## Novel Cosmic Probes of Dark Matter

Matthew R Buckley Rutgers University

#### The Problem of Dark Matter

- We have well-motivated ideas about what the *particle physics* of dark matter could be:
  - Axions! (solve the CP-problem)
  - WIMPs! (solve the Naturalness and Hierarchy problems)
  - sterile neutrinos
- We just haven't found convincing evidence for any of them.
- The question we theorists want to answer:
  - What is the particle physics of dark matter?



## Back to the Basics

- What do we *know* about dark matter?
  - It exists! (in galaxies today)
  - It existed in the early Universe
  - It doesn't interact with unsuppressed weak/EM/strong charges
  - It was non-relativistic by  $z \sim 3000$
  - If fermionic, its mass is  $\gtrsim 100 \text{ eV}$ . If bosonic,  $\gtrsim 10^{-22} \text{ eV}$
  - It doesn't interact with itself very much.
- That is it. That's everything we know for a fact about dark matter.
  - But how do I know any of this?

## Gravity!

• Every property of dark matter we know of (other than nonobservation in the lab) comes from its gravitational interactions.



#### So What? A Thought Experiment

- We're interested in the *particle physics* of dark matter, not the astrophysics.
  - How do we extract these things from the distribution and evolution of dark matter?
- Imagine you're a scientist in the dark sector: you can see dark matter, but not baryons.
  - Using the Dark CMB, you discover something with  $\Omega_b \sim 0.05$
  - What can you learn about its particle physics?
- Dark scientists would by stymied if they use the classic experimental triad

Credit to Annika Peter (OSU) for idea. Buckley & Peter 1712.06615



## A Thought Experiment

- But what if you turn to the astrophysics?
  - The *z* of matter-radiation equality gives you baryonic light degrees of freedom.
  - Two-point correlation of dark halos gives you Baryon Acoustic
    Oscillation — baryons are strongly self-interacting
  - A difference between dark matter halos and baryonic galaxies baryons must be capable of cooling.
  - Reasonable to conclude that the light d.o.f. are responsible





# A Thought Experiment

- Scattering rate implied by disk cooling would be too high for a thermal relic: the baryons consist of particles but not antiparticles!
- Other particle physics solutions certainly possible, but if the dark scientists consider a U(1) gauge interaction, they'll find they need
  - a virialized kinetic energy set by a heavy particle
  - a scattering rate set by a light particle.
  - a fine-structure constant large enough to allow thermal bremsstrahlung, but not too large so that the biggest galaxies can't reionize.

$$10^{-7/3} \left(\frac{m_H/m_L}{m_p/m_e}\right)^{1/2} \left(\frac{m_L}{m_e}\right) \lesssim \alpha \lesssim 10^{-2} \left(\frac{m_H/m_L}{m_p/m_e}\right)^{1/2}$$

# A Thought Experiment

- Can't guarantee that dark scientists would hit on the right answer.
  - But they can learn that baryons must be multicomponent, strongly interacting, with a complicated cooling history involving relativistic particles.





- So, let's ask: if we're studying the dark matter particle physics...
  - ...what can astrophysics do for us?

#### Particle Physics from Astrophysics

- Not a novel idea we constrain dark matter models with astrophysics all the time.
- Sterile neutrinos:
  - Warm dark matter free-streams out of small structures in the early Universe.
- Self-Interacting Dark Matter:
  - Bullet Cluster, tri-axiality of halos, etc limit  $\sigma/m_{\chi}$



#### Particle Physics from Astrophysics

- So what's new?
- On the astrophysics side:
  - New big-data surveys and observatories: SDSS, DES, GAIA, LSST,...
    JWST....
  - New dwarf galaxies, gravitational lensing, stellar kinematics, galaxy surveys, galaxy evolution from high-z to today,...
- On the theoretical physics side:
  - A recognition that WIMPs are not the end-all-be all
  - A need for new data to narrow down the possibilities

## The Goal

- Use astrophysical probes of the structure of dark matter to constrain the *particle physics* of the dark sector.
- Compare to "pure" cold dark matter — gravity-only interactions
  - Predicts a primordial power spectrum of dark matter structure that extends down to arbitrarily small scales.
  - This is perhaps the key prediction of cold dark matter.



## Views of Dark Matter

- Particle physicists and astrophysicists speak different languages:
- Dark matter as a particle physicist problem:
  - What is its mass?
  - Its interactions?
  - How does it fit into some larger model?



## Views of Dark Matter

- Particle physicists and astrophysicists speak different languages:
- Dark matter as an astrophysicist problem:
  - How is it distributed in the Universe?
  - Is our cosmology correct?
  - Are we modeling galaxies correctly?
- Not always clear how a particle model of dark matter fits into this



## A Common Language

- A parameter space that captures important phenomenology for both particle physics and astrophysics.
- Particle Physics parameter: strength of interaction with the Standard Model

 $\Lambda^{-1} \equiv \lambda^2 / 4\pi M$ 

• Astrophysics parameter: the mass of a dark matter halo at which a deviation from pure CDM occurs  $M_{\rm halo}$ 



Buckley & Peter 1712.06615

### Example: Axions

All phenomenology controlled by a single parameter,  $f_a$ 

14

12

$$\Lambda^{-1} \sim \frac{e^2}{4\pi f_a} \sim 10^{-(11-15)} \text{ GeV}^{-1}$$

Or could be axion-like, suppressing ulletinteractions even further (AI Ps or

CIC



v [Mpc/h]

v [Mpc/h



10 y [Mpc/h] Halos n possible "nugge 4  $M_{\rm halo} = 1$ 

fuzzy

## The Crisis at Small Scales

- There are already indications of deviations from pure CDM:  $M_{\rm halo} \sim 10^{8-11} \, M_{\odot}$ 
  - Missing Satellites
  - "Too Big to Fail"
  - cusp/core
- Has driven model-building that alter halos at these scales



### Lessons from a Crisis

- CDM predictions were derived from dark-matter only simulations
- But baryons can have an important effect on the structure of halos at exactly the scales where the deviations appear.
  - May solve the "Crisis."
- Take-away: we need to know the predictions of CDM+ baryons if we are to use astrophysics to discover particle physics.



### Astrophysical Opportunities



Buckley & Peter 1712.06615

## Opportunities from Gaia

- My current obsession
  - 1.4 billion stars, mas/yr accuracy
  - A huge data set with lots to say about Galactic structure



#### Local Dark Matter Structure

- The Milky Way was built hierarchically from smaller subhalos over cosmological time.
- Relics of these mergers are still apparent in the stellar velocity distributions.
- This impacts direct detection experiments, but what if we can use this data to get at the Galaxy's merger history? What can we learn about distribution of  $M_{\rm halo}$



Necib *et al* 1807.02519

## Dark Matter Streams

- Dark matter substructure forms streams as it is tidally disrupted
- Again, implications for direct detection.
- Gaps in the streams can indicate dark matter substructure



But can we learn about the number and structure of these objects as they are tidally stripped? Or afterwards?

## Collapsing Dark Matter

- CDM subhalos are expected to be tidally disrupted this close to the Milky Way disk.
  - So we haven't looked for them
  - Can we develop a dark matter model which makes denser subhalos that would survive close to a galaxy?
  - Without modifying the bigger halos.
- That is: get small halos to cool and collapse, while keeping the big halos untouched.



## Like Baryons, but Dark

- Baryons in Milky Way-mass galaxies (  $M_{\rm halo} \sim 10^{12} \, M_{\odot}$  ) cool and collapse
- Baryons in galaxy clusters don't the virial temperature is too large
- In a simple model, we found a range of parameters that would allow small dark matter halos to collapse, leaving large ones intact.



### Astrophysical Opportunities

- Dark matter is new physics.
  - We theorists just need a hint as to what kind of new physics
  - Astrophysicists need to know what to look for.
- Gravity has been the key to dark matter
  - It has a lot more to tell us



Buckley & Peter 1712.06615