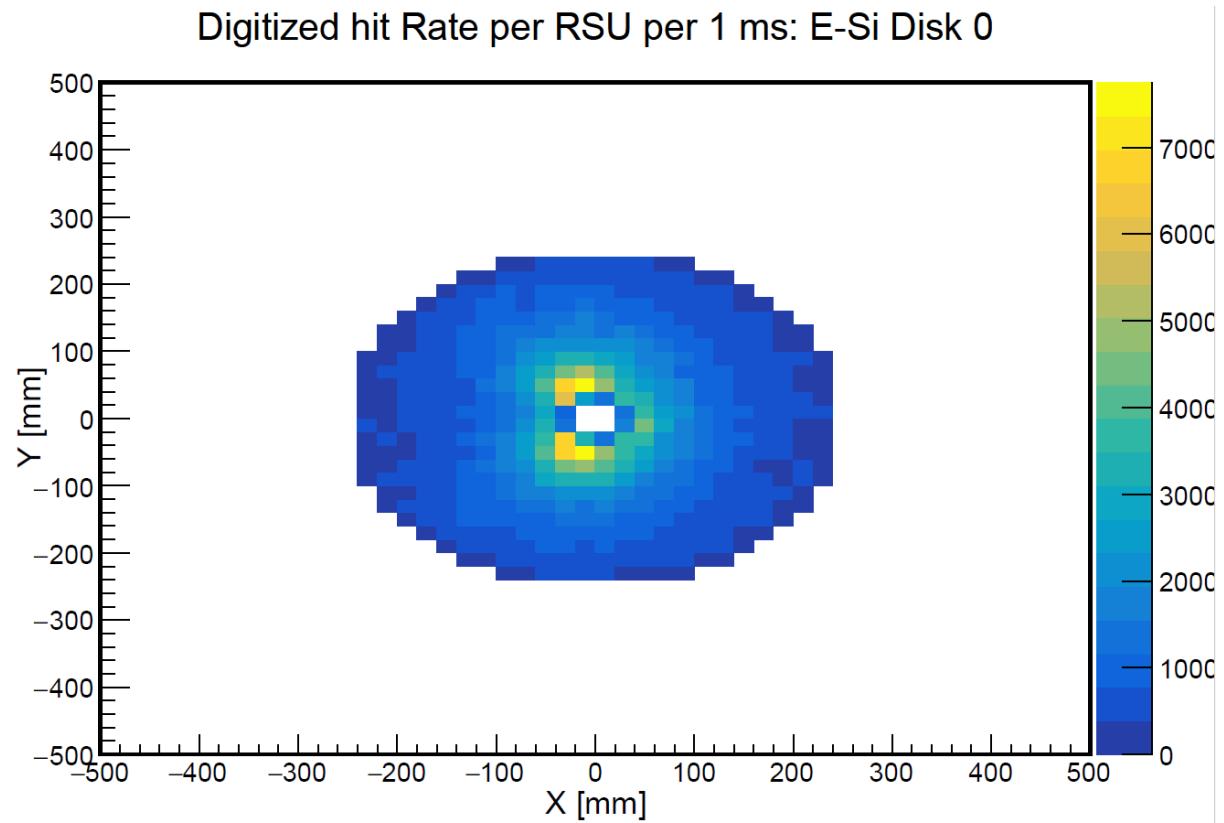


SVT hit rates at 10x275 GeV: 5um vs. 10 um gold coating

Barak Schmookler

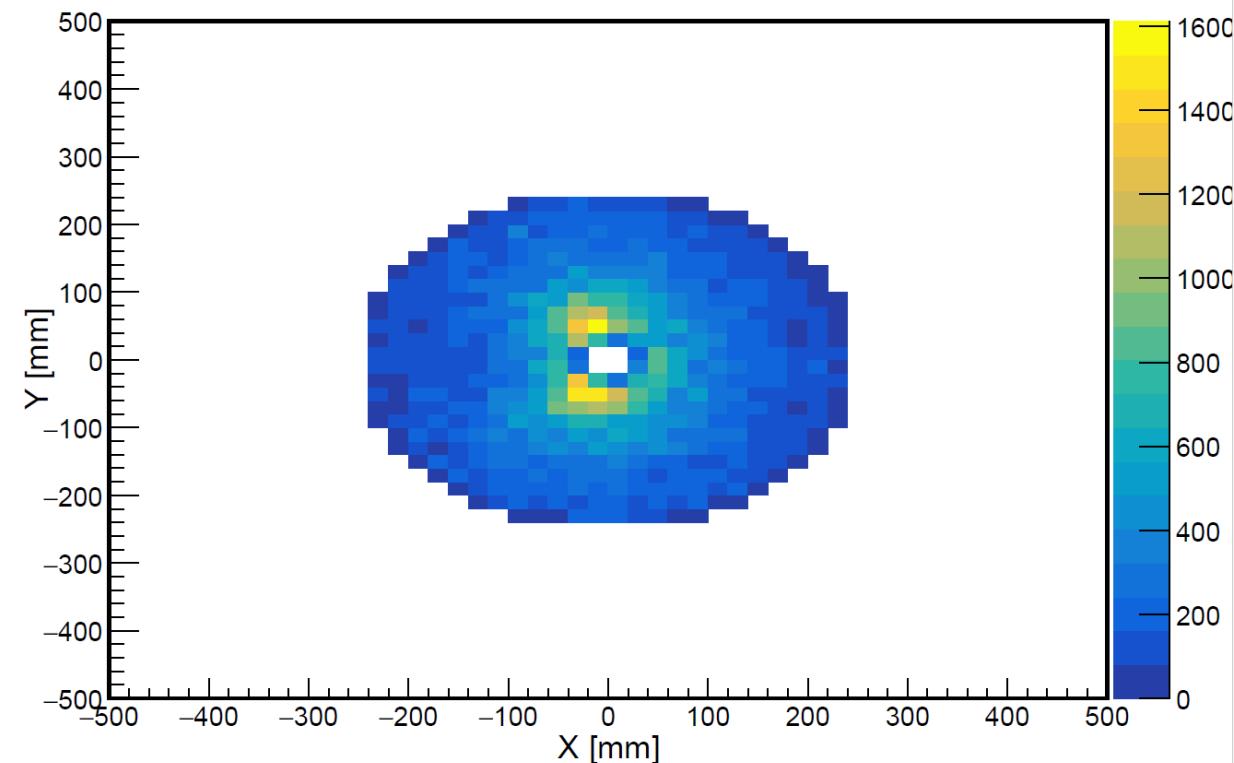
Motivation

- Our previous studies showed high hit rates and data rates for some SVT tiles with a 10 GeV electron beam at full current.
- Andrii produced some new SR simulations with the thickness of the gold coating on the beampipe increased from 5 um to 10 um.
- This decreased the overall SR rate for photons exiting the beampipe in the detector region from 36608 MHz to 13277 MHz.
- Using these new files, we ran some local simulations to check the impact on each SVT layer.


Local simulation

- Generated 1000 events (i.e., 2us time windows).
- Each event has a single 10x275 GeV DIS collision, as well as backgrounds at the correct rates. For SR, the mixing rate is set to 13277 MHz.

SVT disks digitized hit rates: E-Si Disk 0


Previous results with 5um gold coating

Digitized hit Rate per RSU per 1 ms: E-Si Disk 0

Results with 10um gold coating

Digitized hit Rate per RSU per 1 ms: E-Si Disk 0

Maximum average RSU rate decreases by about a factor of 4.5

Table of SVT rate comparison

10x275 GeV setting with 10um
gold beampipe coating

All counts are per millisecond (ms)

1ms of mixed data = 1000 events x (one DIS collision at $Q^2 > 1$ GeV 2 per 2us + beam background per event) / 2

source file:	Barak: bgmerged_forced_10x275_scaled_SR_10um_n1000.hepmc3.tree.root				
Layer name	Total hits	MAX hit on a single RSU (20x20mm)	Tile (9.8x3.5mm) added by Shujie	RSU rate ratio (5/10um)	Tile rate ratio (5/10um)
E-Si Disk 4	30795.5	46	12	3.43	2.42
E-Si Disk 3	144893.5	394	71	4.64	3.65
E-Si Disk 2	222633.5	1326	212	4.92	3.73
E-Si Disk 1	231321	1718.5	230	4.28	4.39
E-Si Disk 0	129167.5	1611.5	258	4.75	4.16
H-Si Disk 0	111486	1405.5	201	4.60	4.10
H-Si Disk 1	155315	1301	250	4.45	3.63
H-Si Disk 2	36344.5	144.5	35	2.12	2.23
H-Si Disk 3	6601.5	137	28	1.18	1.50
H-Si Disk 4	5000.5	86	18	1.37	1.11
L0	360928.5	4330	594	4.89	3.87
L1	251520	2188.5	250	3.99	3.84
L2	154420	538	73	3.66	3.11
L3	493530	711.5	110	2.95	2.70
L4	314902	217.5	39	2.53	2.46

Conclusions

- Doubling the thickness of gold coating has a sizeable impact on the SVT hit rates. For layers with high rate, the maximum hit rate decreases by more than the change in the SR mixing frequency – suggesting that the SR photon energy, angle, and position distribution outside the beam pipe is modified.
- Next steps:
 1. Study frame-by-frame fluctuations in the SVT hit rates
 2. Begin to look at tracking performance at 10x275 GeV
 3. Review previous work on pointing resolution with increased coating thickness