

sPHENIX Director's Review ESH

Paul Giannotti

August 2-4, 2017 BNL

At the activity level (operations):

- Safe & reliable operation of the experiment via conduct of operations in cooperation with the C-A department and compliance with procedures & technical specifications
- Manage the facility as a standard industrial facility using an industry and BNL OSH policy;
 - 1. Prevent work related injuries, ill health and incidents
 - 2. Comply with OSHA regulations and SBMS requirements
- Implement BNL program of Integrated Safety Management system (ISM) via SBMS

Requirement:

DOE Order 413.3B

Provide management direction for cost and schedule, safeguards, security, and ESH requirements.

- Prepare a preliminary hazard analysis report (PHAR)
- 2. Prepare a National Environmental Policy Act (NEPA) report

The above will follow a change control process to the C-AD Safety Assessment Document (SAD). Latest revision August 2016.

Change may or may not be required as determined by a USI screening.

 The proposed sPHENIX Experiment will have most hazards previously evaluated and contained in the current C-AD Safety Assessment Document (SAD) – up for renewal 2021

Signed off August 2016 by C-AD personnel:

- 1) ESSHQ Associate Chair (Ed Lessard)
- 2) ESSH Division Head (Peter Cirnigliaro)
- 3) Radiation Safety Committee Chair (Dana Beavis)
- 4) C-AD Chairman (Thomas Rosser)
- 5) Associate Laboratory Director, NPP (Steve Vigdor) *
- 6) Deputy Director Operations, BNL (Michael Bebon)
- * Berndt Mueller
- New hazards identification & evaluation will follow the Unreviewed Safety Issue (USI) process as required by DOE Order 420.2C Safety of Accelerator Facilities.

The Safety Analysis Document Chapters

ALL the ESSH issues are covered by this document

- 1. Introduction Statement of C-AD Facility's mission and protection of workers, public and environment
- 2. Results and conclusions of the safety analysis. Evaluates only non-hazard industrial hazards
- 3. Site facilities and operation
- 4. Safety analysis identifies ALL hazards
- Accelerator Safety Envelope (ASE)
- Select credited controls to in order of priority
- a) Passively ensure safety (example -configuration controlled shielding)
- b) Active Control engineered automatic interlocks are higher reliability than human action
- c) Use Non-Credited control to <u>prevent</u> an event rather than control it (example limit supply of helium to prevent oxygen < 18%)

6. Quality Assurance Program – Implements BNL QA program of ISM

- a. Define Work
- b. Identify Hazards
- c. Develop Controls
- d. Perform Work
- e. Feedback & Improve
- 7. Decommissioning and Decontamination Plan (future)
- 8. Resource Documentation

APPENDIX 1 Hazards and risk Assessment Screening

The Process:

Rules – Follow DOE order 420.2B Safety of Accelerator Systems, BNL SBMS Accelerator Safety Subject area and the C-AD ESH web.

Use USI unreviewed safety issue process:

New Hazard?

USI Checklist

Hazard Screening Tool

Design Review Questionaire

Compile a Hazard Screening Report

Accelerator Safety Review Committee (ASSRC), Experimental Safety Committee Review (ESRC) for ESH

Possible SAD or ASE revision

8

ESSH Starting Point – Re-review these:

- 1. Ionizing Radiation *
- 2. Non-Ionizing Radiation
- 3. Hazardous & Toxic Materials
- 4. Bio-Hazards
- 5. Chemicals
- 6. Electrical Energy
- 7. Magnetic Fields
- 8. RF Fields
- 9. Potential Energy (Pressure, Vacuum, Lifting)
- 10. Kinetic (rotating, Moving Equipment)
- 11. Fire
- 12. Explosive/Compressed Gasses * (Large Volumes)
- 13. Natural (Wind, Earthquake
- 14. Steam
- 15. Extreme Heat/Cold
- 16. Confined Spaces
- 17. ODH *
- 18. Lasers
- NON-STANDARD HAZARDS

Special Focus: Beryllium, Lead, Asbestos

Something New: Legionella Bacteria generated by poor maintenance in cooling towers

END