

sPHENIX Director's Review WBS 1.8: Superconducting Magnet

Kin Yip
Collider-Accelerator Department

Aug 3, 2017

BNL

A little history ...

- ♣ The Superconducting Magnet was originally built ~1997-98 for the BaBar Experiment at SLAC and used until BaBar ended in Apr. 2008.
- ♣ It was brought to BNL ~ Feb. 3 (near midnight), 2015.
- LESHC (Laboratory Environment, Safety & Health Com.)/PCSS (Pressure & Cryogenics Safety Sub-Com.) review (May 22, 2015) for the Cryo system
 - **13** action items generated & all 13 already closed out
- ♣ ASSRC/ESRC (Accel. Sys./Experimental Safety Review Committee) review (Dec. 8, 2015) for the low-field test
 - **all** action items closed out
- Low-Field Test (100 A) was performed successfully on Mar. 22, 2016.
- **4** ASSRC/ESRC review (July 6, 2017) for the High-Field Test

Original conductor/coil Specifications

Table 1

Main characteristics of BaBar solenoid (as built)

Table 1

Main characteristics of BaBar solenoid (as

built)

Central Induction

Conductor peak field

Winding structure

2.3T

2 layers

graded current
density

Uniformity in the tracking ± 3%

region

Winding axial length 3512 mm at R.TWinding mean radius 1530 mm at R.T.
Operating current 4596 AInductance 2.57 HStored Energy 27 MJTotal turns 1067Total length of conductor 10 300 m

Heavily stabilized

~ 276% margin

~1.37 T in the High-Field Test

~1.4 T in sPHENIX

TABLE II SUMMARY OF SPECIFICATION FOR STRANDS, RUTHERFORD AND FULL CONDUCTOR

Component	Characteristic	Value
Strand	NbTi	Nb 46.5 +/- 1.5 wt %
		Ti
	Filament size	< 40 μm
	Twist pitch	25 mm
	Cu/NbTi ratio	> 1.1
	Cu RRR	Final >100
	Wire diameter	$0.8 \text{ mm} \pm 0.005$
Rutherford	Transposition pitch	< 90 mm
	Number of strands	16
	Final size	1.4 x 6.4 mm2
Conductor	AI-RRR	>1000
	Dimensions:	
	Thin conductor	(4.93 x 20) <u>+</u> 0.02 mm
	Thick conductor	$(8.49 \times 20) \pm 0.02 \text{ mm}$
	Rutherford-Al	> 20 MPa
	bonding	
	Al/Cu/NbTi ratio:	
	Thin conductor	23.5:1.1:1
,	Thick conductor	42.4:1.1:1
	Edge curvature radius	> 0.2 mm
	Critical current @	12680 A
	T=4.2 K; B=2.5 T	

⇒ High-Field Test (BaBar operating current ~ 4596 A) is planned to be done in Sept./Oct. 2017 [off-project].

₽H‰ENIX

Status of the High-Field Test [off-project]

- ♣ On June 30, 2017, the riggers have helped move/lift the Magnet Cryostat into the Flux Return steel box.
 - The Magnet Coil was initially slightly rotated (~0.5°) and we moved it up/rotated again ~July 7.
 - The Survey Group (C-AD) confirmed the alignment to be good ~July 11.
- ♣ Superconducting Magnet Div. electrical/mechanical groups are installing the Extension starting July 12.
- ♣ C-AD personnel are also responsible for assemblying/testing the frontend boards as well as the quench detection software. The software to transfer and store the data into the C-AD Control System is completed.
- ♣ C-AD Power Supply Group should finish modifying/testing the Power Supply this week and then we can move it to the test site.
- Let Cryo group (C-AD) will connect the Magnet to the Cryo system in Bldg. 912 after Extension/Valvebox & platform are installed.

- **♣** WBS 1.8: Superconducting Magnet
 - 1.8.1: Magnet Management & Technical Oversight (K. Yip)
 - 1.8.2: Mechanical Disassembly, Transport & Reassembly (M. Anerella)
 - 1.8.3: Cryogenic Systems (R. Than)
 - 1.8.4: Power Supply & Quench Detection System (C. Schultheiss)
 - 1.8.5: Magnet Field Measurement (A. Franz/J. Haggerty)

Documentation Made Available to the Committee

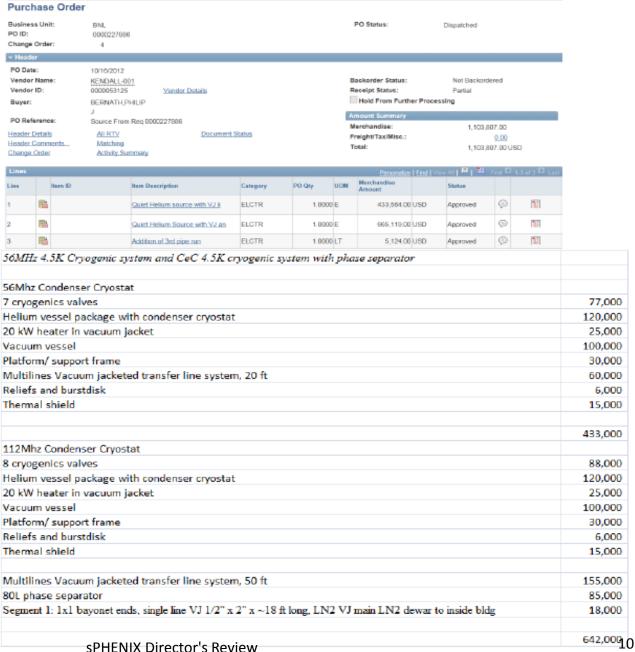
- **4** Basis of Estimate
- https://docdb.sphenix.bnl.gov/cgi-bin/private/ShowDocument?docid=63
- **WBS** Dictionary:
 - https://docdb.sphenix.bnl.gov/cgi-bin/private/ShowDocument?docid=83
- Microsoft Project File:
 - https://docdb.sphenix.bnl.gov/cgi-bin/private/ShowDocument?docid=55

1.8.1	■ Magnet Management and Technical Oversight	1330 days	2/1/17	6/2/22
1.8.2	Mechanical Disassembly, Transport Prep. And Reassembly of Valve Box	1110 days	7/17/17	12/30/21
1.8.3	☐ Cryogenic Systems	1301 days	2/1/17	4/21/22
1.8.3.1	RHIC Interfacebox/Helium Transfer System / Platform 4.5K and LN2 Coldbox system	1274 days	2/1/17	3/15/22
1.8.3.2	■ LN2 supply transfer line system	1013 days	2/1/17	2/25/21
1.8.3.3	Warm Piping System	1254 days	4/6/17	4/19/22
1.8.3.4	[±] Cryo Controls Hardware	1291 days	2/1/17	4/7/22
1.8.3.5	™ Cryo Controls Software	1211 days	6/9/17	4/21/22
1.8.4	Power Supply and Quench Detection Systems	754 days	2/1/17	2/11/20
1.8.4.1	★ AC/DC Power Distribution	739 days	2/1/17	1/21/20
1.8.4.2	Power Supply	754 days	2/1/17	2/11/20
1.8.4.3	■ Quench Detector and Dump Resistor	655 days	2/1/17	9/16/19
1.8.5	☐ Magnet Field Measurement	991 days	1/2/18	12/21/2
1.8.5.1	Magnet Field Measurements Engineering and Design, Field Studies and Stress Analysis	513 days	1/2/18	1/23/20
1.8.5.2	■ Magnet Field Measurements Equipment Purchase and Fabrication	65 days	1/16/20	4/17/20
1.8.5.3 17	■ Magnet Field Measurements Installation and Test, Post-Test Field Studies and Stress Analysis sPHENIX Director's Review	478 days	1/24/20	12/21/21

Magnet documentation status

- **♣** The Basis of Estimate (BOE) for 1.8 is in sPHENIX docdb (docid=63).
- ♣ An overview of the BOE looks like :

		sPH Relativisti BASIS o				
L2 Project Name		L2 WBS Number	L	3 Project Name (Control A	ccount) L3	WBS Number
Magnet		1.8				
[Work Package N	lame	WBS Numbe	r Basis of Estimate	Link	
	Mechnical Disassemb	& Technical Oversight ly, Transport & Reassembly	1.8.1 1.8.2	Management & Overs Disassembly & Assem		
	Cryogenic Systems Power Supply & Quen Magnet Field Measure	ch Detection Systems ement	1.8.3 1.8.4 1.8.5	Cryogenic Systems Power Supply & Quen Magnet Field Measure		

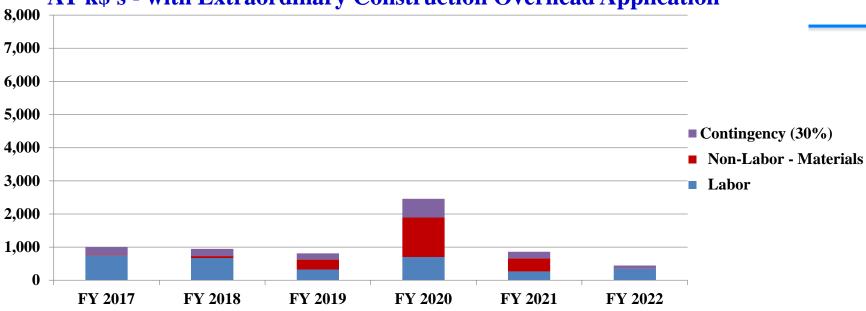

An example for the Basis of Estimate (Cryo)

"Cryogenic Systems" is our largest "spender" and here is a part of it:

Description	Duration	Resources	Material	Labor	Total
Vendor Engineering and Design					
Engineering	45 days	PROF4 AD[10%],TECH3 PO D[15%],PROF3 AD[20%]	\$0.00	\$14,602.68	\$14,602.68
Preliminary Design Review	1 day	PROF3 AD, PROF4 AD	\$0.00	\$1,553.12	\$1,553.12
Detail dwg package	60 days	PROF3 AD[5%],PROF4 AD[2%]	\$110,000.00	\$2,156.16	\$112,156.16
Final Design Review	2 days	PROF3 AD,PROF4 AD	\$220,000.00	\$3,106.24	\$223,106.24
Long lead items order	1 day	PROF3 AD,PROF4 AD	\$200,000.00	\$1,553.12	\$201,553.12
Drawings approvals	5 days	PROF3 AD,PROF4 AD	\$50,000.00	\$7,765.60	\$57,765.60
Vendor Fabrication					
Raw Material procurement	45 days	PROF4 AD[2%]	\$200,000.00	\$750.96	\$200,750.96
Main fabrication items	90 days	PROF4 AD[10%],PROF3 AD[10%]	\$0.00	\$13,978.08	\$13,978.08
Final assemblies	30 days	PROF4 AD[1%]	\$0.00	\$250.32	\$250.32
BNL Holdpoint witness	1 day	PROF4 AD	\$200,000.00	\$834.40	\$200,834.40
Shipping	3 days	PROF4 AD[25%]	\$120,000.00	\$625.80	\$120,625.80
Delivery and receiving					
Rigging/Truck Unloading	1 day	TECH3 AD	\$0.00	\$648.80	\$648.80
Inspection	1 day	PROF4 AD	\$0.00	\$834.40	\$834.40
Installation					
Rigging in place on piping supports	5 days	PROF4 AD[50%],CRAFT3[50%],PROF3 AD[50%],TECH3 AD[50%]	\$0.00	\$7,774.60	\$7,774.60
Field joint welding to RHIC Interconnect	30 days	PROF4 AD[10%],PROF3 AD[10%],TECH3 AD[50%]	\$0.00	\$14,391.36	\$14,391.36
Installation Cryo Mechanical MAGNET platform equipment	30 days	PROF4 AD[5%],PROF3 AD[5%],TECH3 AD	\$0.00	\$8,817.68	\$8,817.68
Final pressure. leak check and reliefs install equipment shakedown	10 days	PROF4 AD,PROF3 AD,TECH3 AD	\$0.00	\$22,019.20	\$22,019.20
Final pump and purge	10 days	PROF4 AD[5%],PROF3 AD[5%],TECH3 AD[50%]	\$0.00	\$4,020.56	\$4,020.56
1					

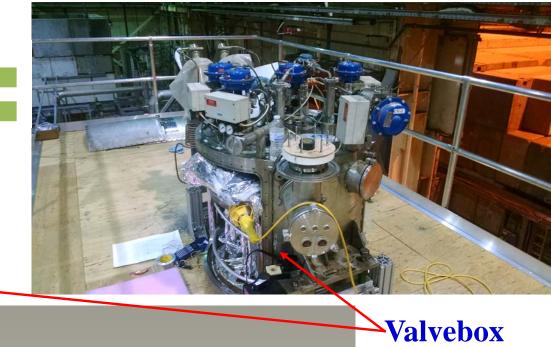
An example of Purchase Order of similar nature

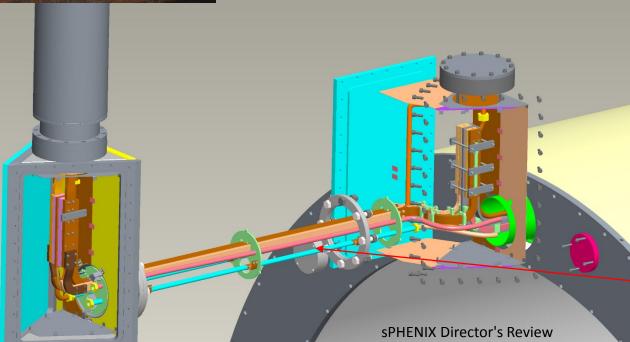
56MHz 4.5K Cryogenic system and CeC 4.5K cryogenic system, each consisting of condenser cryostat and multiline vacuum jacketed bundle to the cavity cryostats plus 80L phase separator and 15 ft VJ transfer line section


♣ Total and contingency estimates (FY17 \$ Direct) :

		Material	Labor	Total	Total with Contingency
1.8.1	Management & Oversight	\$0	\$819,963	\$819,963	\$874,437
1.8.2	Disassembly & Assembly	\$44,000	\$159,664	\$203,664	\$327,129
1.8.3	Cryogenic Systems	\$1,524,420	\$990,277	\$2,514,697	\$3,269,106
1.8.4	PS & Quench Detection	\$66,000	\$147,724	\$213,724	\$268,803
1.8.5	Magnet Field Measurement	\$7,000	\$126,773	\$133,773	\$160,528
1.8		\$1,641,420	\$2,244,401	\$3,885,821	\$4,900,003

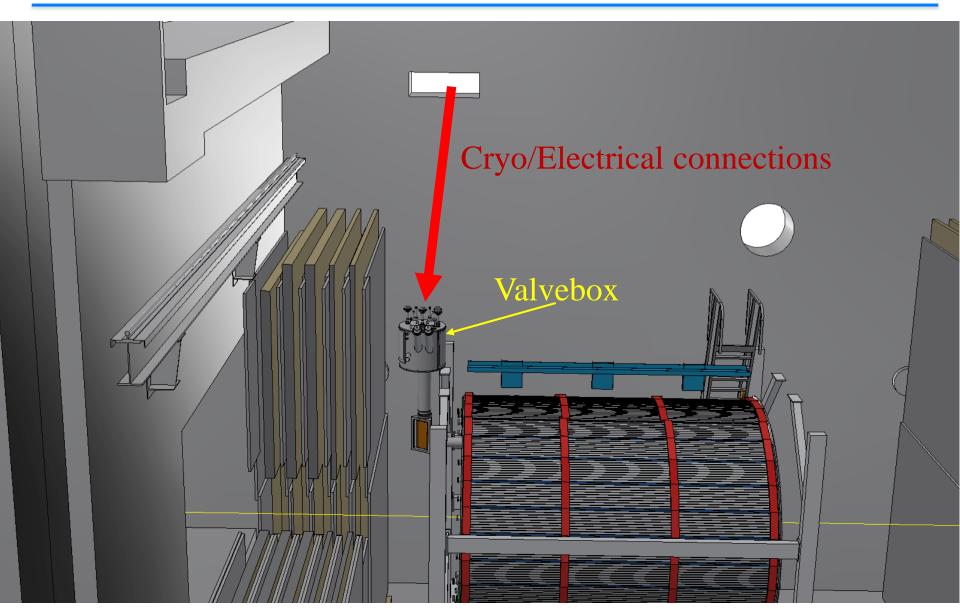
Baseline Scenario - 1.8 S/C Magnet



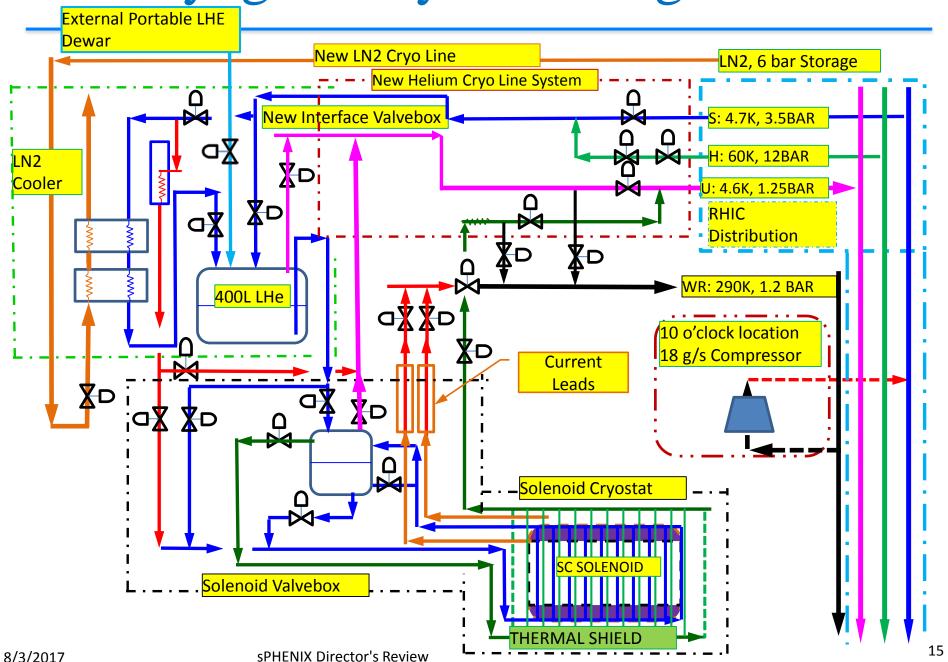

Baseline Scenario
AY k\$'s - with Extraordinary Construction Overhead Application

Resource Labor Non-Labor - Materials	FY 2017 752 19	FY 2018 672 55	FY 2019 323 300	FY 2020 701 1,189	FY 2021 264 396	FY 2022 340 0	Total 3,052 1,959
Baseline Total	771	727	623	1,890	660	340	5,011
Contingency (30%)	231	218	187	567	198	102	1,503
MIE Total	1002	945	810	2457	858	442	6514

Resource	Baseline	Contingency	Total
Labor	3,052	916	3,968
Non- Labor	1,959	588	2,547
1.8 S/C Magnet	5,011	1503	6,514



Extension



Depiction of sPHENIX Experimental Hall with Cryo/Electrical connection

Cryogenic System Diagram

Example of WBS Dictionary

1.8.3	1022	1.8.3.3.4	Installation, warm piping	Install the warm piping, relief piping, and vents systems including its piping supports. Inspect,
1.0.3	1.0.3.3	1.0.3.3.4	systems	pressure test and leak test the piping system.
1.8.3	1.8.3.4		Cryo Controls Hardware	This item includes all tasks required to engineer and specify equipment for the control system hardware and to procure the equipment, build the control racks and procure or built other control panels / junction boxes. Procure the cables required between the racks and cryo equipment and interface to layout the cable trays. Complete the I/O check out and test the hardware working with the software.
				Project Engineering & Management Execute procurement of these components and subsystems. Manage and interface with vendors
1.8.3	1834	1.8.3.4.1	Engineering and Design	during the procurement cycle, update schedule based on procurement progress.
				Procure instruments and controllers/conditioners, PLC and PLC chassis hardware, power supplies, racks and rack components, multi-conductor cables, Heater controls panels, junction box panels.
1.8.3	1.8.3.4	1.8.3.4.2	Procurement	Purchase various hardware components.
1.8.3	1.8.3.4	1.8.3.4.3	Installation: Cryo controls hardware	Install cable trays and pull cables. Install racks, junction boxes, cables, instruments, and wire-up Racks I/O to instruments, control panels, and control valves. I/O Testing and Check-out and shake down between rack and instruments and end to end check out between software and instruments/ equipment.
1.8.3	1.8.3.5		Cryo Controls Software	This item includes all tasks required to specify, engineer and program, and test the controls software required to control the cryogenic system for this project. The efforts required to complete this WBS item are described for the various subtasks as follows: Execute engineering/development, and deployment and testing of the control software for this project's cryogenic system.

Schedule and Calendar

- ♣ The High-Field Test [off-project] is expected to be performed in Sept. Oct.
- The Booster (RF) Cavity (for "Low Energy RHIC electron Cooling") test may delay us from running even if we are all ready by September. We may need to negotiate with them. But this will not affect the sPHENIX project plan.

♣ Milestones :

- 2018-6-15: Start ValveBox Disassembly
- **2018-7-31:** Coil Ready to Ship
- 2020-1-23: Magnet (Field Measurement) Engineering & Design Complete
- 2021-12-30: Complete Mechanical Support
- 2022-3-15 : Installation (RHIC interface/He transfer system/Platform 4.5K/LN2 system) complete
- 2022-4-7 : Cryo Hardware installed
- 2022-6-2: Magnet is operational
- ♣ The Magnet, quench detector etc. will be sitting in Bldg. 912 until Fall 2021.

Superconducting Magnet Staffing

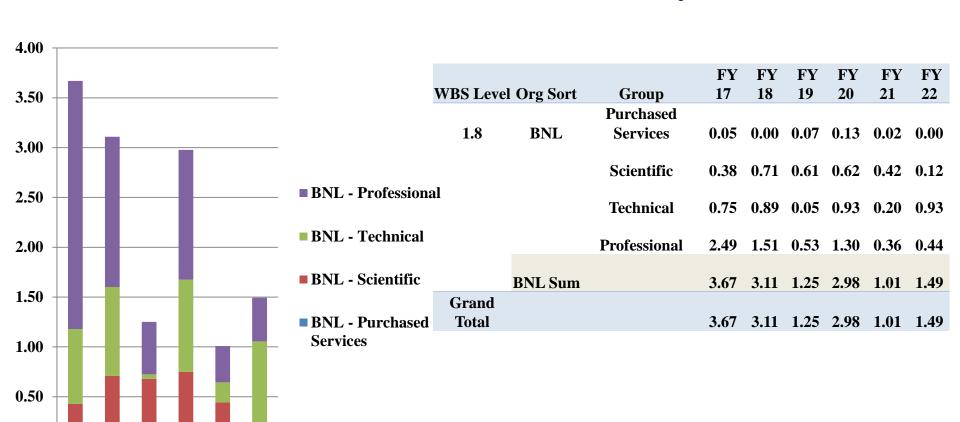
PHENIX

FTE Profile by Category

0.00

18

17


19

20

21

22

FTE Profile by Fiscal Year

1.8 Magnet – Risk Registry

L										
	Owner	WBS	Risk Name	Risk trigger (if)	Consequences (then)	Timeframe	Probability	Impact	Rank	Mitigation Plan
	K. Yip	1.8 SuperConducting	Magnet does not work;	Failure of magnet to reach	Detector System can't resolve	All	Low 10%	High: Cost	Moderate	Full field test at bldg 912 prior to transport
		Magnet	cannot achieve specified	field. Possible causes,	data without adequate			~\$100-500K		to bldg 1008 to proe out magnet
			field	Internal electrical failure,	magnetic field. Rework of			schedule 6-12		performance, cryo, power supply and
				vacuum leak failure, cryo	magnet to correct deficiency is			mos		quench detection systems. Electrical check
				system failure, Power	necessary					(warm) at 1008 to check for faults induced
				supply failure						in shipping. Final full field/mapping test in
										1008 IR.

- **Extensive testing is being performed in order to remove risk.**
 - We've completed 100 A test to show that it's superconducting.
- ♣ Available float (Fall 2017 to Fall 2021) provides adequate time for any repairs.