

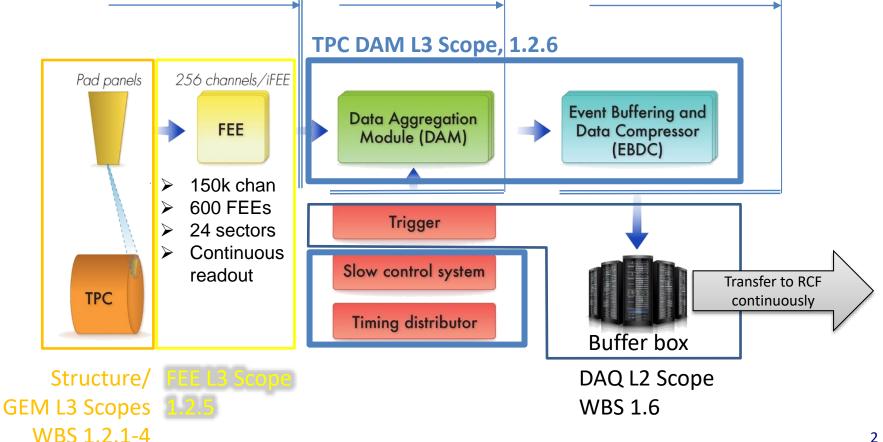
sPHENIX Director's Review 1.2.6 TPC Data Aggregator Module (DAM)

Jin Huang (BNL)
August 2-4, 2017
BNL

The Subsystem

Input data stream:

600 4+ Gbps bidirectional fibers links Max continuous: 4 Gbps / fiber

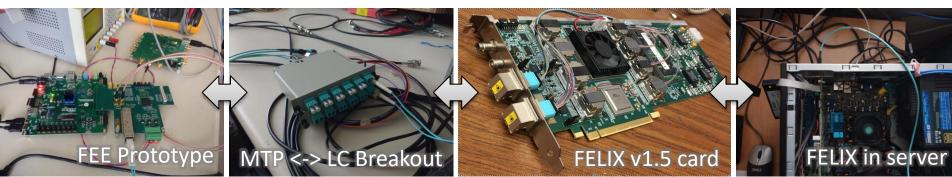

Average continuous: 1.6 Gbps x 600 fibers

Clock/Trigger input:

Optical links Clock = 9.4 MHzTrigger Rate = 15 kHz

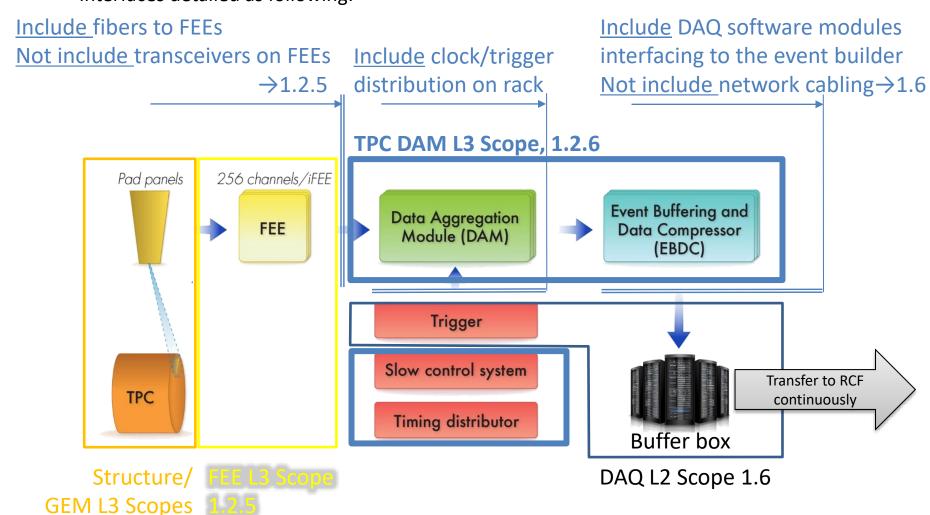
Output data stream to buffer box:

24 x 10 Gbps Ethernet via fiber After FPGA based triggering and clustering Total continuous output: 80 Gbps



The Subsystem Technical Overview

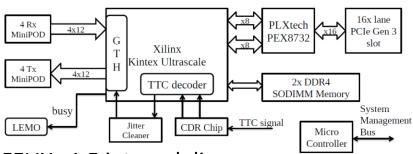
- Collect data from 600 bi-directional 4+ Gbps fiber links to FEEs at rate of 940 Gbps
- Reducing data via triggering, clustering and compression to reduce data to 80 Gbps
- Driven to use large-FPGA based data acquisition cards with multi-10Gbps input and PCIe Gen3 output, hosted on commodity servers.
 - Similar architecture adopted for ATLAS, LHCb, ALICE upgrade for 2020+
- Default implementation taking advantage of BNL-developed FELIX PCIe card
 - 48-bidirectional 10 Gbps optical link (require 25 bidirectional link @ 4 Gbps)
 - A large FPGA: Xlinx Ultrascale (XCKU115), optimizing cost/link
 - PCIe Gen3 x16 link to server, demonstrated to 101 Gbps (require >10 Gbps)


FELIX Prototype v1.5 card (borrowed from BNL/ATLAS group) used in TPC test stand already

Scope

- Data Aggregation Modules (DAM) + Event Buffering and Data Compressor (EBDC) servers
- Timing trigger distribution on DAM/EBDC server rack in DAQ room
- Interfaces detailed as following:

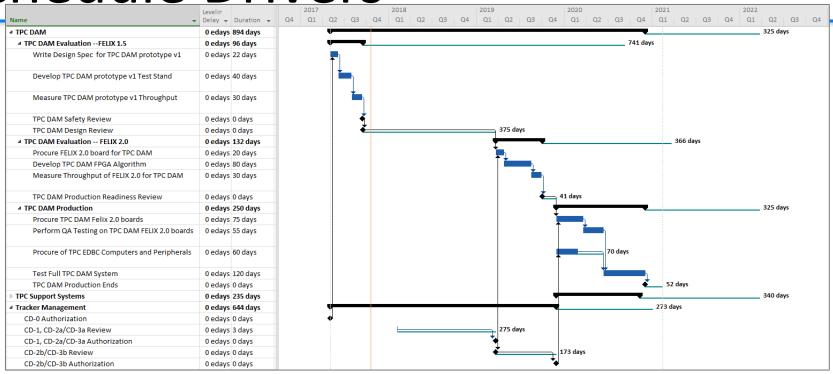
Subsystem Collaborators



- Jin Huang (BNL/Physics) CAM
 - Associate Physicist, heavy-flavor topical group co-convener
 - Past projects highlight: commissioned DAQ for PHENIX forward silicon tracker, a successful upgrade @ RHIC featuring 2-Tbps continuous readout
- John Kuczewski (BNL/Instrumentation Division)
 - Experienced digital developer
 - Expert of development for electronics, FPGA and drivers
 - Past projects highlight: LSST CCD readout electronics
- Joe Mead (BNL/Instrumentation Division)
 - Senior engineer
 - 25 years experience in designing high speed electronic circuitry, embedded systems, and DAQ systems for high-energy/nuclear physics and neutron/photon applications
 - Past projects highlight: designer of timing system for the PHENIX experiment;
 ATLAS LAr Calor. Readout; Neutron Detector DAQ
- Joint development with TPC FEE (WBS 1.2.5) and DAQ (WBS 1.6)

Synergistic collaboration

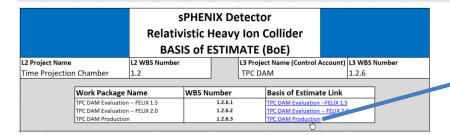
- In close collaboration with BNL Physics Omega group:
 - Developed the BNL-711 PCIe card, which is chosen for ATLAS FELIX project, and used in ATLAS phase I upgrade and forward
 - Leading the finalization of FELIX PCIe card design
- Sharing resource in FELIX development:
 - Lend us a FELIX v1.5 card for prototyping
 - Sharing firmware blocks and PCIe driver software
 - Consultation
- Feedback on FELIX v2.0 timing mezzanine design

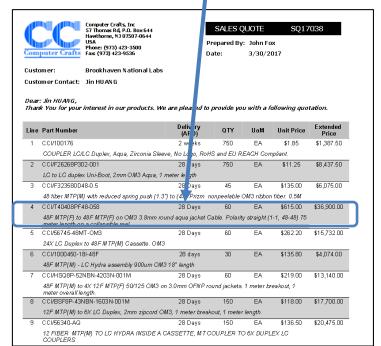


FELIX v1.5 internal diagrams

Schedule Drivers

- Q3 FY19: Complete DAM implementation & Test: DAM production readiness review: Q4 FY19
- Q4 FY19 Q4 FY20 : Procurement & Test
- 320-day schedule float: NOT on critical path
- Scheduling risk for FELIX card production is low:
 - Already received v1.5 prototype card for the prototyping stage, 1.2.6.1
 - After the planned installation of ATLAS Phase-I upgrade (planned delivery @ end 2018, one year prior our procurement)
 - In the very unlikely case that ATLAS FELIX project were to be significantly delayed, we would use the existing FELIX v1.5
 design for TPC DAM production
- Scheduling risk for EBDC server production is low:
 - Commodity computing
 - Procurement scheduled at the latest stage of the production to take advantage of commercial computing development


Cost Drivers


- FELIX PCIe card: 230k\$ + 25% contingency
 - 24 cards + 20% spare @ 8k / card
 - Driven by FPGA cost
- Commodity server: 187k\$ + 40% contingency
 - 2U 24-core server supporting full size PCIe Gen3 x16 + SMBus
 - 24 servers + 20% spare @ 6.5k / server
 - 40% Contingency assigned due to the uncertainty of number of CPU cores required for data compression.
 - Contingency band will reduce as prototyping, algorithm development and test with simulated FELIX output data.
- Next leading cost data fibers based on quote: 76k\$ + 20% cont.

Navigate through BOE 1.2.6

ltem	Vendor	Total	Status	Basi	s of Estimate	Contingency	Item Contingency	Wt Contingency	Total	Contingency	Total w/
								0.21	\$306,001	\$62,738	
FELIX Production PCIe cards, 24cnt + 20% spare	BNL ATLAS DAQ Group	\$229,879	Pending	Uno	fficial quote	0.21	\$47,513.43				
48-fiber MTP (M)-MTP (F) cable 5m, 2x48cnt + 20% spare	Computer Crafts Inc.	\$32,026	Pending	Quo	te: CCI/T40418PF48-005	0.20	\$6,405.12				
48-fiber MTP (F)-MTP (F) cable 58m, 48cnt + 20% spare	Computer Crafts Inc.	\$35,424	Pending	Quo	to: CCI/T40408PF48-058	0.20	\$7,084.80				
1U 19" 12 port MPO feedthru panel with 12X MPO couplers, 2x4+25% spare	Computer Crafts Inc.	\$720	Pending	Quo	LCCI/56348-MT	0.20	\$144.00				
48F MTP(M) - LC Hydra assembly, 48cnt + 20% spare	Computer Crafts Inc.	\$7,822			uc CCI/100(file:///E:\Dropbox\sPHENIX\TPC		\$1,564.42				
MTP Coupler, 48cnt + 20% spare	Computer Crafts Inc.	\$130	Pending	Que	e: CCI/100: DAQ\1.2.6 TPC-DAM-WorkPack		\$25.92				
					20170707.xlsx - 'Qa			0.39	\$205,901	\$81,188	
2U rack servers, 24cnt + 20% spare	Microway	\$187,200	Pending	Exp	ience, Regu Fibers'!A1 - Click or	ce to follow. Cl	kk \$74,880.00				
TPC timing distribution board - PCB, 1cnt + 1 spare	Many		Pending			his cell.	\$160.00				
TPC timing mezzanine - PCB, 24cnt + 20% spare	Many	\$1,440	Pending			0.40	\$576.00				
SFP+ Optical TX/RX, 48cnt + 20% spare	Avnet	\$5,213	Pending	Ca	log: AFBR-709DMZ	0.20	\$1,042.50				
LC duplex fiber, 48cnt + 20% spare	Computer Crafts Inc.	\$648	Pending	Q	te: CCI/F26268P302-001	0.20	\$129.60				
SMT Chip Resistor Capacitor	Digikey		Pending			0.40	\$400.00				
Peripheral accessories and cables	Many	\$10,000	Pending	E e	erience	0.40	\$4,000.00				

	sPHE	NIX Detector	Date of Est:	3/1/2017
		Heavy Ion Collider	Prepared By:	Jin Huang
	BASIS of	ESTIMATE (BoE)	DocNo. (refer Rev. Log)	
Work Package Nam	WBS Number:		·	Control Account Number
MAM Production	1.2.6.3			
WBS Dictionary Definition: TECHNICAL SCOPE: CONTAINS ALL TASKS WHICH ARE REQUIRED TO P WORK STATEMENT: PROCURE ALL PARTS AND PERFOM QA TESTING FO				
Estimate Type (check all that apply):				
Budgetary Estimate by Vend	ion based on Drawings/Sketc or/Fabricator based on Sketcl on Similar Items or Procedure	nes, Drawings, or other Written Corre	spondence	
Assumptions Used in Develo				
We assure that FEUX production 2.0 version will are included in the scope of this WBS rather than	suit our needs. Furthermore, we as a part of infrastructure. Additi	onally, we carry partial costs of the timing di		wn high speed PC. Costs for the 12 core rack servers roate for our system's fractional load.
Details of the Base Estimate	xplanation of the	Work)		
The estimate includes production, quality assura	nce, and estallation of the DAM sy	stem. Fiber costs are born in this WBS rathe	r than in the TPC FEE to whic	h the DAM module is connected.
Cost Summary		(to low link for detailed summary)		
Entries into the detailed cost summary have b	een color coded based upon the ap The cost before Task	contingel v and with contingency are summ	arized below.	g the lowest contingency and red being the highest.
Procure	Task TPC DAM Felix 2.0 boards	Cost + Contin	gency i8.738.27	
	EDBC Computers and Peripherals		7,088.61	
	Total	\$ 511,901.09 \$ 69	55,826.88	

The contingency has been evaluated independently for each line items in accord with the standard sPHENIX contingency guidelines. Contingencies spread over several items are weighted by item cost to determine a summary contingency for each WBS entry. We have used guidance from ATLAS to set the FELIX board contingency at 25% and all other components of the final DAM module production are set to

Aug 2-4, 2017

Basis of Estimate and Resource-Loaded Schedule PHRENIX

- FELIX PCIe card: 230k\$ + 25% contingency
 - Assume final FELIX production card production is ready at our schedule
 - Well into final prototyping stage, producing pre-production card as speaking
 - Planned for production of ATLAS Phase-I upgrade (delivery end 2018)
- Commodity server: 187k\$ + 40% contingency
 - 6.5k / server based on online catalog quote @ DELL and expert's experience with procurement of scientific computing
- Next leading cost data fibers based on quote: 76k\$ + 20% cont.
 - Fiber distribution designed:
 - 48-fiber trunk + patch panels from DAQ room to exp. Hall
 - 48 MTP-> LC duplex breakout on TPC
 - Quoted each part from Computer Crafts, Inc.

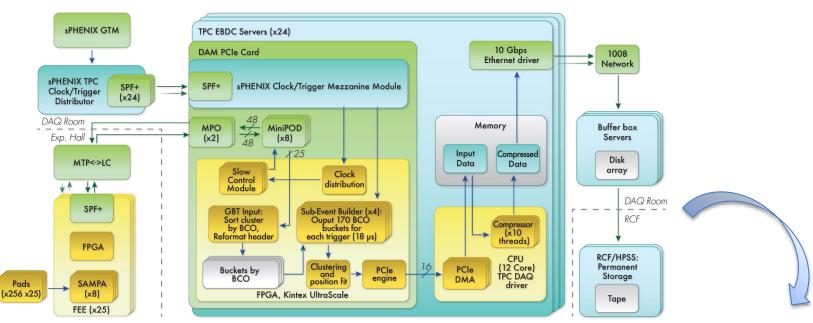
ROF WRS 1.2.6 TPC DAM, sheet Production -- Details

DOL VVD3 1.2.0 II C DAIV	1, 311CCC	110	<u>uu</u>		113							
Item	Vendor	Total	Status	Basis of Estimate	Contingency	Item Contingency	Wt Contingency	Total	Contingency	Total w/ Contingency	Grand Total	Grand Total w/ Contingency
											\$511,901	\$655,827
							0.21	\$306,001	\$62,738	\$368,738		
FELIX Production PCIe cards, 24cnt + 20% spare	BNL ATLAS DAQ Group	\$229,879	Pending	Unofficial quote	0.21	\$47,513.43						
48-fiber MTP (M)-MTP (F) cable 5m, 2x48cnt + 20% spare	Computer Crafts Inc.	\$32,026	Pending	Quote: CCI/T40418PF48-005	0.20	\$6,405.12						
48-fiber MTP (F)-MTP (F) cable 58m, 48cnt + 20% spare	Computer Crafts Inc.	\$35,424	Pending	Quote: CCI/T40408PF48-058	0.20	\$7,084.80						
1U 19" 12 port MPO feedthru panel with 12X MPO couplers, 2x4+25% spare	Computer Crafts Inc.	\$720	Pending	Quote: CCI/56348-MT	0.20	\$144.00						
48F MTP(M) - LC Hydra assembly, 48cnt + 20% spare	Computer Crafts Inc.	\$7,822	Pending	Quote: CCI/1000450-18I-48F	0.20	\$1,564.42						
MTP Coupler, 48cnt + 20% spare	Computer Crafts Inc.	\$130	Pending	Quote: CCI/100106	0.20	\$25.92						
							0.39	\$205,901	\$81,188	\$287,089		
2U rack servers, 24cnt + 20% spare	Microway	\$187,200	Pending	Experience, Require R&D for spec	0.40	\$74,880.00						
TPC timing distribution board - PCB, 1cnt + 1 spare	Many	\$400	Pending	Experience	0.40	\$160.00						
TPC timing mezzanine - PCB, 24cnt + 20% spare	Many	\$1,440	Pending	Experience	0.40	\$576.00						
SFP+ Optical TX/RX, 48cnt + 20% spare	Avnet	\$5,213	Pending	Catalog: AFBR-709DMZ	0.20	\$1,042.50						
LC duplex fiber, 48cnt + 20% spare	Computer Crafts Inc.	\$648	Pending	Quote: CCI/F26268P302-001	0.20	\$129.60						
SMT Chip Resistor Capacitor	Digikey	\$1,000	Pending	Experience	0.40	\$400.00						
Peripheral accessories and cables	Many	\$10,000	Pending	Experience	0.40	\$4,000.00						

Risk Registry

- No item in TPC DAM 1.2.6 is considered risky.
- Relates to moderate risk to the downstream DAQ/storage risk (WBS 1.6 DAQ)

Risk registry, TPC WBS 1.2


	, , , , , , , , , , , , , , , , , , ,	C 11 D5 1.2	I	I	ı	ı	L		I
T. Hemmick	1.2 TPC	Procure v1a GEMs	Delivery date on v1-	The test will require that we	R&D Phase	20%	Cost \$10k for	Low	In case the proper GEMs for the v1a
An an additional to	111	1810	shapes GEMs leaves less	use existing GEMs which will be			square-GEM	100	prototype are not in hand, an adapter plate
			than one month before	10x10cm^2. This will require a			adapter parts		will be requires to fit an existing GEM-stack
			magnet test.	special module to adapt the					to allow the magnet test to proceed.
				smaller square GEMs to the					
T. Hemmick	1.2 TPC	Performance failure of v2	The v2 prototype fails in	If the v2 prototype fails, then	R&D phase	5%	Schedule: 2	Moderate	We will add a design cycle of a smaller
		prototype	any performance criterion	there will need to be a v3			months of		device than the full sized field cage if the v1
			that requires more thasn	prototype added to the cycle.			float lost.		prototype fails. We will proceed on v2 only
			trivial re-design.				Cost:\$15k		after success of the small version.
							(only gain		100
T. Hemmick	1.2 TPC	Failure or delay of CERN	Factories wait upon GEM	The factory production of	production	10%	Schedule: 3-5	Moderate	We will monitor carefully the success of
		production	foil delivery and suffer	modules is critical path and will			months		CERN foil production and will hire a
			schedule shifts.	directly affect schedule.					technician who will exclusively work on
									producing GEM foils for our project. If
									delays still occur, we will seek a second
									vendor.
T. Hemmick	1.2 TPC	SAMPA Chip Failure	SAMPA chips fail to match	Affects delivery of the TPC	production	2%	Schedule:	Moderate	ALICE and STAR shall be forced to mitigate
			performance	since FEE must be applied			Unknown		the situation and if not, alternatives such
			specifications.	before delivery.			since		as the sALTRO and DREAM chips must be
				and the second			mediation		considered.
	1 - 2 - 2	2 2			101 0		100		THE PART OF THE PARTY OF THE PARTY.

Risk registry, DAQ WBS 1.6. See talk DAQ/Trigger by Dr. Martin Purschke

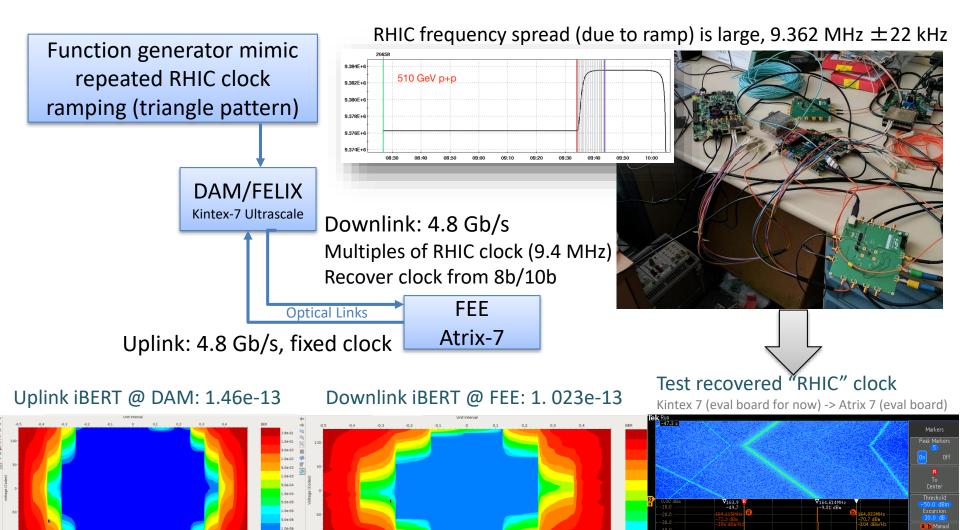
M. Purschke	1.6 DAQ/Trigger	Storage	The TPC or other	Data volume, especially from	Production	roduction Moderate		Moderate	Invest in more local storage, change	
			subsystem cannot meet	the TPC, too high		30%			compression algorithms	

Status and Highlights: Design

24 sectors, 144k Pads and 600 FEEs in total 1 sector, 25 FEEs per DAM for readout

For each one of the 24 TPC Sectors,

- 25 FEEs with 1 SPF+/FEE
- 12 LC duplex <-> 48F MTP on TPC cage
- 2x 48F MTP connect TPC cage <-> DAM
- Readout by 1 FELIX PCIe Card
- Hosted on 1 server


Implementing the design in DAQ test stand

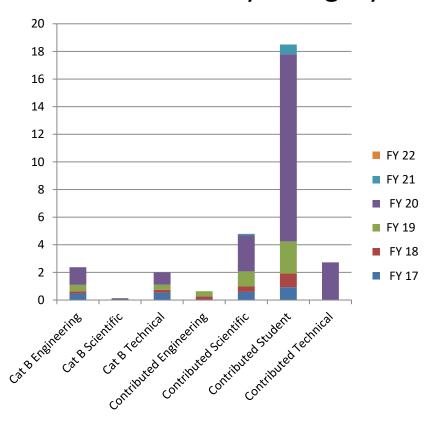
		Unit count	Rate per unit	Total rate	Assumptions and comments
	Data on FEE Fibers	600 fibers	1.6 Gbps	940 Gbps	100kHz Au+Au collision assumed. Rate is radial position dependent. The max data rate is 2 Gbps for the inner-radius FEEs.
ige	Data in BCO- buckets	24 DAMs	40 Gbps	970 Gbps	Unpack SAMPA data and add two 10-bit header per wavelet
AM	After triggering	24 DAMs	11 Gbps	280 Gbps	Event builder collect 170-BCO buckets of hits after each trigger. This reduce data to 29%
	After clustering	24 DAMs	5.7 Gbps	140 Gbps	Cluster finding and fitting on DAM FPGA. Expecting a reduction of total data volume to 50% based on STAR and ALICE experience.
tand	After compression	24 EBDCs	3.4 Gbps	80 Gbps	Lossless compression on EBDC CPUs. Assuming the PHENIX experience of a reduction of total data volume to 60%
sPHENI	Buffer box data logging	Buffer box system	80 Gbps	80 Gbps	Logging TPC data to disk in buffer box system in sPHENIX counting house.
J ILIVI					

Aug 2-4, 2017

Status and Highlights: Test Stand

Summary

- Low risk in DAM hardware design: taking advantage of FELIX PCIe card, a DAQ development for ATLAS upgrade at BNL, and commodity computing
- Produced the cost and schedule for the TPC DAM (WBS 1.2.6) by bottom-up estimate
- Prototype test progress well
- Challenges:
 - Reach the targeted data reduction factor, including implementing a reliable clustering algorithm in FELIX FPGA
 - Integration and system test with TPC FEEs and with sPHENIX DAQ prior to beam



Back Up

Labor profile, TPC 1.2

FTE Profile by Category

FTE Profile by Fiscal Year

Row Labels	FY 17	FY 18	FY 19	FY 20	FY 21	FY 22
Cat B	1.08	0.37	0.87	2.21	0.00	0.00
Engineering	0.47	0.16	0.48	1.28	0.00	0.00
Scientific	0.07	0.01	0.02	0.04	0.00	0.00
Technical	0.54	0.20	0.37	0.89	0.00	0.00
Contributed	1.51	1.65	3.78	18.92	0.79	0.00
Engineering	0.00	0.27	0.36	0.00	0.00	0.00
Scientific	0.59	0.39	1.09	2.63	0.08	0.00
Student	0.92	0.99	2.33	13.56	0.70	0.00
Technical	0.00	0.00	0.00	2.73	0.00	0.00
Grand Total	2.59	2.02	4.65	21.12	0.79	0.00

This is sum manpower for all TPC 1.2 scopes.

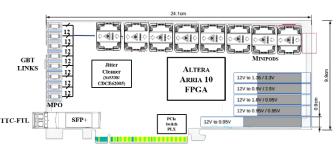
Rate estimation

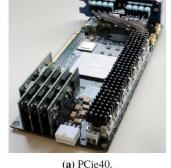
Table 3.3: Raw data rate estimate for sPHENIX TPC and ALICE TPC cases

Parameters	sPHENIX (Au+Au 200 GeV)	ALICE (Pb+Pb 5.5 TeV)	Notes
JNI / Jos (Missleine)	,	,	
dN/dy (Minbias)	180	500	
η coverage of TPC	$ 2.2(\eta <1.1)$	$1.8 (\eta < 0.9)$	
# of tracks in TPC	396	900	
Effective # of tracks in TPC			
(accounted for r -dep. η	560	1690	note 1
coverage change)			
Effective factor for track			
# increase for accounting	2	2	note 2
albedo background			
# of measurements in r	40	159	
# of samples in ϕ	3	2	$\phi \times \text{time} \sim 20 \text{ bins for}$
# of samples in timing	5	10	ALICE (from TDR)
# of bits of each sample	10	10	
Data volume increase fac-	1.4	1.4	Absolute maximum
tor by SAMPA header	1.4	1.4	Absolute maximum
Data volume/event (bits)	9.41×10^{6}	1.50×10^{8}	note 3
Data volume/event (bytes)	1.18×10^6	1.88×10^{7}	
Collision rate [kHz]	100	50	
Total data rate (bits/sec)	9.41×10^{11}	7.52×10^{12}	
Total data rate (bytes/sec)	1.18×10^{11}	9.41×10^{11}	

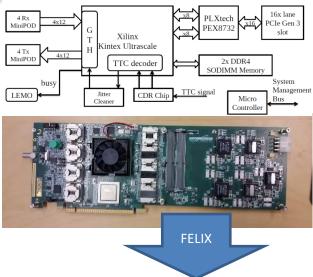
note 1: ALICE didn't estimate from first principle. We estimated for them.

note 2: We doubled the number of tracks to account for the background, based on STAR's experience.


note 3: Product of the previous seven rows. ALICE estimated the data volume as 160 Mbits/evt.


Table 3.4: TPC DAM and EBDC rate estimation

	Unit count	Rate per	Total rate	Assumptions and comments
		unit		
Data on	600 fibers	1.6 Gbps	940 Gbps	100kHz Au+Au collision assumed. Rate is
FEE Fibers				radial position dependent. The max data rate
				is 2 Gbps for the inner-radius FEEs.
Data in	24 DAMs	40 Gbps	970 Gbps	Unpack SAMPA data and add two 10-bit
BCO-		-	-	header per wavelet
buckets				_
After	24 DAMs	11 Gbps	280 Gbps	Event builder collect 170-BCO buckets of hits
triggering				after each trigger. This reduce data to 29%
After clus-	24 DAMs	5.7 Gbps	140 Gbps	Cluster finding and fitting on DAM FPGA.
tering				Expecting a reduction of total data volume to
				50% based on STAR and ALICE experience.
After com-	24 EBDCs	3.4 Gbps	80 Gbps	Lossless compression on EBDC CPUs. As-
pression		_	_	suming the PHENIX experience of a reduc-
-				tion of total data volume to 60%
Buffer	Buffer box	80 Gbps	80 Gbps	Logging TPC data to disk in buffer box sys-
box data	system	-	-	tem in sPHENIX counting house.
logging				


Comparing to CRU/PCIe40

(b) PCIe40 Schematic.

FPGA Family Name	Xilinx	Altera	Xilinx	Altera	Xilinx	Altera	CRU	Xlinux Kintex Ultrascale
	Virtex 6	Stratix V GX	Virtex 7	Arria 10 GX **	Virtex Ultrascale	Stratix 10	Requirements #	Allitux Kilitex Ottrascale
Status		available	available	ES available	available	end of 2017		Available
				from Q2'15				
FPGA part number	XC6VLX240T	5SGXEA7	XC7VX690T	10AX115	XCVU190	10SG280		XCKU115
Used in	C-RORC	AMC40	MP7	PCIe40				BNL 711, FELIX v1.5 prototype
Logic Elements / Cells [M]	0.241	0.622	0.693	1.15	1.9	2.8		1.451
FFs [M]	0.3	0.939	0.866	1.7	2.14			1.3
LUTs [M]	0.15	0.235	0.433	0.425	1.07			0.66
18/20 Kb RAM Blocks	832	2560	2940	2713	7560	11721	1920 / 2560	4320
Total Block RAM (Mb)	15	50	53	53	133	229	40 / 53	75.9
≥ 10 Gb/s Transeivers	24	48	80	96	60	144	48	(48 input + 48 output fiber links in FELIX)
PLLs	12	28	20	32	60	48		48
PCIe x8, Gen3	2 (Gen2)	4	3	4	6	6		6

[#] TPC Detector is the majority user (>70%) of CRU boards. CRU requirements is measured against TPC detector specific logic occupancy.

ATLAS group estimated 48x GBP unpacking and PCIe output use ~20% FELIX Resource

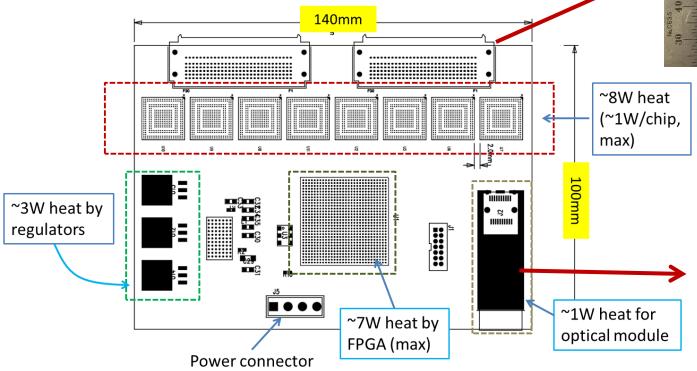
^{**} Altough the maximum number of links of the Arria10 family is 96 links, the FPGA equiping the PCIe40 board has only 72 links

Status and Highlights (II)

Design of full-scale prototype is in progress.

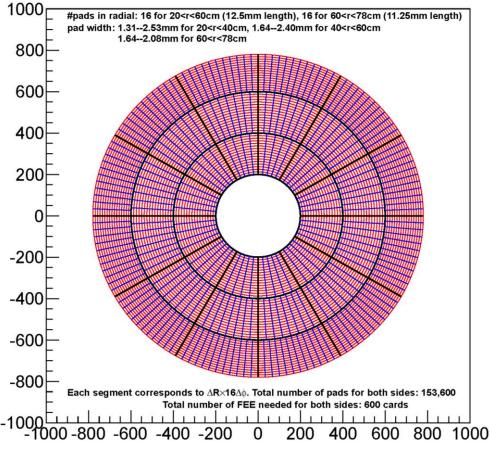
Full-scale prototype design will be passed to board routing as soon as we finished evaluating basic features of SAMPA with small-scale prototype

Selecting of peripheral parts are almost done.



Padplane side

FEE side

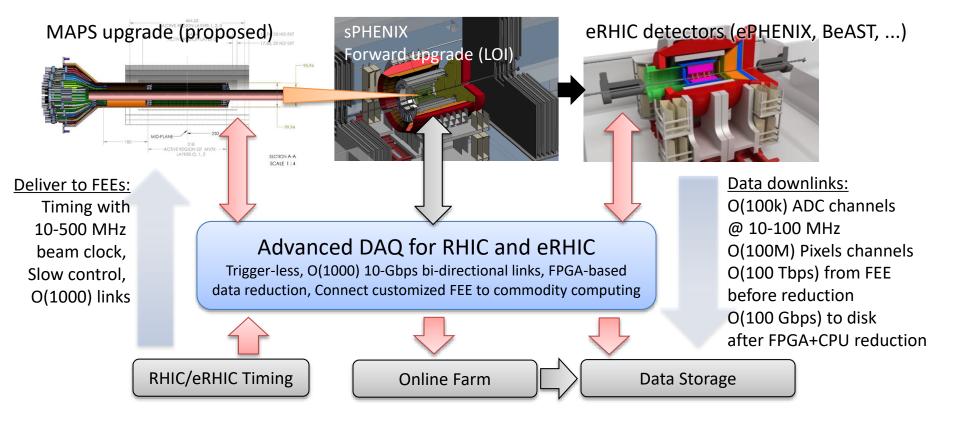


Padplane layout

- New pad layout (30<r<78cm)
 - Three segments in radial direction, each divided into 16 (8 for 30<r<40cm)
 - 12 segments in phi direction, each divided into multiple of 16
 - Matching to number of input to a FEE
 - Each cell in the right figure corresponds to 16 pads in phi
- Variable pad size as a function of radial position
- Total 153,600 pads for both side
 - 600 FEE cards
- Data Rate (no header included)
 - 1.42Gbps/board for 30<r<40cm
 - 1.45Gbps/board for 40<r<60cm
 - 0.77Gbps/board for 60<r<80cm
 - − → 28Gbps/(1/12 full azimuth)

5 FEEs for 30<r<40cm, 8 for 40<r<60cm, 12 for 60<r<78cm, for each 1/12 of full azimuth

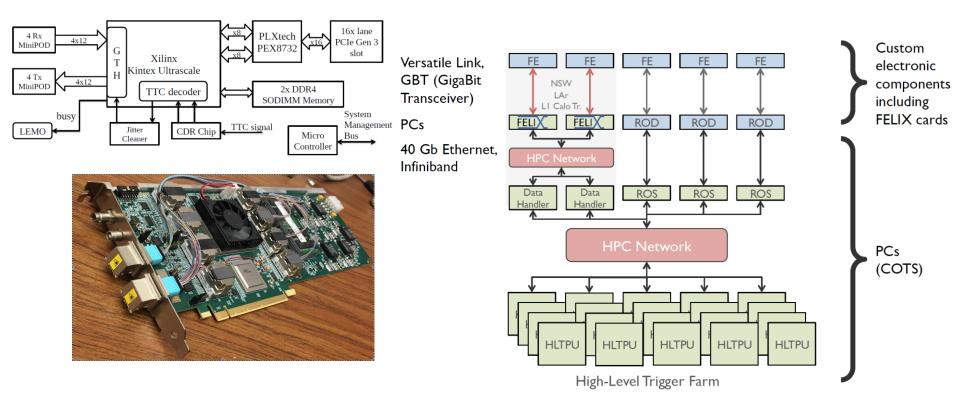
Each cell = 16pads in phi



Data rate calculation

- Raw data (100% duty factor is assumed)
 - Sampling rate in z-direction: 10MHz (= 100nsec)
 - Pulse peaking time is 160nsec (fixed from SAMPA's specification), which leads to ~350nsec for whole pulse shape.
 - More than 4 samples in timing (z) direction is necessary. We decided on taking 5 samples including pre-signal
 - One cluster will be spread over 3 pads in r-φ plane
 - Coming from the characteristics of the Ne2K (Ne CF₄ iC₄H₁₀: 95% 3% 2%) gas
 - We measure 40 clusters for one track
 - Each sample is 10 bits: 40 clusters * 15 * 10 bits = 6 Kbits/track
 - 800 tracks per event: 6Kbits/track * 800 = 4.8 Mbits/event
 - This number doesn't take eta-dependent acceptance change of TPC into account
 - At 100 KHz: 4.8 Mbits/event * 100 KHz = 480 Gbits/s
- With header of SAMPA (40% increase at maximum): 670Gbits/s
 - With eta-dependent acceptance change: 940Gbits/s

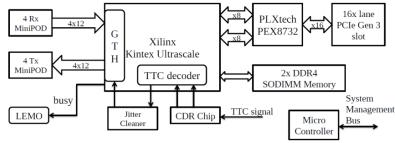
Advanced DAQ for RHIC and eRHIC



ATLAS/FELIX BNL-711 PCIe Card

Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

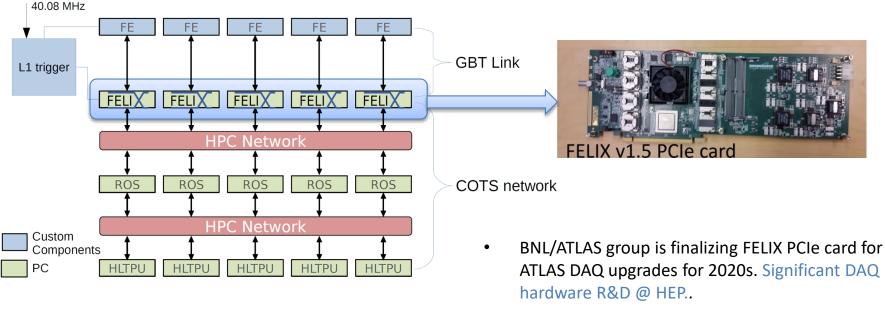
- BNL-711 Board chosen for ATLAS FELIX project, and used in ATLAS phase I upgrade, which is projected to complete before sPHENIX.
- Readout for ATLAS Phase-I sub-system of Liquid Argon Calorimeter, Level-1 calorimeter trigger, New small wheel of the muon spectrometer



ATLAS/FELIX Card for sPHENIX?

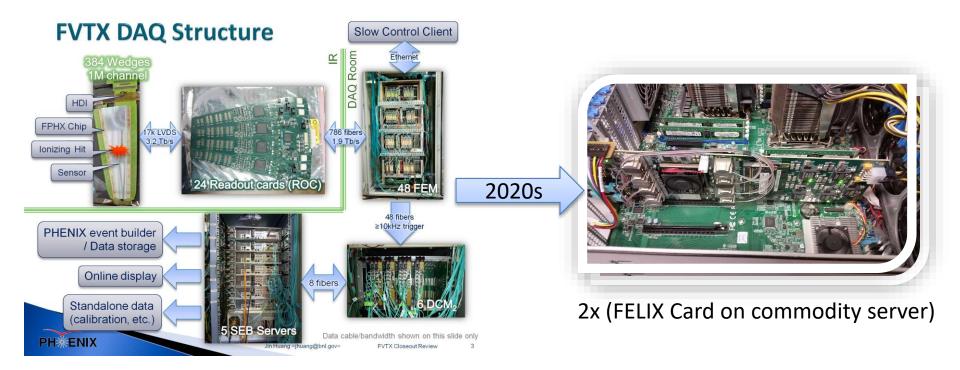
Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

- Main features for FELIX PCIe Card
 - Design: BNL/Omega group, Layout: BNL/Instrumentation, Goal: multiple users.
 - A large Kintex Ultrascale FPGA, 1.5 M Logical Cells (24x Logical Cells of FVTX FEM card)
 - 48 bi-directional GBT link via two 48-F MTP connectors
 - PClex16 Gen3, 101 Gbps demonstrated
 - 2x DDR4 memory slots (v1.0, v1.5), removed v2.0
 - TTC-timing input (v1.0, v1.5), timing mezzanine card (v2.0)
- Timeline and availability:
 - Current version: v1.5 prototype, can be ordered now
 - Next version: v2.0 pre-production, design completed, layout ongoing, expect available Oct 2017
 - FELIX production system delivery expected end 2018 for ATLAS Phase-I upgrade. ATLAS needing 100+ card with various flavor of firmware depending on subsystem configurations.
- BNL/Omega group, Local expert expressed willing for help us to adapt FELIX in sPHENIX
 - Boards for initial evaluation test
 - Support firmware software development, timing mezzanine card design
 - The team is also help in possible use of FELIX card in proto-Dune.
 - The FELIX team is open for inputs in guiding the design to be more generic to various users.



FELIX v1.5 Card in test stand

FELIX

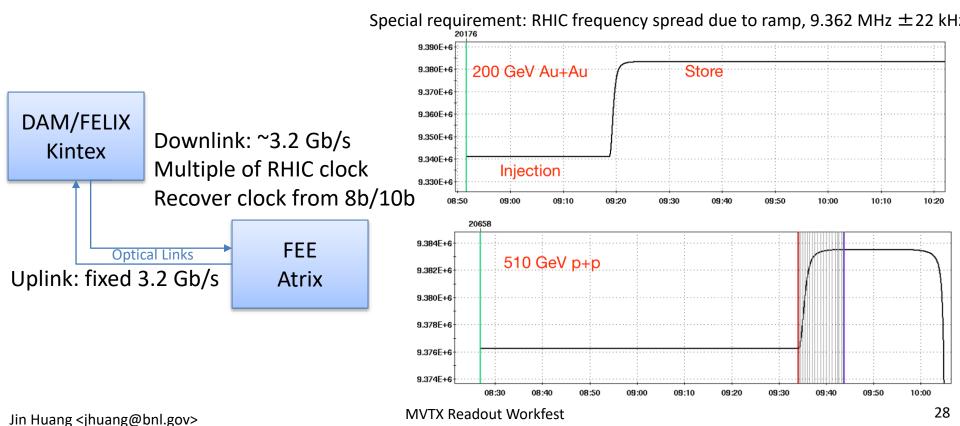

ATLAS DAQ structure for mid-2020s: Front-End Link eXchange (FELIX)

- Using high performance large-FPGA optical link card to bridge custom FEE and commodity computing
- Besides ATLAS, similar architecture also proposed for ALICE and LHCb upgrades

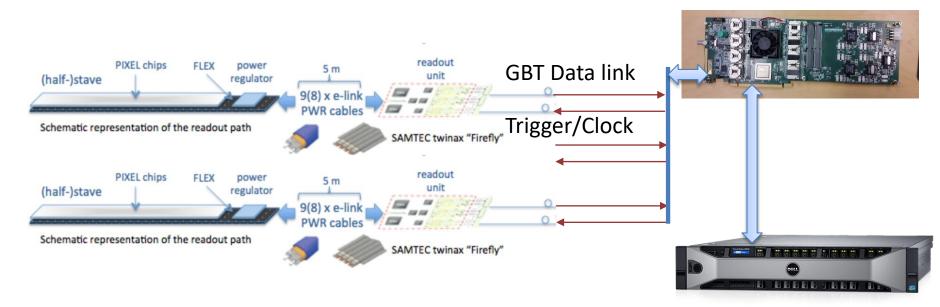
Comparing to current RHIC trigger-less DAQ

- FVTX detector @ PHENIX carries one of most advanced DAQ @ RHIC, successful upgrade in 2012, continuous readout & triggering capability
- FELIX would reduce the five crates of custom DAQ electronics to just two FELIX PCIe cards in terms of FPGA resource and data process rate

Schedule


- Not on the critical path for TPC (1.2)
- Prior to CD-2: Schedule driven by FPGA and DAQ firmware software development
- Scheduling risk for FELIX card production is low:
 - Already received v1.5 prototype card for the prototyping stage,
 1.2.6.1
 - Well into final prototyping stage, producing pre-production card as speaking
 - Planned for production of ATLAS Phase-I upgrade (delivery end 2018)
- Scheduling risk for EBDC server production is low:
 - Commodity computing
 - Procurement scheduled at the latest stage of the production to take advantage of commercial computing development

Kintex -> Atrix 5FP+ fiber links


with RHIC clock delivery

- One of the feature of the design is to use FELIX distribution slow control and RHIC clock to 25x FEE.
- Use RHIC clock (~9.4 MHz) as base frequency. Multiply x14 as fiber clock + slow control data in via 8b/10b encoder
- Recover RHIC clock on FEE, and slow control data via 8b/10b decoder
- John Kuczewski (BNL, instrumentation): tested with expected RHIC clock frequency spread (due to ramp). Excellent error rate

TPC Outlook and possible use in MAPSHIENIX

- The TPC group acquired v1.5 FELIX PCIe card to setup a test stand and evaluate DAQ feasibility. Plan to switch to pre-production cards end 2017. Meanwhile, we would also want to learn to CRU, prior to final decision on the readout cards.
- After Ming's request, a v1.5 FELIX PCIe card has been manufactured for MVTX.
- It makes sense to try pursuing the same system for MAPS+TPC readout, and share production batch, DAQ expertise and effort in timing distribution, card/server pool, event-building software development

