

bHCAL Meeting – Neutron Calibration Update

Jan Vanek

University of New Hampshire

02/06/2025

OVERVIEW

- Summary of bHCAL neutron calibration efforts
- bHCAL parameters in EICRecon
- Overview of manual calibrations
 - Methods
 - Results
- Shower shape study
 - Cluster shape in bHCAL
 - Energy deposition vs. first layer in bECAL
- Sensitive magnet study

bHCAL PARAMETERS IN EICrecon

- Question raised during calibration discussions: What is the current packing fraction of bHCAL in the simulation?
- Other important parameters: ADC setup

```
// Make sure digi and reco use the same value
decltype(CalorimeterHitDigiConfig::capADC) HcalBarrel_capADC      = 65536; //65536, 16bit ADC
decltype(CalorimeterHitDigiConfig::dyRangeADC) HcalBarrel_dyRangeADC = 1.0 * dd4hep::GeV;
decltype(CalorimeterHitDigiConfig::pedMeanADC) HcalBarrel_pedMeanADC = 300;
decltype(CalorimeterHitDigiConfig::pedSigmaADC) HcalBarrel_pedSigmaADC = 2;
decltype(CalorimeterHitDigiConfig::resolutionTDC) HcalBarrel_resolutionTDC =
  1 * dd4hep::picosecond;
```

```
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitDigi_factory>(
  "HcalBarrelRawHits", {"EventHeader", "HcalBarrelHits"}, {"HcalBarrelRawHits", "HcalBarrelRawHitAssociations"}, {
    .eRes      = {},
    .tRes      = 0.0 * dd4hep::ns,
    .threshold = 0.0, // Use ADC cut instead
    .capADC   = HcalBarrel_capADC,
    .capTime   = 100, // given in ns, 4 samples in HGCROC
    .dyRangeADC = HcalBarrel_dyRangeADC,
    .pedMeanADC = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC,
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .corrMeanScale = "1.0",
    .readout   = "HcalBarrelHits",
  },
  app // TODO: Remove me once fixed
));
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitReco_factory>(
  "HcalBarrelRecHits", {"HcalBarrelRawHits"}, {"HcalBarrelRecHits"}, {
    .capADC      = HcalBarrel_capADC,
    .dyRangeADC  = HcalBarrel_dyRangeADC,
    .pedMeanADC  = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC, // not used; relying on energy cut
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .thresholdFactor = 0.0, // not used; relying on flat ADC cut
    .thresholdValue = 33, // pedSigmaADC + thresholdValue = half-MIP (333 ADC)
    .sampFrac    = "0.033", // average, from sPHENIX simulations
    .readout     = "HcalBarrelHits",
    .layerField   = "",
    .sectorField  = "",
  },
  app // TODO: Remove me once fixed
));
```

bHCAL PARAMETERS IN EICrecon

- Question raised during calibration discussions: What is the current **packing fraction** of bHCAL in the simulation?
- Other important parameters: ADC setup

```
// Make sure digi and reco use the same value
decltype(CalorimeterHitDigiConfig::capADC) HcalBarrel_capADC      = 65536; //65536, 16bit ADC
decltype(CalorimeterHitDigiConfig::dyRangeADC) HcalBarrel_dyRangeADC = 1.0 * dd4hep::GeV;
decltype(CalorimeterHitDigiConfig::pedMeanADC) HcalBarrel_pedMeanADC = 300;
decltype(CalorimeterHitDigiConfig::pedSigmaADC) HcalBarrel_pedSigmaADC = 2;
decltype(CalorimeterHitDigiConfig::resolutionTDC) HcalBarrel_resolutionTDC =
  1 * dd4hep::picosecond;
```

```
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitDigi_factory>(
  "HcalBarrelRawHits", {"EventHeader", "HcalBarrelHits"}, {"HcalBarrelRawHits", "HcalBarrelRawHitAssociations"}, {
    .eRes      = {},
    .tRes      = 0.0 * dd4hep::ns,
    .threshold = 0.0, // Use ADC cut instead
    .capADC   = HcalBarrel_capADC,
    .capTime   = 100, // given in ns, 4 samples in HGCROC
    .dyRangeADC = HcalBarrel_dyRangeADC,
    .pedMeanADC = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC,
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .corrMeanScale = "1.0",
    .readout   = "HcalBarrelHits",
  },
  app // TODO: Remove me once fixed
));
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitReco_factory>(
  "HcalBarrelRecHits", {"HcalBarrelRawHits"}, {"HcalBarrelRecHits"}, {
    .capADC      = HcalBarrel_capADC,
    .dyRangeADC  = HcalBarrel_dyRangeADC,
    .pedMeanADC  = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC, // not used; relying on energy cut
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .thresholdFactor = 0.0, // not used; relying on flat ADC cut
    .thresholdValue = 33, // pedSigmaADC + thresholdValue = half-MIP (333 ADC)
    .sampFrac    = "0.033", // average, from sPHENIX simulations
    .readout     = "HcalBarrelHits",
    .layerField   = "",
    .sectorField  = "",
  },
  app // TODO: Remove me once fixed
));
```

bHCAL PARAMETERS IN EICrecon

- Question raised during calibration discussions: What is the current packing fraction of bHCAL in the simulation?
- Other important parameters: **ADC setup**

```
// Make sure digi and reco use the same value
decltype(CalorimeterHitDigiConfig::capADC) HcalBarrel_capADC = 65536; //65536, 16bit ADC
decltype(CalorimeterHitDigiConfig::dyRangeADC) HcalBarrel_dyRangeADC = 1.0 * dd4hep::GeV;
decltype(CalorimeterHitDigiConfig::pedMeanADC) HcalBarrel_pedMeanADC = 300;
decltype(CalorimeterHitDigiConfig::pedSigmaADC) HcalBarrel_pedSigmaADC = 2;
decltype(CalorimeterHitDigiConfig::resolutionTDC) HcalBarrel_resolutionTDC =
  1 * dd4hep::picosecond;
```

```
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitDigi_factory>(
  "HcalBarrelRawHits", {"EventHeader", "HcalBarrelHits"}, {"HcalBarrelRawHits", "HcalBarrelRawHitAssociations"}, {
    .eRes = {},
    .tRes = 0.0 * dd4hep::ns,
    .threshold = 0.0, // Use ADC cut instead
    .capADC = HcalBarrel_capADC,
    .capTime = 100, // given in ns, 4 samples in HGCROC
    .dyRangeADC = HcalBarrel_dyRangeADC,
    .pedMeanADC = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC,
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .corrMeanscale = "1.0",
    .readout = "HcalBarrelHits",
  },
  app // TODO: Remove me once fixed
));
app->Add(new J0nniFactoryGeneratorT<CalorimeterHitReco_factory>(
  "HcalBarrelRecHits", {"HcalBarrelRawHits"}, {"HcalBarrelRecHits"}, {
    .capADC = HcalBarrel_capADC,
    .dyRangeADC = HcalBarrel_dyRangeADC,
    .pedMeanADC = HcalBarrel_pedMeanADC,
    .pedSigmaADC = HcalBarrel_pedSigmaADC, // not used; relying on energy cut
    .resolutionTDC = HcalBarrel_resolutionTDC,
    .thresholdFactor = 0.0, // not used; relying on flat ADC cut
    .thresholdValue = 33, // pedSigmaADC + thresholdValue = half-MIP (333 ADC)
    .sampFrac = "0.033", // average, from sPHENIX simulations
    .readout = "HcalBarrelHits",
    .layerField = "",
    .sectorField = "",
  },
  app // TODO: Remove me once fixed
));
```

MANUAL CALIBRATION METHODS

- Simple neutron calibration for bHCAL
- Method 1
 - $E_{calib} = A(E_{EMCAL} + E_{bHCAL})$
 - Plot $(E_{EMCAL} + E_{bHCAL})/E_{par,MC}$
 - A is set as 1/mean of this distribution
- Method 2
 - $E_{calib} = A(E_{EMCAL} + BE_{bHCAL})$
 - Plot $(E_{EMCAL} + BE_{bHCAL})/E_{par,MC}$
 - First find B for which the distribution above has the smallest σ/μ
 - A is set as 1/mean of the distribution with optimal B
- Method 3:
 - χ^2 method
 - Simultaneously determine A and B parameters from method 2 by minimizing:
 - $\sum_{events} (E_{calib} - E_{par})^2 / E_{par}^2$
 - Requires custom minimizer e.g. using Tminuit class

MANUAL CALIBRATION METHODS

- Simple neutron calibration for bHCAL

▪ Method 1

- $E_{calib} = A(E_{EMCAL} + E_{bHCAL})$
- Plot $(E_{EMCAL} + E_{bHCAL})/E_{par,MC}$
 - A is set as 1/mean of this distribution

▪ Method 2

- $E_{calib} = A(E_{EMCAL} + BE_{bHCAL})$
- Plot $(E_{EMCAL} + BE_{bHCAL})/E_{par,MC}$
 - First find B for which the distribution above has the smallest σ/μ
 - A is set as 1/mean of the distribution with optimal B

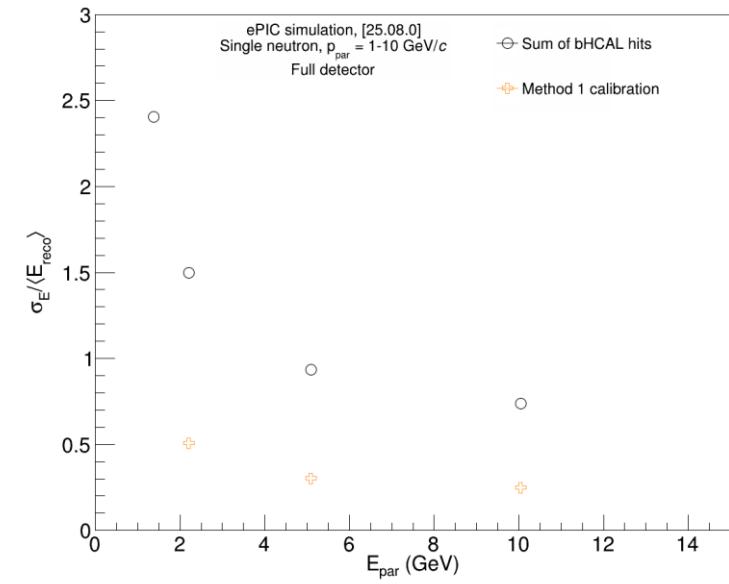
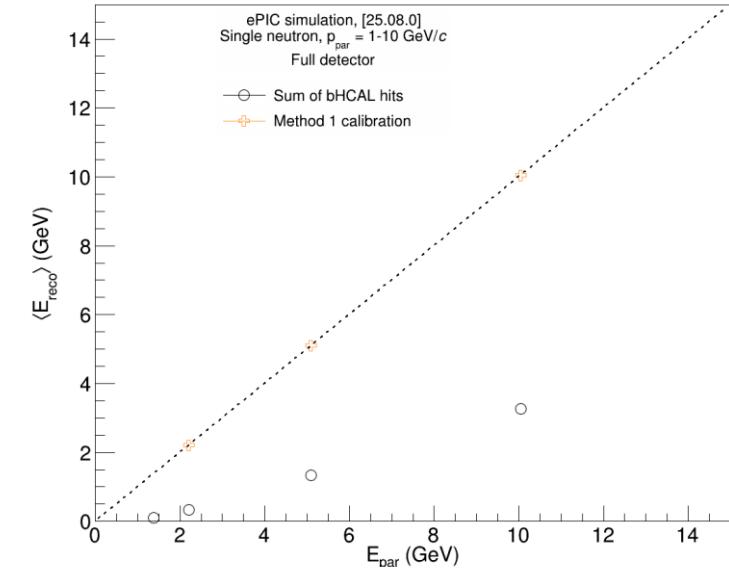
▪ Method 3:

- χ^2 method
- Simultaneously determine A and B parameters from method 2 by minimizing:
 - $\sum_{events} (E_{calib} - E_{par})^2 / E_{par}^2$
- Requires custom minimizer e.g. using Tminuit class

▪ Implemented

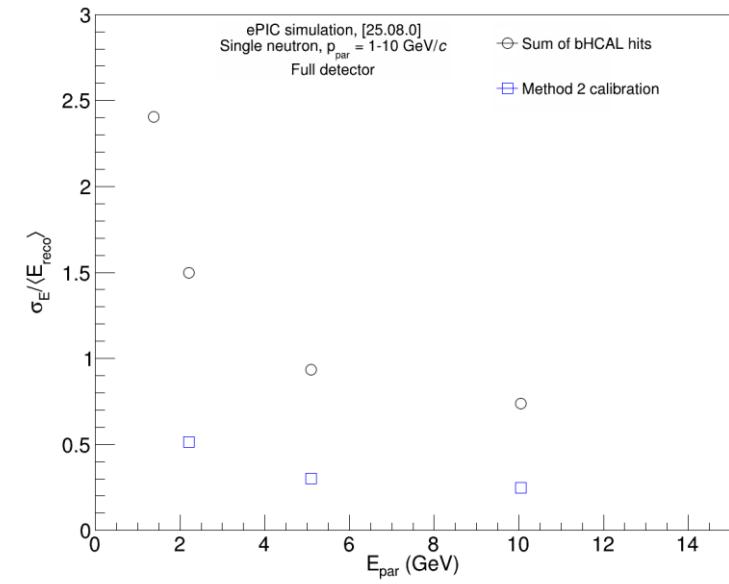
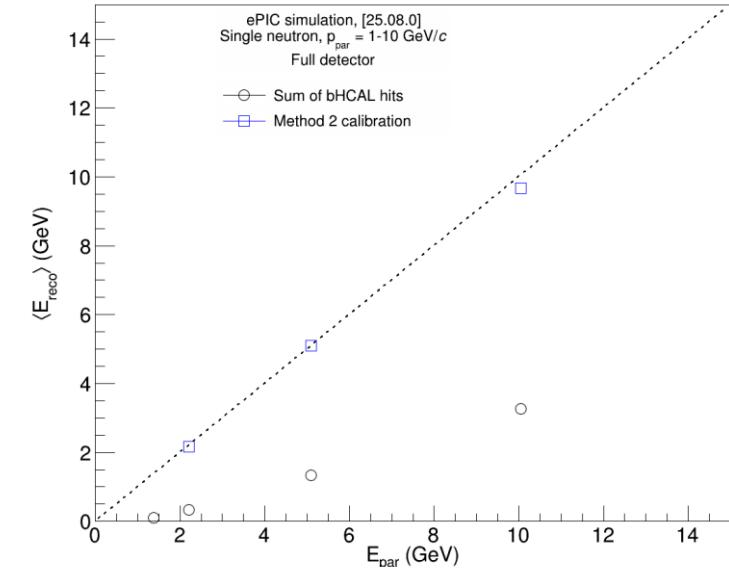
- Method 2 can be improved:
 - With more granular manual scan of B values
 - Using minimizer (similar to Method 3)

▪ Not implemented

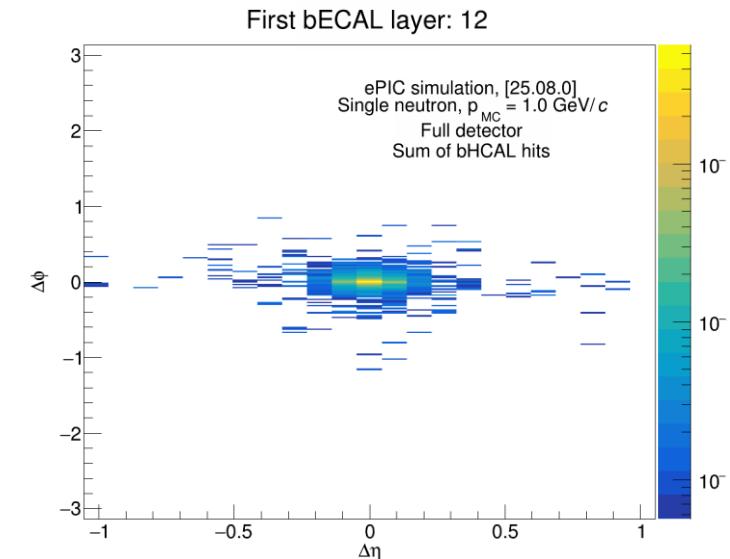
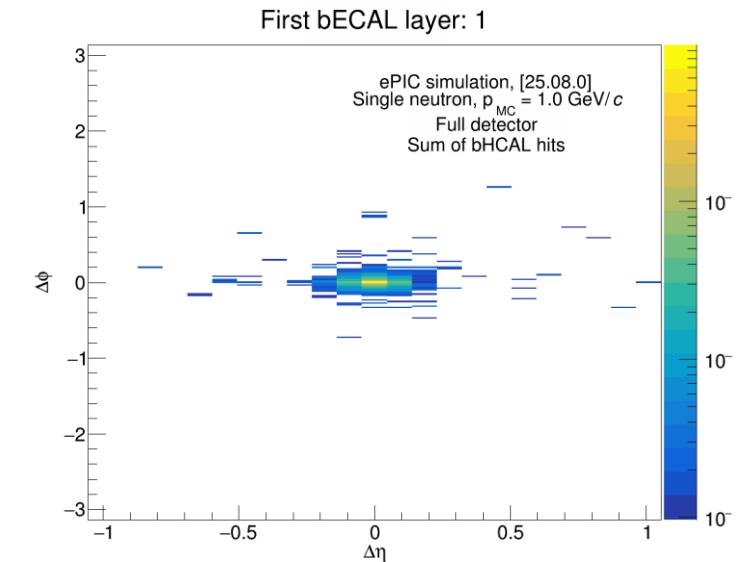


- Requires new framework – only if we decide that this method is preferred over 1 and 2

▪ How do we treat energy loss in magnet?

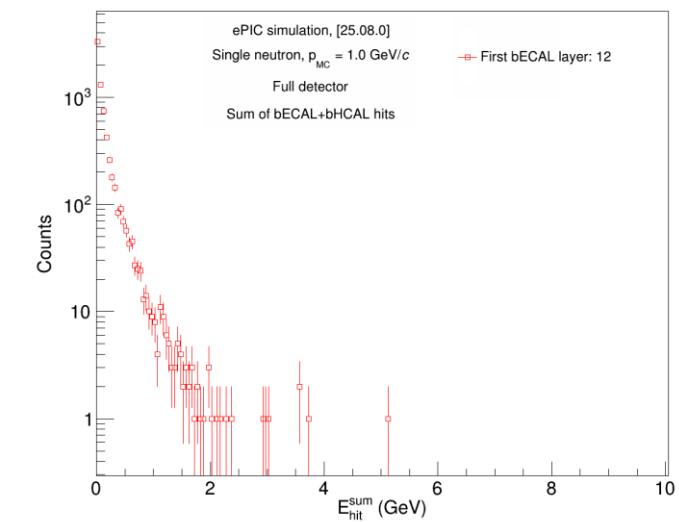
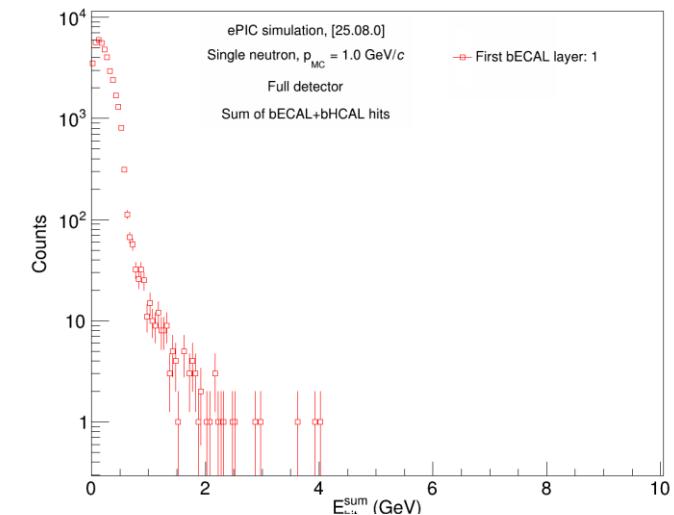
▪ Which method?



CALIBRATION RESULTS

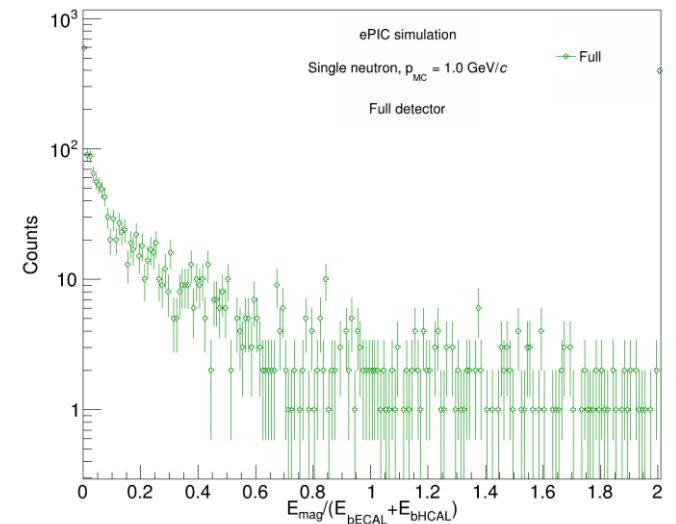
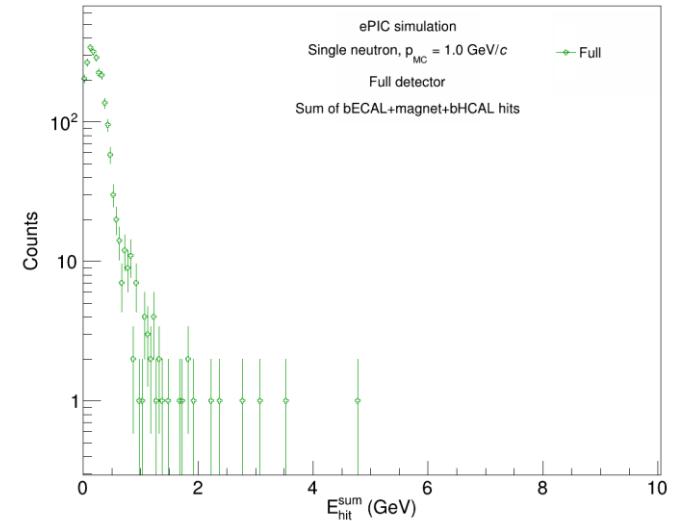
- Currently have results only from early studies
 - Latest results for **Method 1** and manual Method 2
- Difficult/impossible to calibrate lowest energy
 - Missing peak structure in uncalibrated energy distribution
- Key questions:
 - How to calibrate low energies?
 - Which method are we going to use?
 - How do we treat the energy loss in the magnet in the calibration?
- Calibration slides:
 - bHCAL meeting on [10/24/2025](#)
 - Via email on [10/25/2025](#)
 - Via email on [10/26/2025](#)



CALIBRATION RESULTS

- Currently have results only from early studies
 - Latest results for Method 1 and manual **Method 2**
- Difficult/impossible to calibrate lowest energy
 - Missing peak structure in uncalibrated energy distribution
- Key questions:
 - How to calibrate low energies?
 - Which method are we going to use?
 - How do we treat the energy loss in the magnet in the calibration?
- Calibration slides:
 - bHCAL meeting on [10/24/2025](#)
 - Via email on [10/25/2025](#)
 - Via email on [10/26/2025](#)



CLUSTER SHAPE IN bHCAL

- 1 GeV/c: No significant difference between different hit combinations observed
- 2 GeV/c: Shower profile in bHCAL a bit wider when shower starts in early bECAL, but difference is small
- 5 GeV/c: Shower profile in bHCAL substantially wider when shower starts early in bECAL (layer 1) compared to case where it starts late (layer 12)
- The widening of shower as it propagates through the bECAL+Magnet+bHCAL system seems to only be visible for high energy neutrons
- **Shower profile in bHCAL as a function of first layer in bHCAL does not seem to provide any useful information for manual calibrations of 1 GeV/c (for now)**
 - Might be useful for higher energies
- From bHCAL meeting slides on 12/05/2025



ENERGY DEPOSITION VS. FIRST bECAL LAYER

- The energy deposition in bECAL and bHCAL has clear and predictable structure depending on first layer in bECAL
- 1 GeV/c: Peak visible for total energy deposition in bECAL+bHCAL only somewhat visible when shower starts early in bECAL (layer 1)
- 2 GeV/c: Peak structure visible even for showers that start in the middle of bECAL (around layer 6)
- 5 GeV/c: Peak structure generally well visible for total energy deposition
- **Peak structure important as its mean can tell us about how far we are from the expected MC particle momentum**
- **This is problem for the lowest energy, as peak structure is generally not visible**
- From bHCAL meeting slides on [12/05/2025](#)

SENSITIVE MAGNET STUDY

- Successfully implemented sensitive solenoid to the ePIC simulation framework for bHCAL calibration studies
 - Seems to give reasonable results
 - Mean of total energy distributions with the energy from the solenoid seem to have stable mean, regardless of where the shower starts
 - Mean shifts when no magnet information is used
- Energy lost in the magnet relative to deposition in bECAL+bHCAL seems to be quite small
 - In most events, energy deposited in the magnet is less than 20% of total deposition in bECAL+bHCAL (before calibration)
 - Energy lost in the magnet is not large, but is enough to complicate energy determination, especially at low neutron energies (1 GeV/c)
- From bHCAL meeting slides on [01/16/2026](#)

SUMMARY

- Found location of relevant bHCAL parameters in EICRecon
 - We can check and adjust those if needed
 - Important information for interpretation of observed energy distributions
 - Useful for future studies (CALOROC)
- Have working calibration framework
 - Method 1 and 2 implemented
 - Method 2 can be improved, if needed
 - Can add Method 3, if desired
 - How do we treat energy loss in magnet in calibrations?
- Cluster shapes don't seem to provide useful information for manual calibration at low energy n
- First hit layer of bECAL provides useful information, but not enough to calibrate low energy n
- Only small fraction of neutron energy (on average) is lost in the magnet
- **What are our plans for the manual calibrations?**

THANK YOU FOR ATTENTION