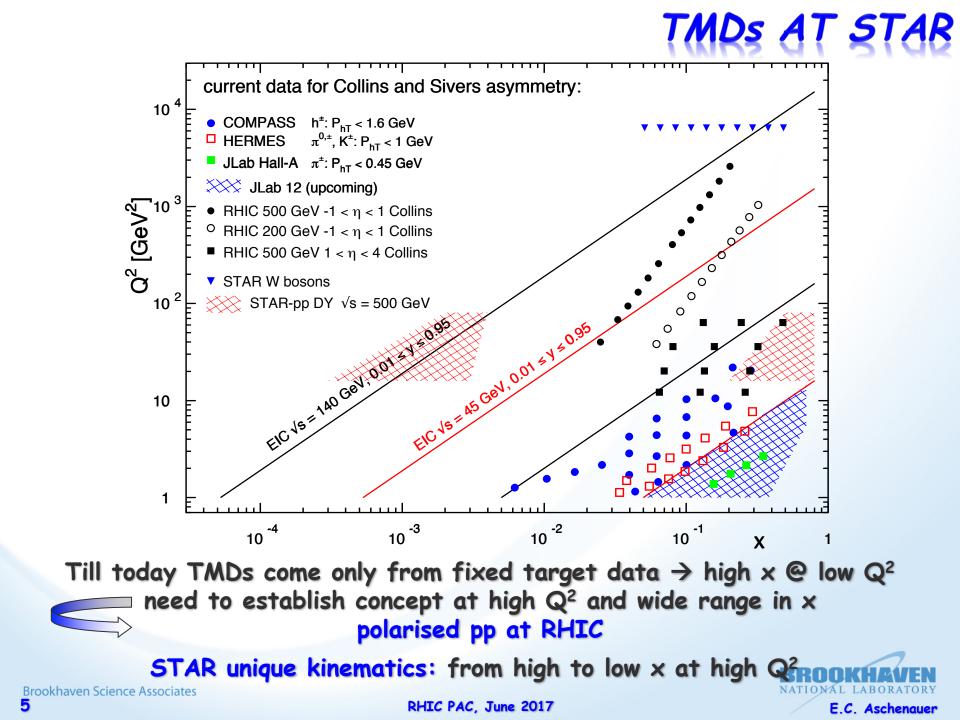
THE OBJECTIVES OF THE STAR FORWARD UPGRADE

□ pp and pA:

unique measurements to answer the hot questions in cold QCD AA:

unique measurements to answer the cold questions in hot QCD What is the longitudinal structure of initial condition




E.C. Aschenquer

Strengthen and Enhance the EIC physics program

Iay the groundwork for the EIC, both scientifically and by refining the experimental requirements

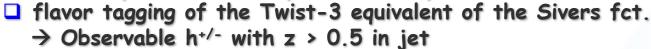
Test EIC detector technologies under real conditions, i.e SiPMs

Unique Opportunities:

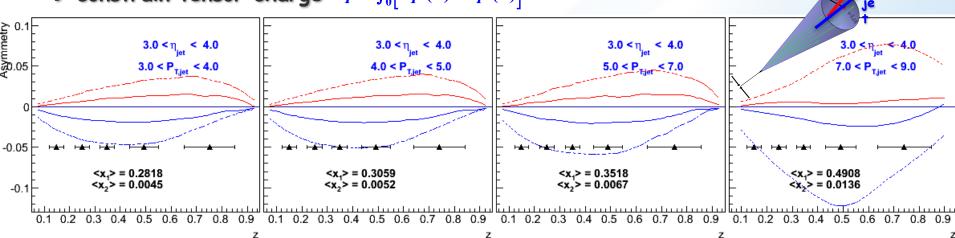
- constrains TMD evolution
- are TMDs relevant in the gluon and sea-quark dominated regime?
- high precision data sets to test QCD concepts of factorization and universality

 \rightarrow answers critical to have a optimal TMD program at EIC

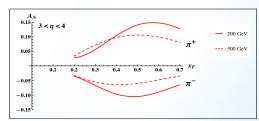
Goals:


Increase statistics for A_N DY

 \rightarrow TMD evolution world best constrain $\leftarrow \rightarrow A_N(W^{+/-}Z^0)$

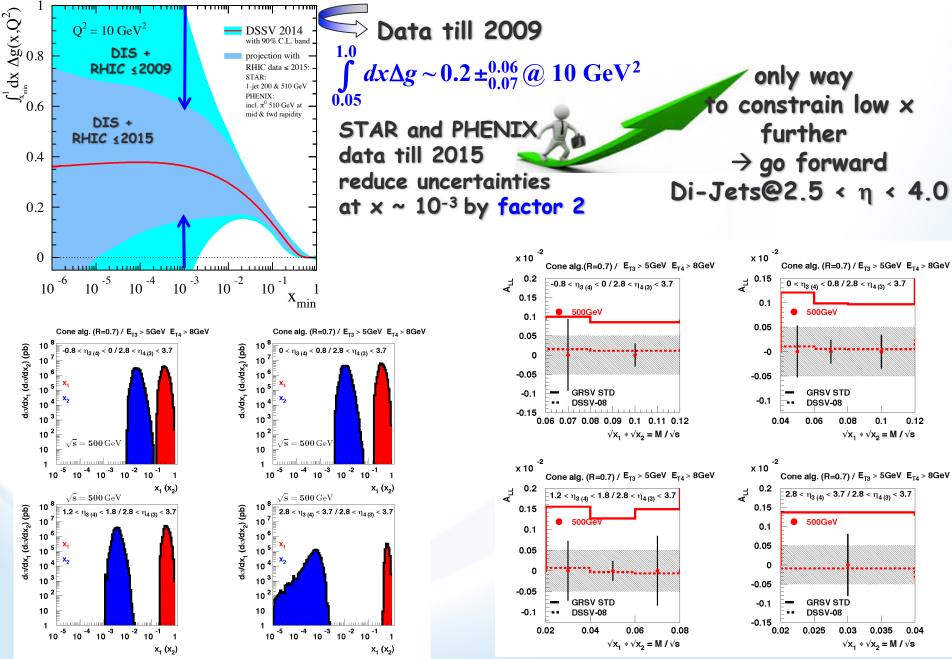

 \rightarrow Sivers sign change

\Box Unravel the mystery what is the underlying process of A_N \rightarrow measure A_N for $\pi^{+/-}$

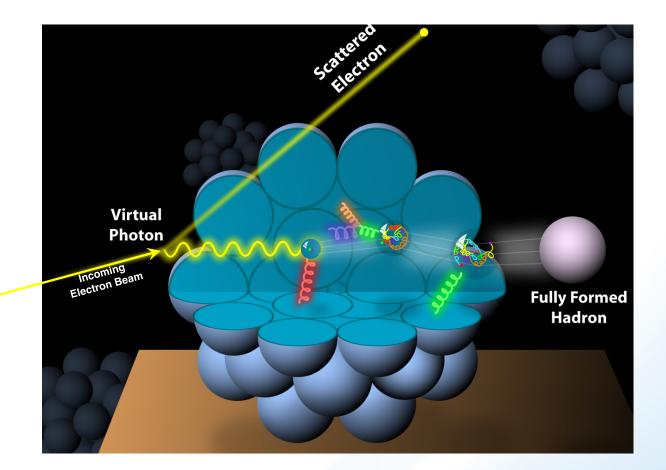

 \rightarrow clear prediction of importance of special Collins like FF

- measure transversity at high x
 - → Observable: hadron in jet
 - \rightarrow constrain tensor charge $\delta q^a = \int_0^1 \left[\delta q^a(x) \delta \bar{q}^a(x) \right] dx$

z



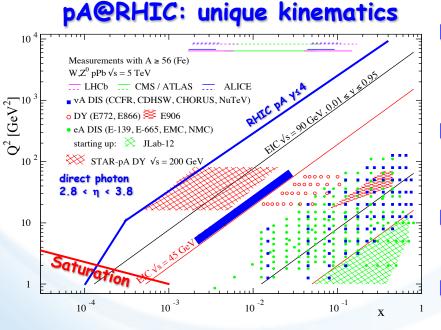
TMDs AT STAR



z

HOW POLARIZED ARE THE GLUONS?

WHAT ABOUT NUCLEI?



HOW DOES THE INITIAL STATE IN A

3 conundrums of the initial state:

- What are the nPDFs at low-x?
- How saturated is the initial state of the nucleus?
- What is the spatial transverse distributions of nucleons and gluons?
 - How much does the spatial distribution fluctuate? Lumpiness, hot-spots etc.

10-2 **\Box** can measure nPDF in a x- \hat{Q}^2 region where nuclear effects are large $> Q^2 > Q_c^2$ over a wide range in x

1.6

1.4

1.2

1.0 0.8

0.6

0.4 0.2 0.0

10-4

Rg^{Pb}(x,Q²)

Current knowledge including

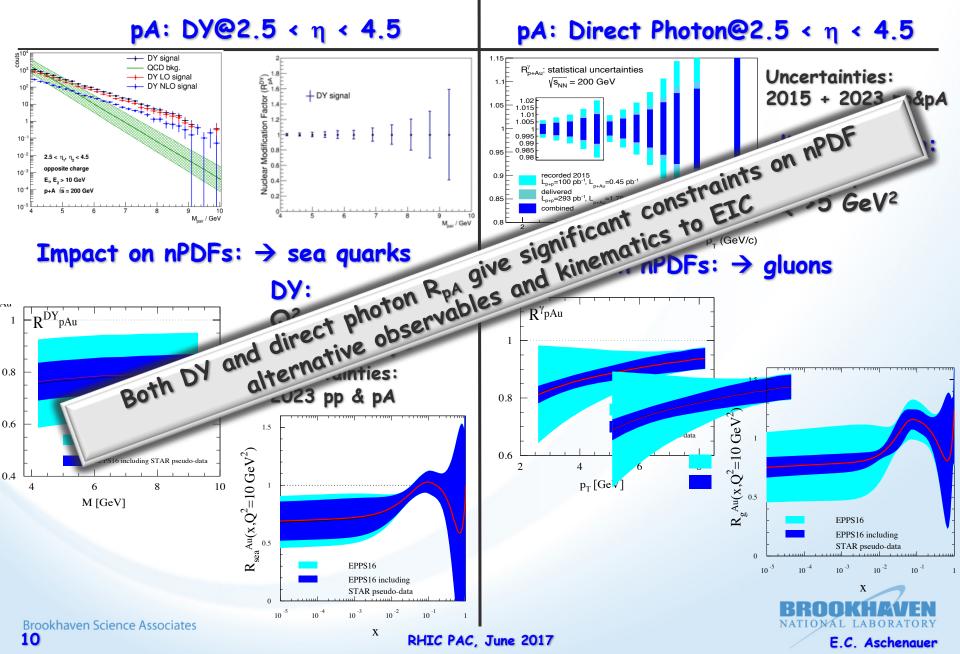
first LHC pA data

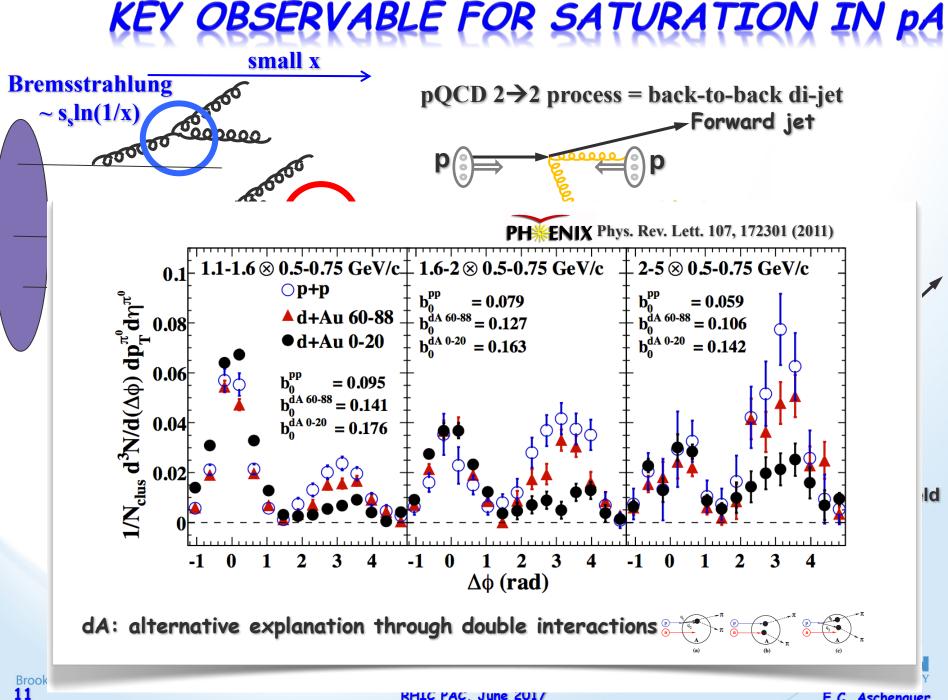
 $Q^2 = 1.69 \text{ GeV}^2$

EPPS16

10-3

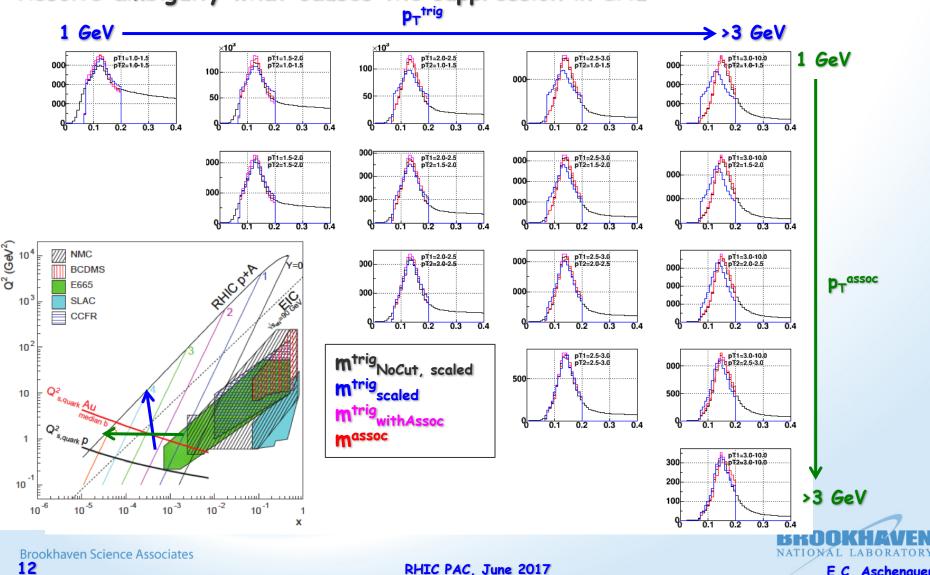
Observables free of final state effects > Gluons: R_{pA} for direct photons > Sea-quarks: R_{pA} for DY


Scan A-dependence prediction by saturation models


can access saturation regime at forward rapidities

10-1

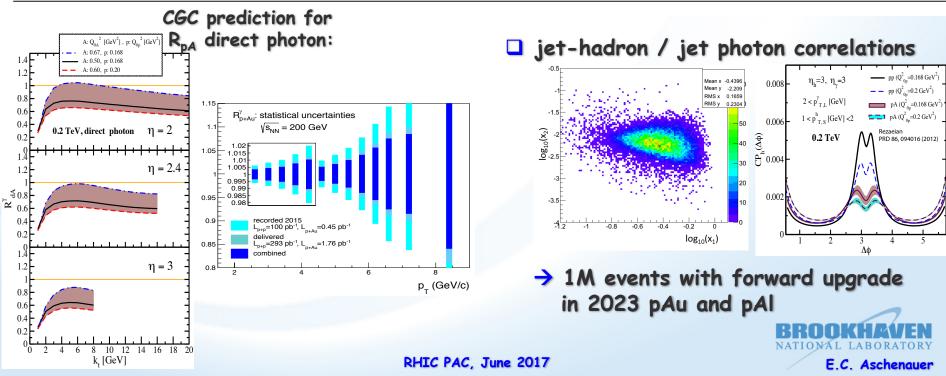
HOW DOES THE INITIAL STATE IN AA LOOK?



E.C. Aschenauer

KEY OBSERVABLE FOR SATURATION IN PA

2015 Di-hadron correlations: scanning in $x \rightarrow$ study the evolution of Q_s^2 in x Scan A-dependence: pAu and pAl \rightarrow study the evolution of Q_s²(x) with A Resolve ambiguity what causes the suppression in dAu


E.C. Aschenauer

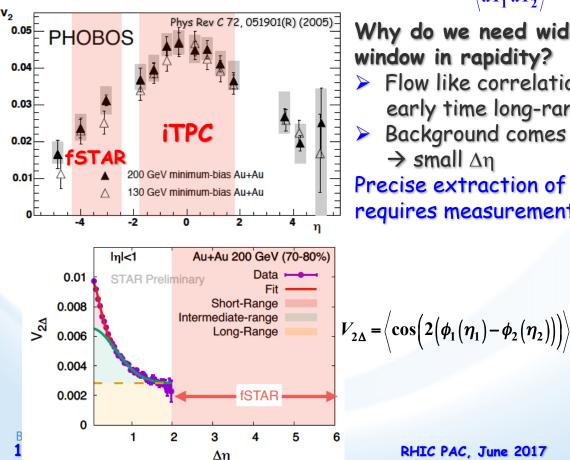
SATURATION WITH THE FORWARD UPGRADE

Expand the number of observables:

- rigorous test of theory predictions
- get a handle on the different gluon distributions
- \rightarrow provide variety of high precision data to test universality of CGC $\leftarrow \rightarrow$ EIC
- \rightarrow study of evolution/universality of Q_s^2 with A and x for different probes

arXiv:1101.0715Image: DIS and DYSIDIShadron in pAphoton-jet in pADijet in DISDijet in pA $G^{(1)}$ (WW) \times \times \times \times \checkmark \checkmark \checkmark $G^{(2)}$ (dipole) \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark

SUMMARY OF FORWARD PP & PA MEASUREMENTS


Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required
	(GeV)	Luminosity			Upgrade
2023	$\mathbf{p}^{T}\mathbf{p}$ @	300 pb ⁻¹	Subprocess driving the large	A_N for charged	Forward instrum.
	200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking
				flavor enhanced	
	*	1		jets	
2023	-	*			
		8 weeks		photons and DY	Forward instrum.
	200		in nuclear collisions		ECal+Hcal+Tracking
			Clear signatures for	Dihadrana wiat	
			0		
2023	$\mathbf{p}^{T}Al$	12.6 pb^{-1}			Forward instrum.
	-	^		1	ECal+HCal+Tracking
	200		A-dependence for Saturation	L	8
				Dihadrons, γ-jet,	
				5	
2021			TMDs at low and high x		Forward instrum.
	510	10 weeks		-	ECal+HCal+Tracking
				· ·	
2021	ক্ষা	1.1.fb ⁻¹	$A_{\alpha}(u)$ at small u		Forward instrum.
2021			$\Delta g(x)$ at small x		ECal+HCal
	510				
		(GeV) 2023 p [↑] p @ 200 200 2023 p [↑] Au @ 200 2023 p [↑] Ai @ 200 2023 p [↑] Ai 200 200 2023 p [↑] Ai 200 200 2023 p [↑] Ai 200 200 201 p [↑] p @ 510 510	(GeV) Luminosity 2023 $p^{T}p@$ $300 pb^{-1}$ 200 8 weeks 2023 $p^{T}Au$ $1.8 pb^{-1}$ 2023 $p^{T}Au$ $1.8 pb^{-1}$ 2024 $p^{T}Ai$ $1.8 pb^{-1}$ 2025 $p^{T}Ai$ $12.6 pb^{-1}$ 2020 $p^{T}Ai$ $12.6 pb^{-1}$ 2021 $p^{T}p@$ $1.1 fb^{-1}$ 2021 $p^{T}p@$ $1.1 fb^{-1}$ 2021 $p^{T}p@$ $1.1 fb^{-1}$	(GeV)Luminosity2023 $p^{\dagger}p$ @ 200 300 pb^{-1} 8 weeksSubprocess driving the large A_N at high x_F and η 2023 $p^{\dagger}Au$ @ 200 1.8 pb^{-1} 8 weeksWhat is the nature of the initial state and hadronization in nuclear collisions2023 $p^{\dagger}Au$ @ 200 $1.2.6 \text{ pb}^{-1}$ 8 weeksWhat is the nature of nPDF, A-dependence of nPDF, A-dependence for Saturation2023 $p^{\dagger}Al$ $2001.2.6 \text{ pb}^{-1}8 weeksA-dependence of nPDF,A-dependence for Saturation2021p^{\dagger}p @5101.1 \text{ fb}^{-1}10 weeksTMDs at low and high x2021p^{*}p @1.1 \text{ fb}^{-1}1.1 \text{ gb}^{-1}\Delta g(x) at small x$	(GeV)LuminositySubprocess driving the large A_N at high x_F and η A_N for charged hadrons and flavor enhanced jets2023 $p^{\dagger}p$ @ 300 pb^{-1} Subprocess driving the large A_N at high x_F and η A_N for charged hadrons and flavor enhanced jets2023 $p^{\dagger}Au$ 1.8 pb^{-1} What is the nature of the initial state and hadronization in nuclear collisions R_{pAu} direct photons and DY2024 $p^{\dagger}Au$ 1.8 pb^{-1} What is the nature of the initial state and hadronization in nuclear collisions R_{pAu} direct photons and DY2025 $p^{\dagger}Al$ 12.6 pb^{-1} A-dependence of nPDF, A-dependence of nPDF, R_{pAl} : direct photons and DY2021 $p^{\dagger}p$ @ 1.1 fb^{-1} TMDs at low and high x A_{UT} for Collins observables, i.e. hadron in jet modulations at η > 1 2021 $p^{\bullet}p$ @ 1.1 fb^{-1} $\Delta g(x)$ at small x A_{LL} for jets, di-

FORWARD PHYSICS IN A+A COLLISIONS

- Goal : Measurements of global observables in heavy ion collisions over wide range of rapidity at RHIC
- > Constraining longitudinal structure of the initial stages of HICs
- Constraining the temperature dependence profile of transport parameters Till today:

No RHIC data for higher order flow harmonics (v_3, v_4, v_5) & rapidity density correlations/fluctuations $\left\langle \frac{dN}{dY} \frac{dN}{dY} \right\rangle$

Why do we need wider window in rapidity?

- Flow like correlations are
 - early time long-range \rightarrow large $\Delta \eta$
- Background comes from Jets & non-flow \rightarrow small $\Delta \eta$

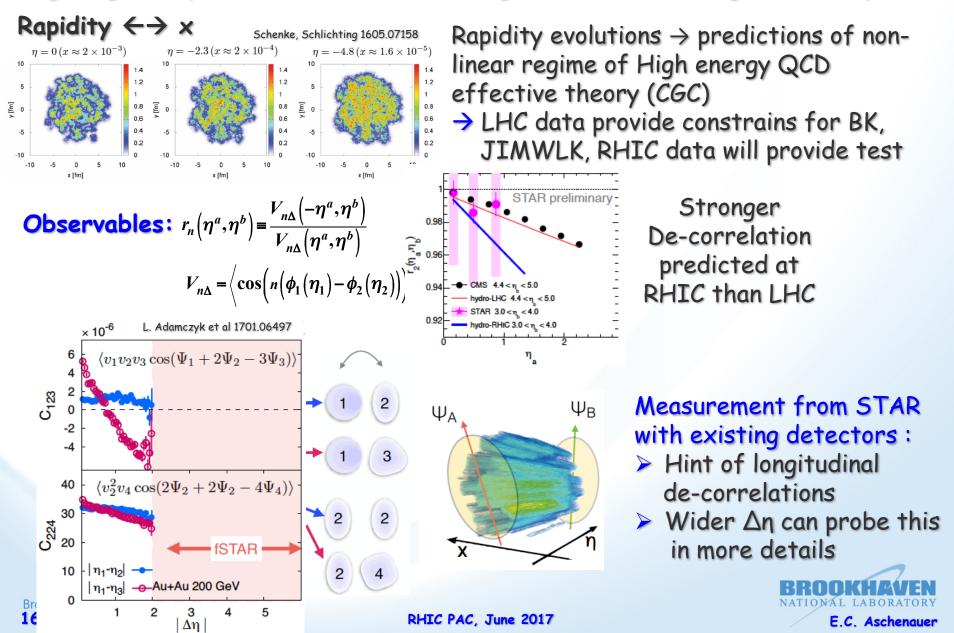
Precise extraction of flow (azimuthal correlations) requires measurements over wide window of rapidity

 $C(\Delta \eta)$

Short-range

Intermediate

Long-range



E.C. Aschenauer

Δn

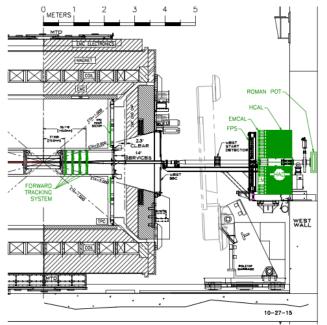
FORWARD PHYSICS IN A+A COLLISIONS

Long-range two particle correlations are of great interest \rightarrow ridge in small systems

SUMMARY OF FORWARD AA MEASUREMENTS

Phy Measureme		Longitudinal de-correlation $C_n(\varDelta \eta)$ $r_n(\eta_{ab}\eta_b)$	η/s(T), ζ/s(T)	Mixed flow Harmonics <i>Cm,n,m+n</i>	Ridge	Event Shape and Jet- studies
Detectors	Acceptance					
Forward Calorimeter (FCS)	$-2.5 \ge \eta \ge -4.2 E_T$ (photons, hadrons)	One of these		One of these detectors necessary	Good to have	One of these detectors needed
Forward Tracking System (FTS)	$-2.5 > \eta > -4.2$ (charged particles)	detectors necessary	Important		Important	

forward STAR upgrade unique opportunity to:


study the structure of the initial state that leads to breaking of boost invariance in heavy ion collisions and to explore of the transport properties of the hot and dense matter formed in heavy ion collisions near the region of perfect fluidity.

THE STAR FORWARD UPGRADE

Requirements from Physics:

Detector	pp and pA	AA
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{\mathrm{E}}$
HCal	~60%/√E	
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c with 20-30%</p<sub>
	photon suppression	$1/p_{T}$

Calorimeter System:

Intensive R&D work on both ECal and Hcal as part of STAR and EIC Detector R&D → several beam test and STAR in situ tests → system optimized for cost and performance

ECal:

reuse PHENIX PbSC calorimeter

with new readout on front instead of W/ScFi SPACAL significant cost reduction 😊

uncompensated calorimeter system 😕

HCal:

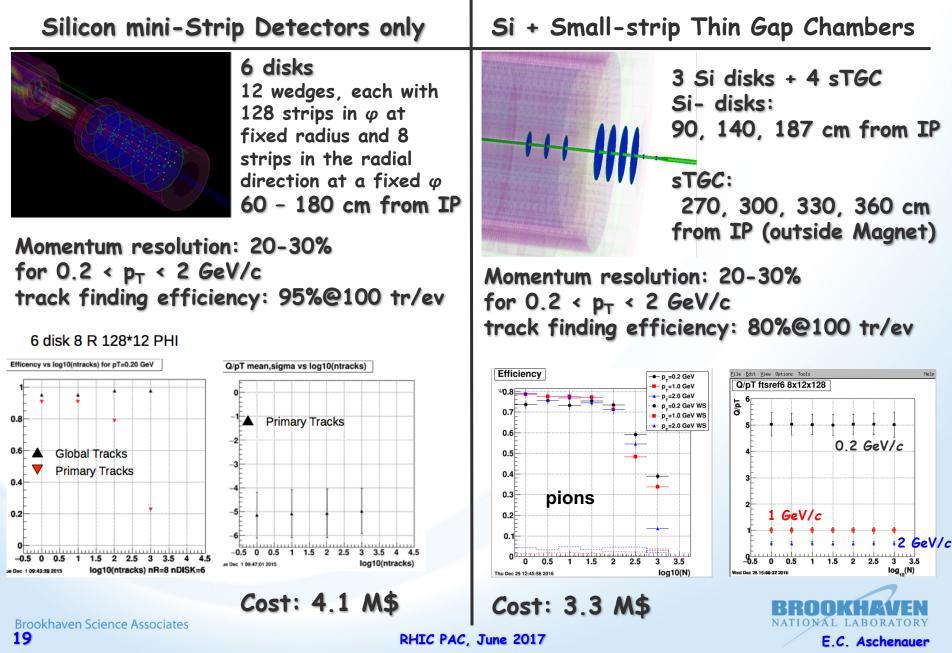
□ sandwich iron-scintillator plate sampling Calo

Same readout for both calorimeters \rightarrow cost

Cost:

ECal: 0.57 M\$

Hcal: 1.53 M\$


Preshower: 0.06 M\$

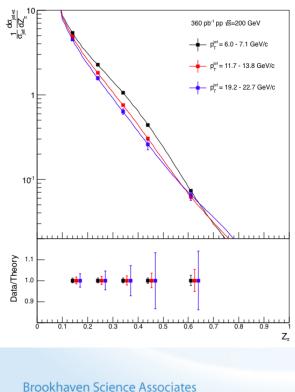
Total: 2.2 M\$

based on extensive experience from prototypes contingency and manpower included RHIC PAC, June 2017

E.C. Aschenquer

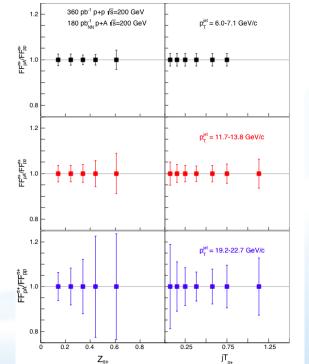
THE STAR FORWARD UPGRADE

PR. PA. AA PHYSICS AT MIDRAPIDITY


- Rich unique program building on the strength of STAR detector
 - measurements complement the forward physics program
 - > extending kinematics
 - > addressing complement physics topics
 - > diffractive & UPC program with Roman Pots, i.e. Wigner functions
- **PP**

20

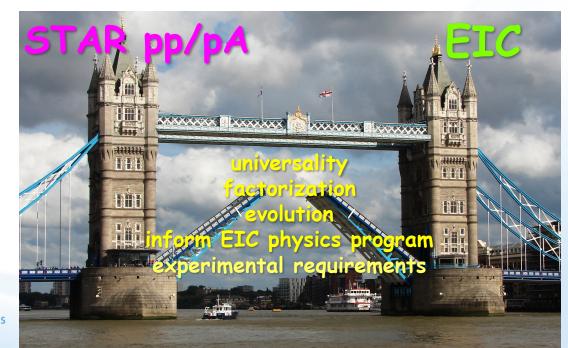
pA:


Fragmentation functions High precision TMD measurements nuclear Fragmentation functions

 \rightarrow Universality test \rightarrow EIC

complement to nPDFs only at RHIC p $\uparrow A$:

AA:

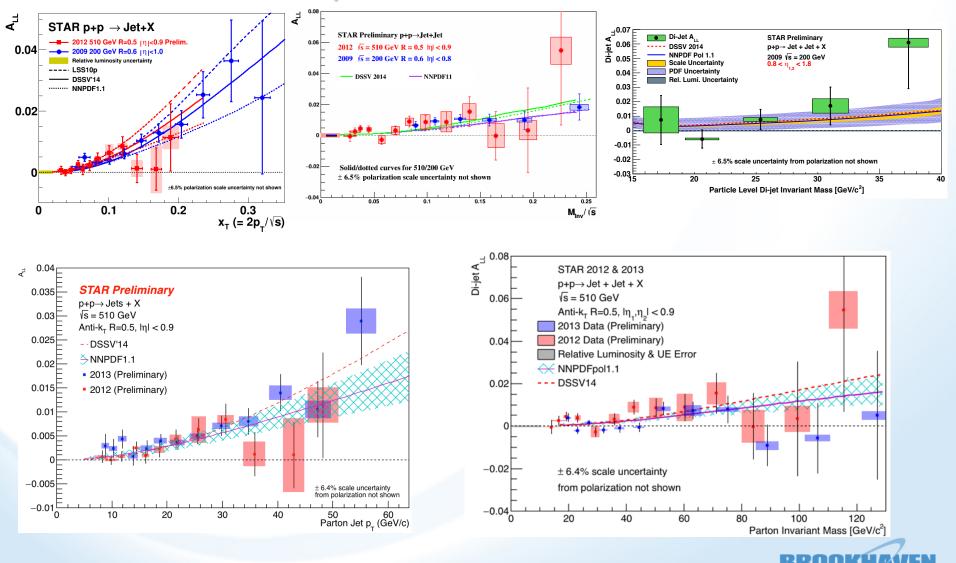

a deep look into the properties of the QGP: γ & e+e- pairs \rightarrow chiral symmetry restoration \rightarrow thermal radiation of QGP dN/dM (c²/GeV) Au + Au $\sqrt{s_{NN}}$ = 200 GeV (MinBias) with iTPC upgrade p^e₋>0.1 GeV/c, h^el<1,ly_ol<1 + 4 billion events Cocktail π⁰, η, η', ω, φ J/ψ, ψ', bb, DY cc PYTHIA de-correlated cc 10-4 Data/Cocktai 2 3 4 M_{ee} (GeV/c²)

STAR forward and midrapidity pp/pA/AA unique program addressing several fundamental questions in QCD

essential to complete the mission of the RHIC physics program
 Cost effective upgrade: Total 5.5 M\$ including contingency and manpower
 Dot (n.4. program acceptic) to fully realize the acceptific promise of the ETC

- pp/pA program essential to fully realize the scientific promise of the EIC
 - inform the physics program
 - > quantify experimental requirements

BACKUP

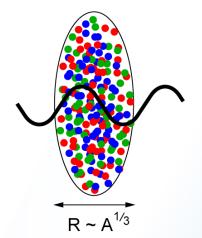


HOW POLARIZED ARE THE GLUONS?

NATIONAL LABORATORY

Jets and Di-Jets at -1 < η < 1.8:

To Date:



	GOLDEN OBSERVABLES
Initial State	Final State
SIVERS/Twist-3	Collins Mechanism
□ A _N for heavy flavour → gluon □ A _N for W ^{+/-} , Z ⁰ , DY	 asymmetry in jet fragmentation π^{+/-}π⁰ azimuthal distribution in jets Interference fragmentation function
A _N for jets, direct photons	A _N for pions → Novel Twist-3 FF Mechanisms
related through	related through
$= \int d^2k_{\perp} \frac{\left k_{\perp}^2\right }{M} f_{1T}^{\perp q}(x,k_{\perp}^2) _{SIDIS} = T_{q,F}(x,x)$	$\hat{H}(z) = z^2 \int d^2 \vec{k}_{\perp} \frac{k_{\perp}^2}{2M_h^2} \frac{H_1^{\perp}(z, z^2, \vec{k}_{\perp}^2)}{h}$
Probes correlations of proton spin to	Probes transversity x spin-dependent FF
parton transverse motion	Collins function: unpolarized hadron from a transversely polarized quark
Brookhaven S 24	0.05 0.10 0.10 0.5 0.0 ky (GeV -0.5 -1.0 ROOKHAVEN TOVAL LABORATORY

STUDYING NON-LINEAR EFFECTS

Scattering of electrons off nuclei:

- **Probes interact over distances** $L \sim (2m_N x)^{-1}$
- □ For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon
- **Probe interacts** *coherently* with all nucleons

Nuclear "Oomph" Factor Pocket Formula:

 $Q_s^2 \sim \frac{\alpha_s x G(x, Q_s^2)}{\pi R_s^2}$

HERA:
$$xG \sim \frac{1}{x^{0.3}}$$

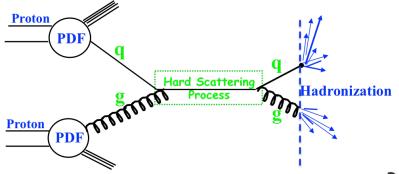
A dependence : $xG_A \sim A$

 $(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$

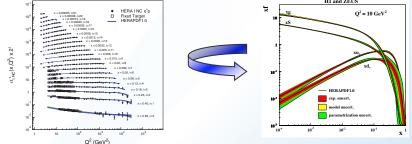
Enhancement of Q_S with A \Rightarrow non-linear QCD regime reached at significantly lower energy in A than in proton

EIC'S PHYSICS IMPACT, COMPLEMENTARITY AND UNIQUENESS

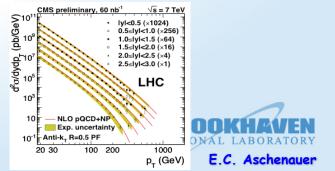
Complementarity


QCD has two concepts which lay its foundation factorization and universality

To tests these concepts and separate interaction dependent phenomena from intrinsic nuclear properties different complementary probes are critical


Probes: high precision data from ep, pp, e+e-

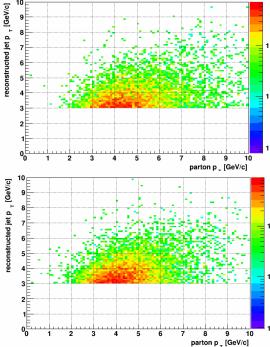
Factorization

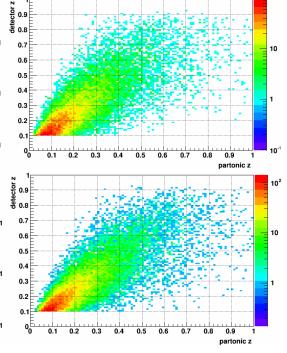

Example: Measure PDFs at HERA at Js=0.3 TeV:

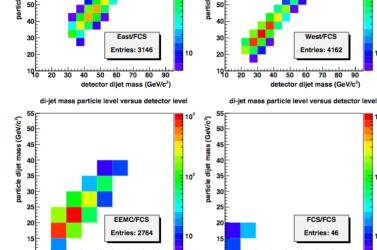
Predict pp and pp measurements at √s=0.2, 1.96 & 7 TeV

(un)polarized cross section ~ PDF \otimes hard-scattering \otimes Hadronization

hard-scattering : calculable in QCD PDFs and Hadronization: need to be determined experimentaly


STAR FORWARD UPGRADE PERFORMANCE

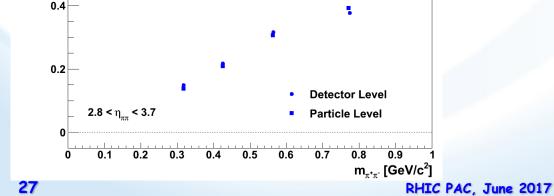

Ō


196

20 25 30

15

35 40 45


detector dijet mass (GeV/c²)

50 55 90

di-jet mass particle level versus detector level

Transverse momentum smearing for reconstructed jets compared to that of the associated parton. The upper figure shows the smearing for jets with 2 < h < 3 and the lower for those with 3 < n < 4.

Smearing of z, the fractional momentum of the outgoing parton/jet carried by the outgoing hadron. The upper figure shows the smearing for jets with 2<h<3 and the lower figure for jets with 3<h<4.

 $p^{\uparrow} + p \rightarrow \pi^{+} + \pi^{-}$ at $\sqrt{s} = 500 \text{ GeV}$

di-jet mass particle level versus detector level

West/FCS

Entries: 4162

FCS/FCS

Entries: 46

35 40 45

detector dijet mass (GeV/c²)

15

20

25 30 50

60 70

Αυτ