Long lived dark photon searches at ATLAS

Emma Torró

Dark Interactions BNL 4 Oct. 2018

LLP searches in ATLAS

- In many models of BSM physics there are free parameters that influence the lifetimes of the new particle states, with no strong motivation for assuming that all the particles decay promptly
- New particles will either be
 - Prompt decaying
 - Semi-stable Long-Lived Particles (LLPs), decay in the detector
 - Detector-stable, decay outside the detector
 - Stable
 - ATLAS and CMS are designed to optimize object identification for (prompt) SM particles
 - Standard object ID algorithms don't usually have good efficiency for LLP reconstruction
- Then, can we look for LLPs in ATLAS?

we need to make sure we

have sensitivity to these too!

LLP searches in ATLAS

- Yes! ATLAS is well suited for these searches
 - large integrated luminosity
 - excellent tracking, vertexing, calorimetry, muon ID but standard tools need to be adjusted

- So, where should we look?
 - Many different signal models predict LLP
 - The strategy is to organize searches according to final states.
 - Searches as model independent as possible
 - Use several models for selection optimization, if necessary define several SRs
 - Give all possible information for recasting

Challenges in LLP searches

- Trigger: combination of hardware + software that must decide very quickly whether to save an event or lose it forever
 - First step in every search for LLPs: make sure that interesting events are saved!
 - 1. In associated production, trigger on prompt particle (Eg. WH prod. trigger on mu; ISR trigger on MET)
 - 2. Design and develop a new trigger. Need to keep trigger rates under control and within budget
- Object identification algorithms assume prompt particles. Need to adapt them
- Backgrounds: SM backgrounds usually small but instrumental background such as miss-identified leptons ("fakes") and non-collision backgrounds (NCB) have to be taken into account

Systematic uncertainties: can't use standard recommendations for object reconstruction nor trigger

Non-collimated muons search

13 TeV, 32.9fb⁻¹: EXOT-2017-03

8

p

Non-collimated muons Benchmark models

- Search for pairs of muons with opposite-sign electric charge, $\mu^{_+}\mu^{_-}$, not originating from the IP
- "Higgs portal" models:
 - $U(1)_{D}$ symmetry in the dark sector
 - the dark photon Z_D, is given mass via a singlet scalar field H_D, analogous to the Higgs field H in the visible SM sector
- (+ SUSY GGM model)

p

 $m_{Z_{\rm D}} \text{ [GeV]} \quad c\tau_{Z_{\rm D}} \text{ [cm]} \quad B(Z_{\rm D} \to \mu^+ \mu^-)$ 20 50 0.1475 50 0.1370 40 0.1370 500 40 0.1066 60 50 60 500 0.1066

32.9 fb⁻¹ 13 TeV (2015-2016 data)

Non-collimated muons Selection

- Designed to
 - strongly suppress background
 - efficiently accepting signal events over a wide range of LLP masses, lifetimes and velocities.
 - minimal requirements are placed on other aspects of the event, to retain the greatest possible model independence
- Trigger on MSonly muons

Signal type	Trigger	Description	Thresholds
High mass	$E_{\rm T}^{ m miss}$ single muon	missing transverse momentum single muon restricted to the barrel region	$E_{\rm T}^{\rm miss} > 110 \text{ GeV}$ muon $ \eta < 1.05$ and $p_{\rm T} > 60 \text{ GeV}$
Low mass	collimated dimuon trimuon	two muons with small angular separation three muons	$p_{\rm T}$ of muons > 15 and 20 GeV and $\Delta R_{\mu\mu} < 0.5$ $p_{\rm T} > 6$ GeV for all three muons

 All three of the muon triggers use only measurements in the MS to identify muons.

- Muon reconstruction:
 - "standard" muons: matching between a track in the Muons System (MS) and a track in the Inner Detector (ID)
 - muon from LLP: track in the MS with no matching in the ID
- This analysis searches for pairs of MSonly muons

Non-collimated muons Backgrounds

- Vertexing:
 - for every pair of MSonly muons, extrapolate tracks to IP and find point of closest approach
 - efficiency decreases with decay position

- Two kinds of backgrounds:
 - non-prompt background: cosmic muons + beam-induced background + pions/kaons
 - leave signal in the MS only -> can be reconstructed as MS only muons
 - pair of muons doesn't have charge correlation -> estimated using a CR with SS muons
 - prompt backgrounds: from SM processes (DY, Z+jets) where
 - jets are misidentified as muons
 - jets punch-through
 - reduced by requiring muon isolation from jets and ID tracks
 - $m_{\mu\mu}$ >15 GeV to avoid low-mass resonances
 - estimated with data-driven method

Non-collimated muons Results

Background estimation in agreement with observation

	-	
Yield	SR _{low}	SR _{high}
N ^{non-prompt}	13.6 ± 4.9	0.0 + 1.4 - 0.0
N ^{prompt}	0.1 ± 0.2	0.50 ± 0.07
N ^{bkgd}	13.8 ± 4.9	$0.50 \stackrel{+}{_{-}0.07} \stackrel{+}{_{-}0.07} \stackrel{+}{_{-}0.07}$
$N^{ m obs}$	15	2

Displaced Lepton-jets search

Lepton-jets Benchmark models

- 13 TeV (2015 data)
- Search for pairs of collimated muons or low EMF jets
- Falkowsky-Ruderman-Volansky-Zupan (FRVZ) models:
 - Higgs boson decays to a pair of hidden fermions f_{d_2} which produce two (four) γ_d
 - A low-mass dark photon mixing kinetically with the SM photon will decay mainly to leptons and possibly light mesons

3.4 fb-1

- The γ_d decay lifetime, controlled by the kinetic mixing parameter, ϵ , is a free parameter.
- At the LHC, these dark photons would typically be produced with large boost, due to their small mass,

-> collimated jet-like structures containing pairs of leptons and/or light hadrons (leptonjets, LJs)

Benchmark	$m_{ m H}$	$m_{\mathrm{f}_{\mathrm{d}_2}}$	<i>m</i> _{HLSP}	$m_{s_{d_1}}$	$m_{\gamma_{ m d}}$	$c au_{\gamma_{ m d}}$
model						
	[GeV]	[GeV]	[GeV]	[GeV]	[GeV]	[mm]
$2 \gamma_{\rm d}$	125	5.0	2.0	-	0.4	47.0
$4 \gamma_{\rm d}$	125	5.0	2.0	2.0	0.4	82.40
$2 \gamma_{\rm d}$	800	5.0	2.0	-	0.4	11.76
$4 \gamma_{\rm d}$	800	5.0	2.0	2.0	0.4	21.04

Lepton-jets: Selection 15

The analysis divides the various LJs into categories based on the species of the constituent particles.

- Triggering for the low-masses is difficult
- Trigger efficiency (%):

	Trigger	Higgs $\rightarrow 2\gamma_{\rm d} + X$	Higgs $\rightarrow 2\gamma_{\rm d} + X$	Higgs $\rightarrow 4\gamma_{\rm d} + X$	Higgs $\rightarrow 4\gamma_{\rm d} + X$
		$m_{\rm H} = 125 \; {\rm GeV}$	$m_{\rm H} = 800 \; {\rm GeV}$	$m_{\rm H} = 125 \; {\rm GeV}$	$m_{\rm H} = 800 \; {\rm GeV}$
	Tri-muon MS-only	2.0	2.4	4.9	7.8
7	Narrow-Scan	10.6	23.0	8.3	38.4
	CalRatio	0.3	9.7	0.1	7.4
	OR of all	11.9	32.0	11.8	44.8

same as in the non-collimated muons search

trackless low-EMF jets

- Muon reconstruction:
 - MSonly muons
 - clustering algorithm that combines all the muons lying within a cone
- Jet reconstruction
 - LJs produced by a single dark photon decaying into an electron/pion pair
 - expected to be reconstructed as a single jet due to their large boost.

Lepton-jets: Backgrounds

- Type 2 Lepton-jets (hadronic)
- SM multijets
 - reduced with selection:
 - EM fraction < 0.1
 - jet width < 0.058
 - jet vertex fraction < 0.56
 - Final estimation with data-driven methods
- Type 0 Lepton-jets (muonic)
- Cosmic-ray muons:
 - studied in events collected in empty bunch-crossings
 - rejected with cuts in z0 and t

- Beam-induced-background
 - reduced with BIB-tagging using low EMF jets and MS end-cap information

- Other SM processes (*W*+jets, *Z*+jets, *tt*, single-top, *WW*, WZ, and *ZZ*)
- can lead to real prompt muons and muons plus jets) that could fake displaced muons
 - studied in MC
 - negligible after requiring MSonly muons

Lepton-jets: Results

Background estimation in agreement with observation

Category	Observed events	Expected background							
All events	285	$231 \pm 12 \text{ (stat)} \pm 62 \text{ (syst)}$							
Type2–Type2 excluded	46	$31.8 \pm 3.8 \text{ (stat)} \pm 8.6 \text{ (syst)}$							
Type2–Type2 only	239	$241 \pm 41(\text{stat}) \pm 65(\text{syst})$							

Lepton-jets: Plans

- This talk shows the 2015 dataset results
- dLJ analysis ongoing with 2015+2016 dataset
 - Several improvements:
 - updated triggers for the muon channel (Trigger is still one of the main difficulties, especially for low pt)
 - ML techniques to identify dLJ
 - plans to include other production modes
 - search for mono-LJ + X
- search for same models in the prompt LJ version ongoing

Other searches for dark photons

- Search for Z+Long-lived dark photon decaying in the calorimeter
 - ongoing for 2015+2016 dataset
 - first time done in ATLAS
 - will be published soon

- prompt ZdZd -> 4 leptons
 - considers models similar to the noncollimated muons search
 - see talk by Diallo

Other searches for dark sectors

- Heavy boson in the dark sector decaying to pair of (long-lived) scalars, eventually decaying to SM fermions
 - Several versions of the search depending on where the LLP decays in ATLAS
 - Decays in the MS: 2 MS vtx, 1 MS vtx + MET, 1 MS vtx + 2jets

Decays in the calorimeter:
2 low EMF jets

 Combined decays: 1MS vtx, 1ID vtx

₫--œ≦

 \mathcal{D}

Conclusion

- Lacking any evidence for New Physics in any of the searches finalized so far, unconventional signatures are gaining in popularity
- ATLAS has a complete program to search for long-lived particles in many different signatures
 - Wide variety of searches
 - Very challenging, pushing the detector for searches it was not designed to perform
 - Many analysis working on improvements with the full 13 TeV dataset

- No discovery so far but...
- 2017+2018 datasets to be studied yet!
- Most analyses developing new techniques for better identification
- Looking forward to seeing first significant deviations from the SM predictions!!

non-collimated muons results shown here

• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Ba	C	۲U	Iр																				

22

Summary plots

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2018

ATLAS Preliminary $\int \mathcal{L} dt = (3.2 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$

*Only a selection of the available lifetime limits on new states is shown

 $(\gamma\beta = 1)$

E. Torró 04 Oct 2018

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/ EXOTICS/ATLAS_Exotics_LLP_Summary/ATLAS_Exotics_LLP_Summary.pdf

ATLAS public results

- All ATLAS public results:
- ATLAS: <u>https:/twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome</u>
- EXOTICS specific results:
- ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>
- SUSY specific results:
- ATLAS: <u>https:/twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>