a place of mind

Dark sector/dark matter searches at BaBar and outlook for Belle II

Christopher Hearty U. British Columbia / IPP October 5, 2018

Third biennial workshop on dark interactions, BNL

On behalf of the BaBar and Belle II collaborations

Outline

- Search for doubly strange stable six-quark states at BaBar
- Dark photon and Z' searches at BaBar
- Belle II status
- Belle II projections for single photon analysis and Axionlike particle search

Search for a stable doubly-strange six-quark state at BaBar

Six-quark states

- G. Farrar has noted that the 6-quark state uuddss [Q=0, B=2, S=-2] is allowed by QCD, and could be the astronomical dark matter.
 G. R. Farrar, arXiv:1708.08951 [hep-ph]; arXiv:1805.03723 [hep-ph]
 - Not everyone agrees that it could be dark matter.

EW Kolb & MS Turner, arXiv:1809.06003

- This is not Jaffe's H-dibaryon, which had mass & PRL 38, 617 (1977)
 ~2150 MeV and a typical weak lifetime.
 - many unsuccessful searches.

- The six-quark state (S) is absolutely stable if $m_s < 2(m_p + m_e) = 1878$ MeV.
- Cosmologically stable if $1878 < m_s < (m_{\Lambda} + m_p + m_e) = 2055$ MeV.
- Production in Υ decay is expected to be enhanced. Our search: $\Upsilon \rightarrow S\overline{\Lambda}\overline{\Lambda}$.
 - reconstruct only the two Λ 's.
 - look for $m_s < 2050$ MeV in recoil.
 - 90 x 10⁶ $\Upsilon(2S)$ and 110 x 10⁶ $\Upsilon(3S).$

Event selection

- Select two $\Lambda \rightarrow p\pi^-$ (same strangeness) + up to 1 extra track (material interactions).
- Λ satisfy proton ID, mass cut, flight significance, flight angle.
- Extra energy in calorimeter < 0.5 GeV, excluding splitoffs from protons and clusters from possible S interactions.
 S interaction cross section < neutron cross section.

- Finally, fit both Λ 's to pdg mass and to a common production point in the beam spot (leaves 4 events).
- Signal = excess in mass² recoiling against the two Λ . - ~2.5 GeV² window centered on the m_s² hypothesis.

Backgrounds

- Background sources: continuum or Υ decay.
- Continuum: signal branching fraction of Υ(4S) is negligible; no background from B decay ⇒ data recorded at 10.58 GeV can be treated as pure continuum.
- Υ decay: scale Υ (2S, 3S) MC so that MC + continuum (10.58 GeV) matches E_{extra}>0.5 GeV sideband.
- Remaining background $\sim \Lambda \Lambda \overline{\Lambda} \overline{\Lambda}(X)$

 $\left| \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$

Recoil mass² distribution

- Efficiency 7.2% 8.2%. Systematics:
 - angular distribution (4% 15%),
 - interaction cross section (8% 10%).

• No evidence for a six-quark state in $\Upsilon \rightarrow S\overline{\Lambda}\overline{\Lambda}$. Upper limit on branching fraction is $(1.2 - 1.4) \times 10^{-7}$.

BaBar single photon analysis

 Analysis optimized for and interpreted in terms of a dark photon A' decaying invisibly.

- On-shell A' ($m_{\chi} < m_{A'}/2$) \Rightarrow monoenergetic photon. - Analysis not sensitive to m_{χ} or the χ / A' coupling.
- Uses ~50 fb⁻¹ recorded with single γ trigger in final BaBar running period.

Backgrounds

- Could include additional ISR γ down beam pipe.
- Also $e^+e^- \rightarrow e^+e^- \gamma$, neither e^\pm in detector.

- Select events with a boosted decision tree. Exploits correlation in direction of observed and missed photons in $\gamma\gamma(\gamma)$ final state.
- Fit $M_X^2 \equiv s 2\sqrt{s}E_{\gamma}^*$ distribution; float signal, peaking background, and smooth background yields.

BaBar exclusion region for invisible decays of a dark photon

• Excludes region that explains $(g-2)_{\mu}$.

BABAR collab., "Search for a muonic dark force at BABAR", Phys. Rev. D94, 011102(R) (2016)

Search for muonic dark forces at BaBar

 Dark gauge boson Z' couples only to 2nd and 3rd generations. Few experimental constraints.

He, Joshi, Lew, Volkas, Phys. Rev. D 43, R22 (1991)

final state = 4 muons

• No evidence for a signal (narrow peak in $\mu^+\mu^-$ spectrum).

- Can also interpret result in a leptonic Higgs model.
 - tau pair final state is then preferred.

Batell, Lange, McKeen, Pospelov & Ritz, Phys. Rev. D95, 075003 (2017)

Belle II status

Belle II experiment

- Located at SuperKEKB e⁺e⁻ collider. Goal is 100× data set collected by BaBar, 30× combined BaBar+Belle.
- 23 countries, 100 institutions, 395 PhD physicists, 280 graduate students.

C. Hearty | Dark sector/dark matter searches at BaBar and outlook for Belle II | Dark Interactions BNL

Phase 2 commissioning

 SuperKEKB commissioning run with colliding beams. April – July 2018. Full Belle II outer detector, but only samples of vertex detectors.

• Goals:

peak luminosity >10³⁴ cm⁻²s⁻¹
(KEKB design) to verify nanobeams
check that background levels

are safe to install vertex detectors.

C. Hearty | Dark sector/dark matter searches at BaBar and outlook for Belle II | Dark Interactions BNL

- Per-bunch luminosity goal achieved with vertical size < 1µm.
- Backgrounds are still under study, but are low enough to install vertex detectors.
 - only 1 layer of pixels available.
- Integrated luminosity = 0.5 fb⁻¹, enough to start detector commissioning / calibration.
- Phase 3 commissioning starts March 2019.

SuperKEKB luminosity projection

C. Hearty | Dark sector/dark matter searches at BaBar and outlook for Belle II | Dark Interactions BNL

Belle II single photon analysis

- Key to improving BaBar limits at low mass is reducing and constraining the peaking background from e⁺e⁻ → γγ. Should be lower than BaBar; gaps between calorimeter crystals are not projective.
- Reasonable progress in using Phase 2 data to calibrate MC modelling of γ inefficiency in the calorimeter. Less work in understanding efficiency of the muon system in detecting γ that punch through the calorimeter.

- At higher A' masses, larger calorimeter coverage suppresses radiative Bhabhas compared to BaBar: -0.94 < cosθ* < 0.96 Belle II -0.92 < cosθ* < 0.89 BaBar
- Good trigger efficiency in Phase 2 for $E_{\gamma} > 1.2$ GeV. Will retain this low threshold for 2019.

Projected Belle II exclusion region, 20 fb⁻¹

• Extrapolation to higher luminosity is not clear. Need to control systematic error on photon efficiency.

Projected Belle II exclusion region, 20 fb⁻¹

Belle II search for Axion-like particles (ALP)

 Search for ALP decaying to γγ. 3γ final state, but at low mass, photons may overlap in the calorimeter.

• Can appear to be $e^+e^- \rightarrow \gamma\gamma$ in the level 1 trigger. So far, we have not had to prescale (Belle had 100× prescale).

Different experimental signatures for $e^+e^- \rightarrow a\gamma$ search

C. Hearty | Dark sector/dark matter searches at BaBar and outlook for Belle II | Dark Interactions BNL

• Interesting limits are possible with a small dataset.

Dolan, Ferber, Hearty, Kahlhoefer & Schmidt-Hoberg, "Revised constraints and Belle II sensitivity for visible and invisible axion-like particles," JHEP 1712, 094 (2017)

C. Hearty | Dark sector/dark matter searches at BaBar and outlook for Belle II | Dark Interactions BNL

Belle II search for $Z' \rightarrow invisible$

- Low mass Z' decays 100% to neutrinos.
 - alternatively, assume 100% to $\chi \bar{\chi}$ for all masses.

- Select muon pair events with missing momentum vector pointing at barrel calorimeter, and look for a bump in the recoil mass.
- Significant backgroupd from $e^+e^- \rightarrow \tau^+\tau^-_{\mathbf{z}^{,} \rightarrow \text{ invisible}}$

 Difficult to exclude (g-2)_µ band, even with full luminosity. But even a small dataset will allow us to set new limits.

Summary

- BaBar has found no evidence for a stable six-quark bound state in Upsilon decay.
- Belle II has started commissioning of outer detectors with first colliding beam data. First data with full detector will be March 2019.
- Even a relatively small data set will enable interesting dark sector searches by Belle II.

Backup

Sources of calorimeter inefficiency (in order of importance)

5. γ non-conversion 3 \times 10⁻⁶

The Belle II detector

 Reusing solenoid, iron, part of muon system, calorimeter crystals. Remainder optimized for rates and high backgrounds 33

Beam backgrounds — the major experimental challenge

• Beam backgrounds are particles in the detector (typically low-energy γ and n) not due to the event of interest. Biggest source is radiative Bhabhas, e⁺e⁻ \rightarrow e⁺e⁻ γ .

• Despite shielding, many 1-2 MeV photons reach the detector. ³⁴

Sources of detector inefficiency

 Plot all four μ+μ- mass combinations per event, and look for a narrow peak on a smooth background.

• Simulated backgrounds, 20 fb⁻¹. Final sample is almost entirely $e^+e^- \rightarrow \gamma \gamma (\gamma)$ with $\geq 3\gamma$.

 Low mass region has both peaking and smooth backgrounds. Select data using two statistically independent cuts on BDT and θ.

