

Barrel Imaging Calorimeter Preliminary Design Review

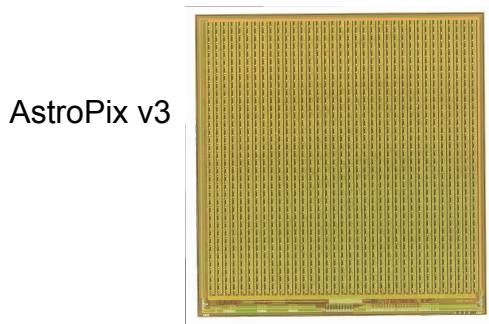
Modules

Manoj Jadhav
Argonne National Laboratory
on behalf of the BIC DSC

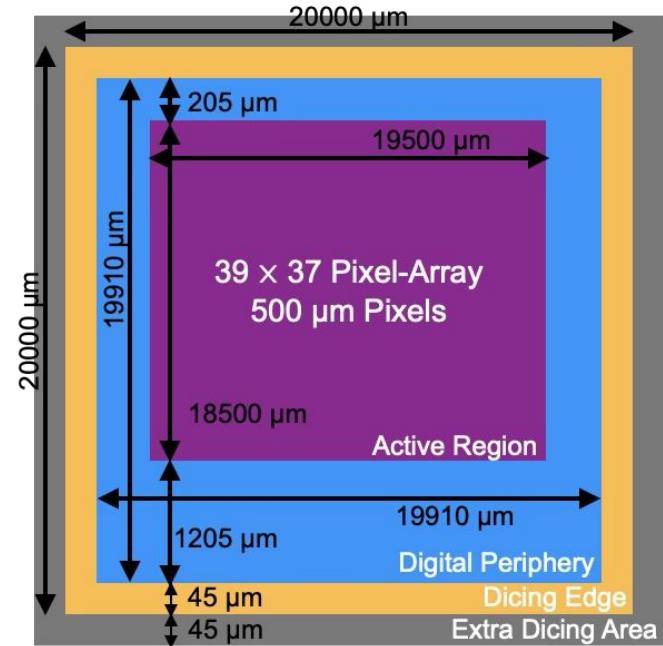
BIC PDR
September 17-18, 2025

Charge

1. Is the progress and design maturity of the barrel electromagnetic calorimeter systems aligned with being baselined in June 2026 (>60% maturity is required)?
2. Are the technical performance requirements appropriately defined and complete for this stage of the project?
3. Are the plans for achieving detector performance and construction sufficiently developed and documented for the present phase of the project?
4. Are the current designs and plans for detector and electronics readout likely to achieve the performance requirements with a low risk of cost increases, schedule delays, and technical problems?
5. Are the calorimeter fabrication and assembly plans consistent with the overall project and detector schedule?
6. Are the plans for detector integration in the EIC detector appropriately developed for the present phase of the project?
7. Have ES&H and QA considerations been adequately incorporated into the designs at their present stage?
8. Have the recommendations from previous reviews been adequately addressed?


Outline

- ❖ Overview of AstroPix and active coverage
- ❖ Concept of imaging layers
- ❖ Production statistics
- ❖ AstroPix Modules and Staves
- ❖ Assembly toolings
- ❖ Module test articles
- ❖ Module QC procedures
- ❖ Pre-Production plan
- ❖ Production plans
- ❖ ES&H
- ❖ Summary


AstroPix

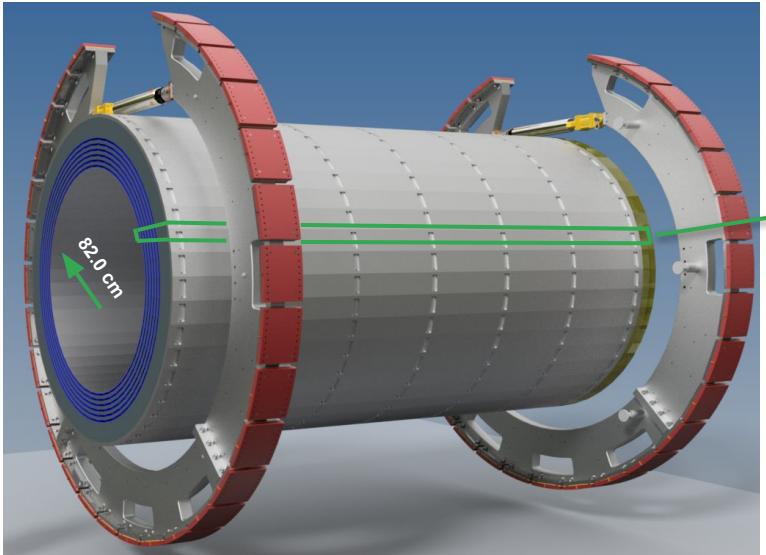
A low-power HV-CMOS monolithic active pixel sensor

- Current AstroPix version: 3 and 5 (1.87 cm × 1.96 cm)
- AstroPix v4 is MWP run with size of 1 cm × 1 cm
- Version 5 is designed and ready for submission (Regina's talk)
- ePIC-BIC Final AstroPix chip size: 2 cm x 2 cm
- Pixel pitch: 500 μm
- Pixel matrix: 39 × 37
- Sensor thickness: 525 μm
- Pixel to chip edge distance: 250 μm (including dicing area)

AstroPix v5

AstroPix Coverage

Minimizing dead area in the imaging layers

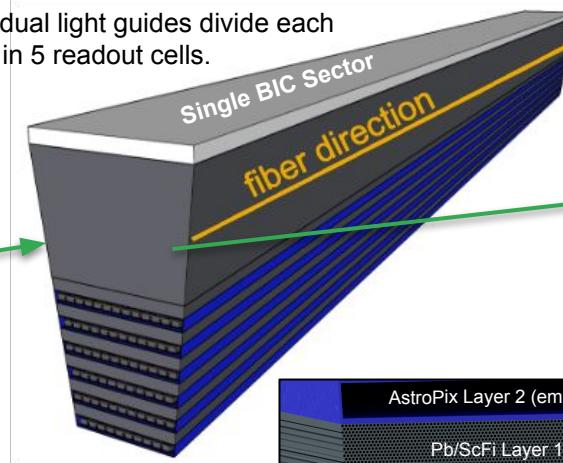

- AstroPix chip size = 2 cm \times 2 cm
- **Active area = 1.95 cm \times 1.85 cm**
- Total Sector length = 435 cm
- Length to cover with single Stave = 217.5 cm
- AstroPix chip + gap = 2.01 cm
- Number of chips required = $217.5/2.01 = 108.21$
- 12 Module with 9 chips = **108 AstroPix Chips**
- Length of the Module = $9*2.01 = 18.09$ cm
- Length of the Stave = $9*2.01*12 = 217.08$ cm
- Length of Imaging Sector = **434.16 cm**

Inactive area percentage along Stave = **2.99%**

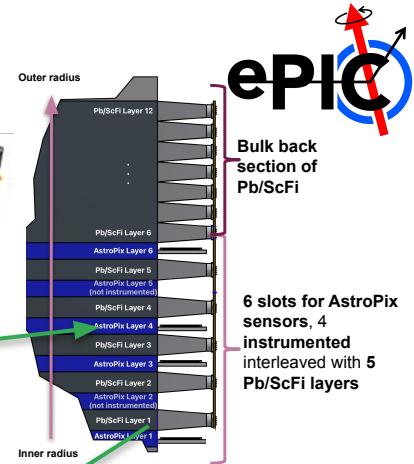
Transverse Coverage of imaging layers

Layer#	Length (mm)	# Staves	Overlap or Inactive (mm)	Overlap/Inactive per Stave (mm)	Overlap/Inactive per Gap (mm)	Inactive (%)
1	107.257	6	4.243	0.707	0.8486	0.47
3	117.411	7	12.589	1.7984	2.0982	0.43
4	122.488	7	7.512	1.073	1.252	0.41
6	132.642	8	15.858	1.982	2.2654	0.38

The BIC Design



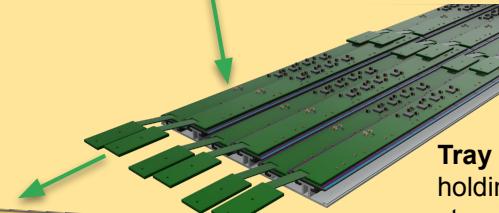
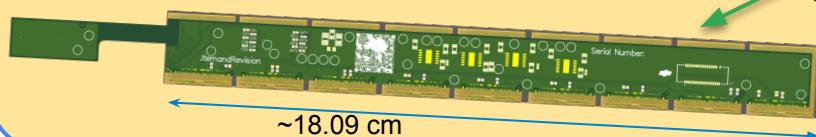
Length: ~435 cm
Inner Radius: ~81.5 cm
Structure: 48 sectors
 η Range: $-1.71 < \eta < 1.31$
Depth: $17.1X0$ at $\eta = 0$
Sampling fraction ~10%


Pb/SciFi Layers - 17 rows of fiber between corrugated lead.

Each sector has 12 Pb/SciFi layers.

Individual light guides divide each layer in 5 readout cells.

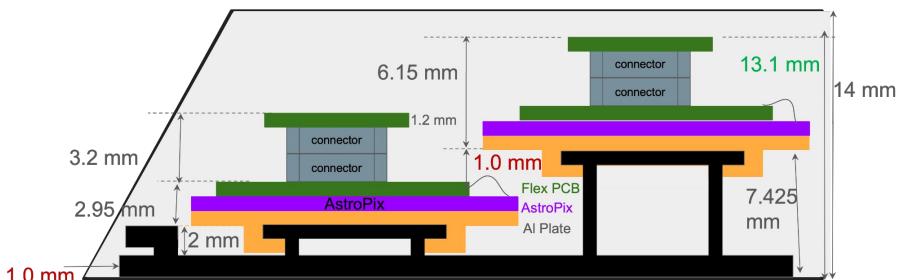
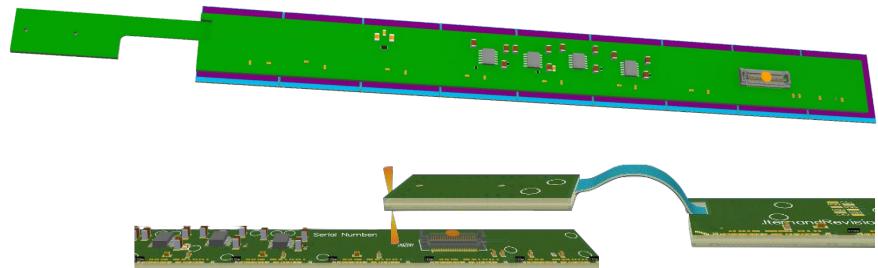
4(+2) layers of AstroPix interleaved with 5 Pb/SciFi layers

SiPMs - 5 per layer x 12 layers = 60 (Hamamatsu S14161-3050)
1 light guide per cell

AstroPix Module - Nine AstroPix sensors daisy-chained together on Flex PCB.

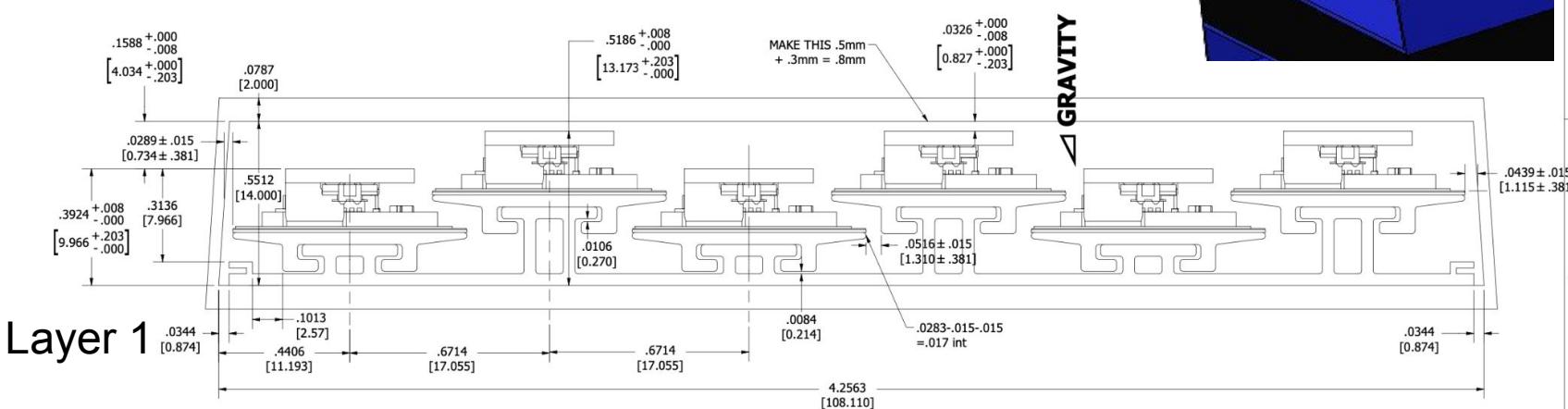
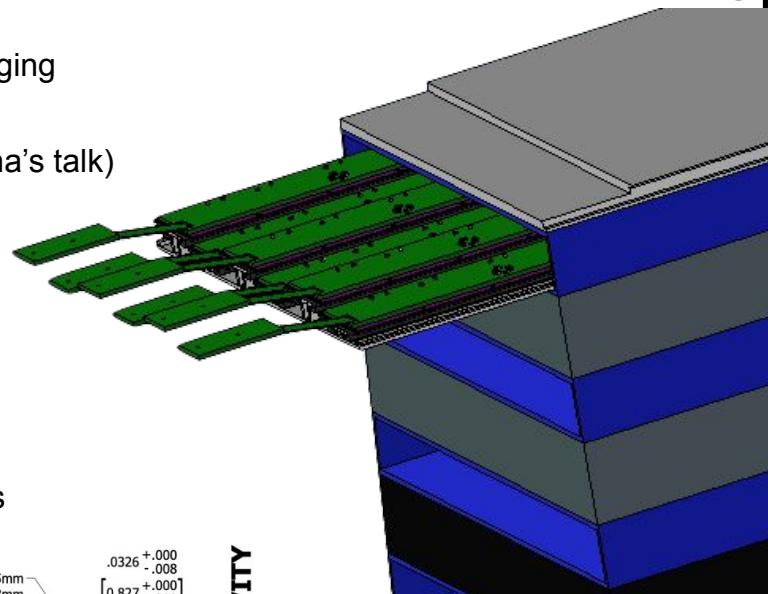
A stave consists of 12 modules.



A tray contains of 6-8 staves.

Tray - Structure holding the AstroPix staves for a single layer (217.5 cm long).

The BIC Imaging Layers

- **Module** is an electrically testable elementary unit for imaging layers
 - **9 AstroPix HV-CMOS chips** - 2 cm × 2 cm (Regina's talk)
 - Base Plate (Aluminum) slides on Stave rail
 - Rigid(-flex) PCB readout
- 12 modules forms a **Stave** and readout at the end of Sector using End of Tray Card (FPGA) (~217cm)
- The envelope drawer to fit the Staves is 14 mm in height
- Multiple iteration of designs to fit into the envelope
- Current Module and Tray design allows required overlap between Staves and fits well in the available envelope

The BIC Imaging Layers

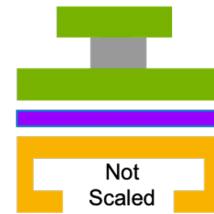
Charge 3

- **Module** is an electrically testable elementary unit for imaging layers
 - **9 AstroPix HV-CMOS chips** - 2 cm × 2 cm (Regina's talk)
 - Base Plate (Aluminum) slides on Stave rail
 - Rigid(-flex) PCB readout
- 12 modules forms a **Stave** and readout at the end of Sector using End of Tray Card (FPGA) (~217cm)
- **Tray** consists of (6, 7, 7, 8) Staves (56 Staves/Sector)
- There are total 48 sectors with length of ~435 cm
- The BIC is made up of 32256 Modules using ~291k chips

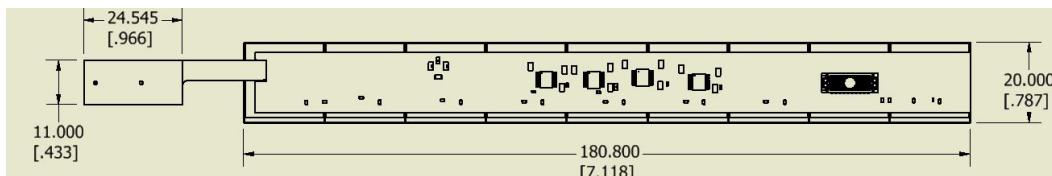
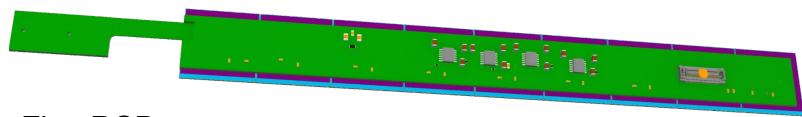
Imaging Layers

Production components

	Total on-detector	Yield at step	Cumulative Yield	Total # parts to produce
sectors	48			
trays	384	99%	99%	388
staves	2688	98%	97%	2771
modules	32256	95%	92%	35061
AstroPix chips	290304	85%	78%	372185
wafers				6203
end-of-tray cards	384	90%	90%	427
tray support rails	384	95%	95%	405
module PCBs	32256	90%	75%	43008
module base plate	32256	95%	87%	37076


AstroPix Module

Charge 1

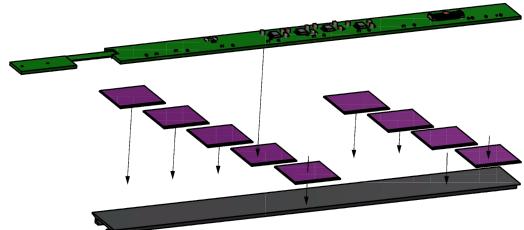



Mechanical design

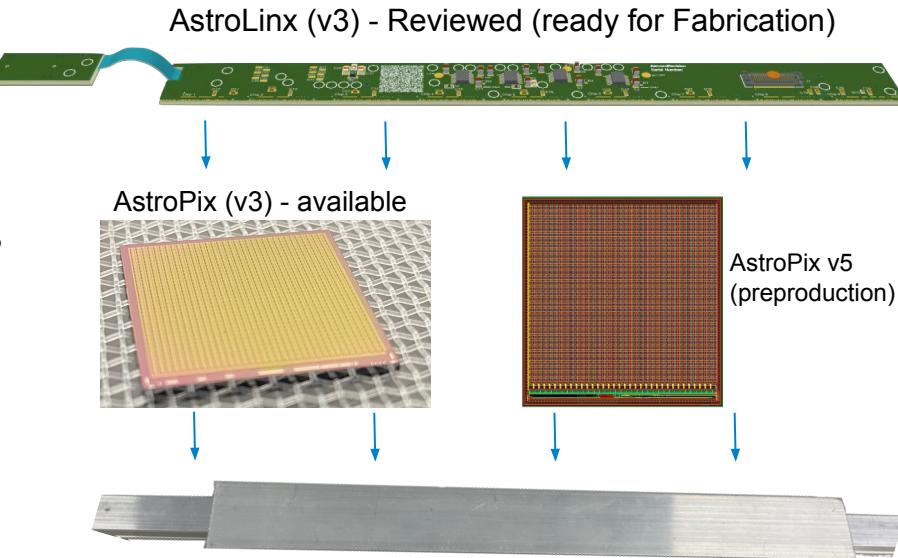
- AstroPix Module comprises of 3 layers glued together;
 - **Base Plate, AstroPix Chips, and Flex PCB**
- Two adjacent modules will be locked using mechanical structure on base plate (yet to be done)
- AstroPix Chips will be glued to Aluminum plate using **thermally conductive adhesive** with good **electric insulation** (eg. DOW SE4445-CV, Stycast)
- **100 µm gap** between two AstroPix chips
- Flex PCB will be glued on top of chips (eg. Araldite 2011)
- Electrical connection through wire bonds from AstroPix chip to Flex PCB - encapsulated using insulating epoxy/adhesive (eg. Dow Sylgard 186)
- The Aluminum base plate will be slided onto the Stave railing on the Tray

AstroLinx Flex 1.2 mm
Mated Connector 2 mm
AstroLinx 1.2 mm
Glue 0.1 mm
AstroPix 0.525 mm
Glue 0.2 mm
Module Baseplate 1 mm

The design dimensions for module is nearly complete and the module stackup fit very well in the available envelope


AstroPix Module

Charge 1, 8



Module design

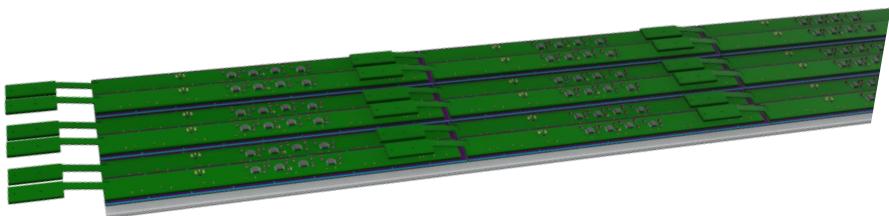
- AstroPix Module comprises of 3 layers/components glued together
 - Flex PCB
 - 9 AstroPix Chips
 - Base Plate (Aluminum)
- **Failsafe design** - easy to rework on Stave
- **Test Articles** - Building 6 modules using AstroPix v3
 - Development of AstroLinx readout PCB FY26Q2
 - Development of toolings for alignment
 - Setting up QC procedure by FY26Q3

First module test Article FY26Q2

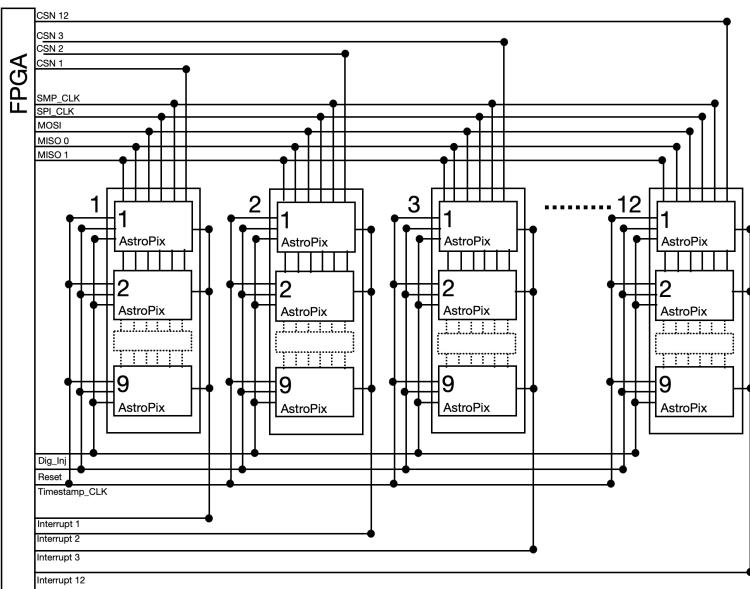
First test article - module base with stave like railing

Recommendation PDR2 2024: Stave Concept: Prepare mock ups of the full stave for data integrity studies

Response: We will be building 6 astropix v3 modules as a half Stave test article, perform QC testing and deliver for system testing - FY26Q3


AstroPix Module

Charge 2

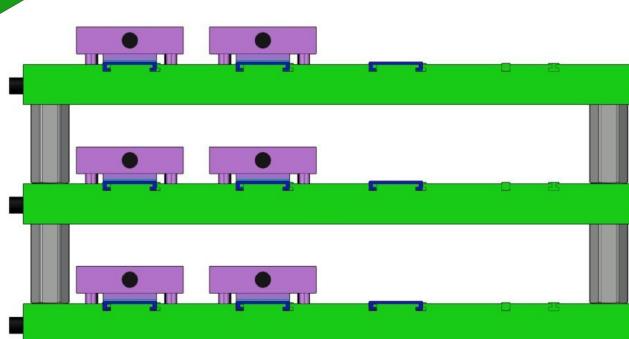
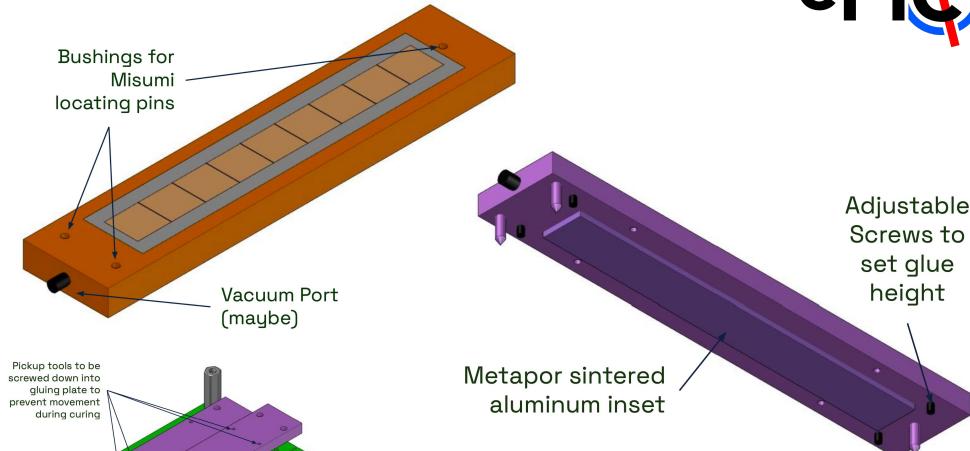
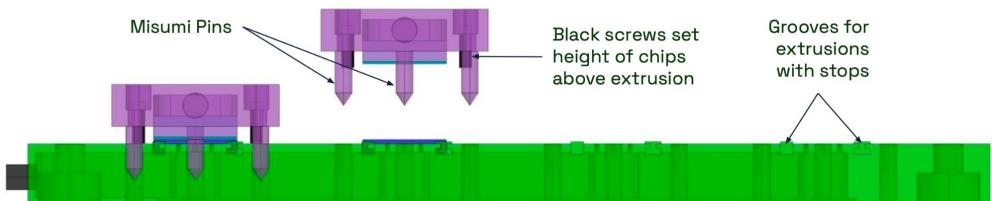


Electrical design of Stave

- 9 AstroPix Chips will be **Daisy-chained on the Module**
- Each Module plugs into its adjacent Module - 12 modules on Stave
- All Modules will be individually **controlled by End-of-Tray Card**
- Voltage Regulators (LDO) to regulate power on each Module
 - Analog and digital power of 1.8V at the Modules
- The broadcast commands/data readout through **SPI protocol**
- **4 differential data SPI (Clk, MOSI, 2MISO)** common on a stave
- One **single-ended Chip-select SPI and interrupt** per Module
- First test article designed and reviewed (July 21st, 2025)

More details in Greg's talk

Electrical design of module is finalized with pinouts. 6 Module test articles will be build for Stave testing.

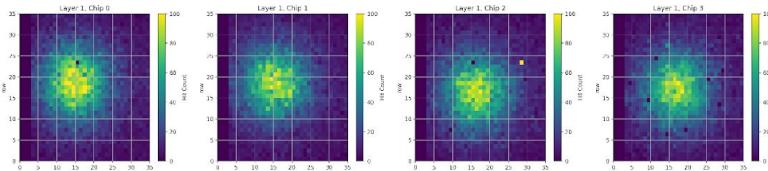
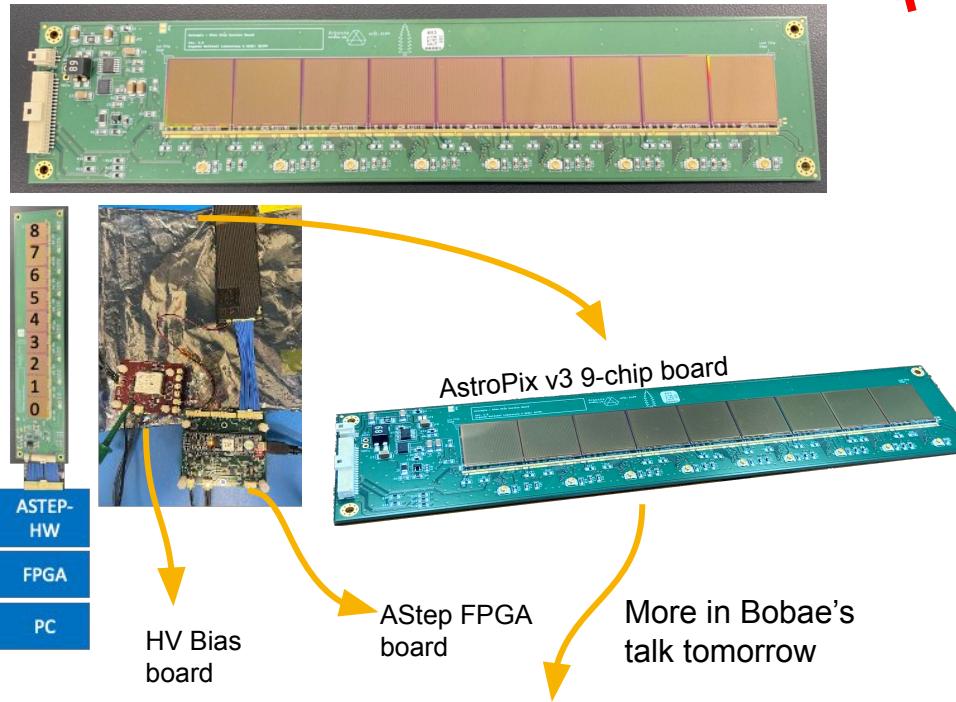



Assembly Toolings

Charge 1, 3

Toolings for assembly

- Align the chips on Al base plate with chip-to-chip gap of 100 um (under optimization)
- Aligns AstroLinx with chips (fiducials on PCB)
- Allow glue amount control and fixes glue height during cure time
- Four modules can be assembled at a time with single tooling set (update to 6 modules in production)
- Multiple parallel sets (6) during Production phase
- Glass dummies are available for mock ups
- Chip dummies with pad layer under fabrication

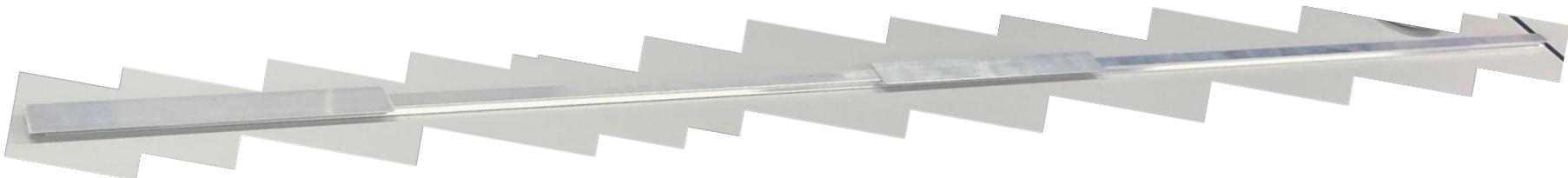
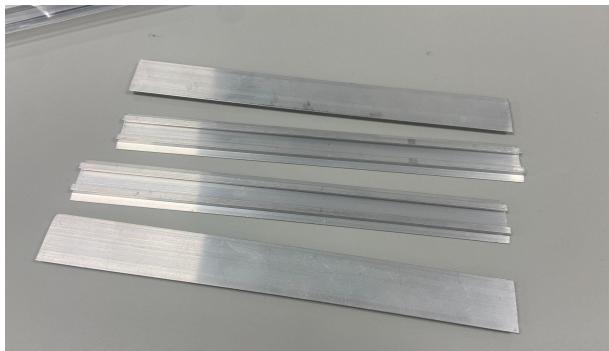
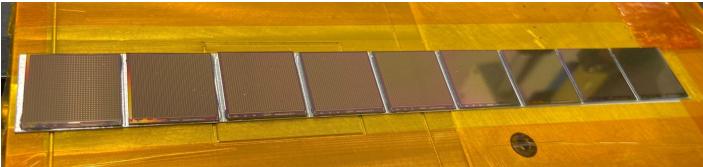
We're working on tooling design and fine-tuning the chip-to-chip gap tolerance for the stencils.



AstroPix Module Test Article

Charge 2,3

Test article 9-chip PCB board

- Benchmarking electric design of AstroPix Module - proof of concept with PCB test article
 - Mockup the AstroLinx electronics
 - Power distribution stability
 - Testing DAQ development
- Readout board **Daisy-chained 9 AstroPix chips**
 - Readout through SPI as well as Shift Registers (not on Module)
 - 2 LDOs (LT3041, LT3045 - radiation hard)
 - 20 Pin Samtec connector plugs to AStep FPGA board
 - One analog o/p available for each chip
- Testing with AStep card with CMOD FPGA
 - FW/SW available to test
 - Can test up to 3 modules with single card

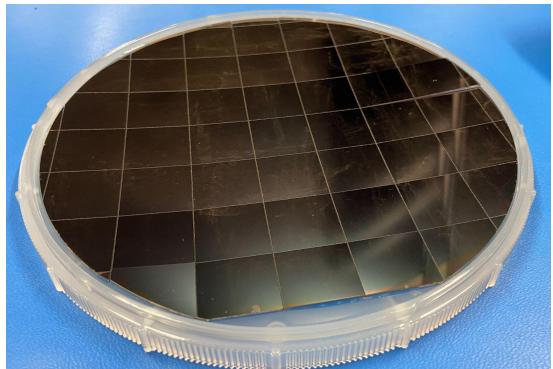
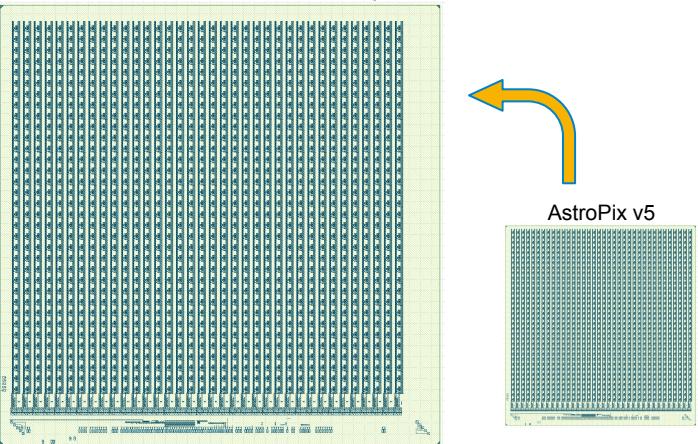



AstroPix Module Test Article

Charge 1

Test Article- Aluminum base plate

- **Benchmarking** Mechanical support for **AstroPix Module**
- 1 mm thick Al plate to slide on the Stave railing
 - Develop assembly procedure
 - first test article for fabrication of base plate
 - locking mechanism still missing (discussion ongoing)
- Trial runs with AstroPix v3 sensors (smaller than final version)
- Glue dispenser robot for glue pattern and controlling glue amount
- Dummy silicon and glass chips will be used
- The dimensions and design are made to work for Production phase
 - 180.9 mm long (fits exactly for 9 chips)
 - no additional dead space
 -

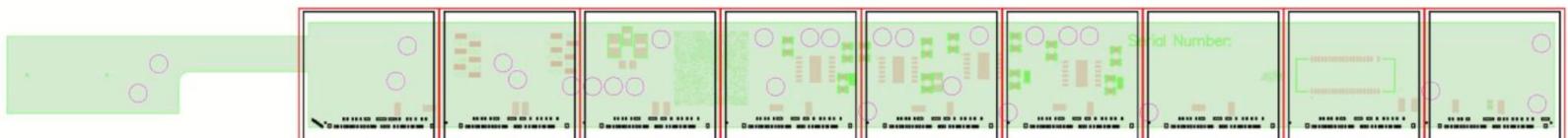
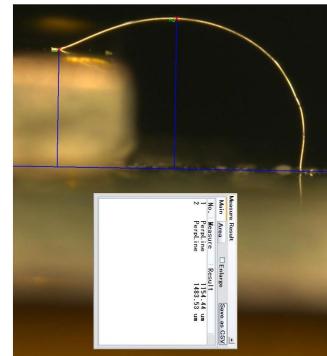
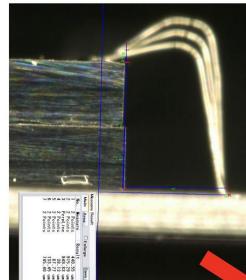
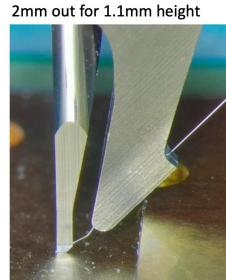
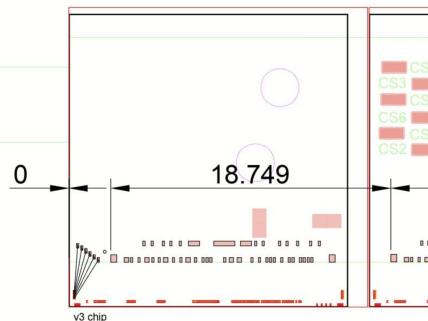
AstroPix Module Test Article

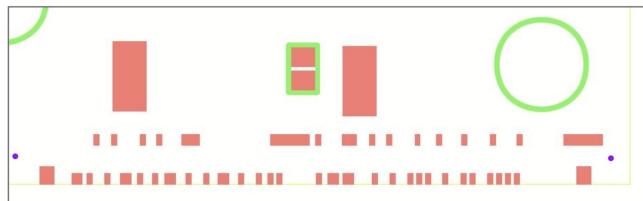
Dummy assembly

- Module first article base plate received
- Dummy glass chips delivered
- AstroPix design has been updated to final size to create dummy silicon chip with metal layer
 - Fabrication of 10 wafers undergoing
- **First assembly of Dummy chips on Al base plate**
- Study of encapsulations
- Testing toolings tolerances for test article run
- Wire bonding mockup and procedures
- Module assembly mockup and procedures

AstroPix v5 scaled to 2 cm x 2 cm footprint

AstroPix Module Test Article



Wirebonding

- Benchmarking Mechanical support for **AstroPix Module**
- Finalize the wire bonding requirements for test article
 - Tight clearance on vertical SPI pads at first chip
 - Keeping HV line aways from data lines
 - Alignment of pads for all 9 chips

Fiducials for alignments

AstroPix Module QC Procedure

AstroPix Module and Staves

- Initial QC at AstroPix chip level (**chip probing**) - More details in Sanghoon talk
 - IV measurements
 - ASIC functionality testing
- Visual Inspection and Metrology of diced chips
- Visual Inspection and Metrology of base plate and AstroLinx module PCB
- **Module QC**
 - Visual Inspection (physical damages, alignments, etc.)
 - Wire bond pull test - Strength of wire-bonds (batch level)
 - Go/No-go gauge for module tolerances
 - Electrical QC
- **Stave QC**
 - Visual Inspection
 - Electrical QC
- Integration testing **with ETC on Tray**

Preproduction plan

AstroPix Module and Staves preproduction design

Charge 3-5

- **Module Test Article**
 - Test articles (6) using v3 astropix chip will be built and tested FY26Q2
 - Load it on stave railing (half stave), connectivity tests, QC FY26Q3
- **Modules preproduction**
 - Preproduction modules will be built with AstroPix v5
 - Design and develop QC test stand and procedure (v3 and v5) FY26Q2
 - Finalize QC test procedure FY26Q3
 - AstroLinx will be updated for v5 AstroPix (FY26Q4)
 - Start of preproduction assembly FY26Q4
 - 450 modules using v5 chips (~8 modules per sites per week (3 sites))
 - assembly using 2 tooling sets per site (One for glueing chips and one for PCB)
 - Also covers 50 modules using **v6 engineering run AstroPix chips** (FY27Q2)
 - Design update of AstroLinx for AstroPix v6

Preproduction plan

AstroPix Module and Staves preproduction design

Charge 3-5

- **Assembly Tooling**
 - Design toolings for v3 assembly is ongoing (FY25Q4-FY26Q1)
 - Update the version of tooling design for v5 chip (FY26Q2)
 - One set hold 4 modules for assembly
 - two toolings per site
 - Wirebond procedure and protection
- **Stave loading and QC procedures**
 - Final loading on the stave
 - Total 35 Stave will be built (FY27Q3)
 - Finalize QC tasks, Setup a testing systems
 - Develop a FW/SW for QC procedure

Production plan

AstroPix Module and Staves production design

Charge 3

- **AstroPix wafers**
 - Fabrication of AstroPix wafers FY27Q3
 - Total 6203 wafers (60 chips/wafer)
 - 372185 chips to be QC'ed (~75 wafers/week)
 - PNU will take a lead in QC testing AstroPix chips (6 lines of test setup)
 - Argonne will be a backup site (3 lines)
- **Module assembly**
 - Total 35061 module will be built (180/week per site)
 - 3 sites will be building modules and QC testing
 - Argonne 1/3
 - UCSC 1/3
 - PNU $\frac{1}{3}$
 - AstroLinx Module PCB
 - Total of 43008 needed, design and QC testing at OSU (QC testing per batch)
- **Stave loading and QC procedures**
 - Total 2672 Stave loading
 - Test box and loading box will be same
 - Assembly sites will be loading modules to Stave/Tray and QC test

AstroPix Module and Staves final design

Charge 7

- Safety in place for module assembly and QC
- Each Module talks to ETC directly to avoid replacement of whole stave
- Wirebond potting to safeguard wirebonds
 - safety and reliability of detector
- Temperature and humidity controls
 - protection of module from sparking, corrosion, etc.
- Test setup interlocks (for HV, LV)
 - avoid accidents during testings
- Electrostatic safety - AstroPix chip and assembled modules
- Radioactive source dosimeters and training
- Ergonomic evaluations
- Some of the other hazards
 - Chillers, cold plates hazards
 - Mechanical handling (pinch hazards) toolings, probing, etc
 - Chemical hazards (glue)
- Work control and planning documentation for all assembly sites (in pre-brief)
- Work will be done in cleanroom environment (ISO 7)

Summary

Modules and Staves

- **Mechanical Design**
 - **Mechanical final design is done for Modules**
 - Initial test article fabrication is done and first trial performed
 - Yet to decide for locking mechanism
- **AstroPix Chip**
 - **Final design is v5 completed** and about to be fabricated
 - Next run will have the **final chip size v6, 2 cm x 2 cm in FY26Q04**
 - Production of dummy silicon chips for assembly procedure (glass and Silicon)
- **Electrical Design and Flex PCB**
 - First AstroLinx for AstroPix v3 is design and reviewed
 - Tested first test article with 9-chip PCB board
 - Still need to thin down the AstroLinx to fit in the given envelope (current 1.76 mm, target 1.2 mm)
 - Final Design v5 AstroLinx in **FY26Q03**
- **Mechanical loading procedure**
 - Design work on assembly tooling for preproduction phase - FY26Q01
 - Ongoing discussion on adhesive selection and glueing procedure
 - Wirebond potting needed to be addressed

Thank you!

AstroPix/Wafers and Modules/Staves Institutes

AstroPix chips and Wafers: Chip Design, Fabrication, chip QC

Karlsruher Institut für Technologie

Modules/Staves: Module assembly, Stave loading/QC

Modules/Staves: AstroLinx rigid-flex pcb design, fabrication, and QC

