Direct Detection of Low-Mass Dark Matter

S. Hertel (U. Massachusetts, Amherst) Dark Interactions: Perspectives from Theory and Experiment Brookhaven National Laboratory October 2, 2018

Caveats/Apologies

-for many topics, I am not nearly the expert in this room

-many biases in what I think is important

-not educated enough to give an intelligent talk on ultralight DM

the low-mass direct detection game:

find material excitations that

are efficiently produced by recoils

efficiently propagate to sensors

find sensors that

efficiently detect excitations

don't produce false signals

exposure is `easy' in this regime

Reason 1

all rates are interesting

exposure is `easy' in this regime

Reason 2

Rate per kg

- ~ DM number density
- ~ [DM particle mass]⁻¹

exposure→threshold

nuclear recoils are increasingly poor at accepting recoil energy

threshold, threshold, threshold, and target mass

lower momentum-per-energy excitations to the rescue

enable sensitivity to low-mass DM, typically with significant suppression

electron targets: two kinematic benefits

- 1) lower target mass (of course)
- 2) not at rest (wide range of initial momentum states)

probability of high-efficiency recoil: highly dependent on electron momentum distribution.

The promise:

arXiv:1503.01200

If we believe naive scaling laws... meV thresholds (on macroscopic absorbers) appear possible.

This sensor can observe a wide variety of excitations from a wide variety of target materials.

The challenge:

Do the sensor scaling laws actually hold up, particularly with temperature?

What new low-energy material processes will we discover?

Thermal Athermal -technically simpler -technically harder -fewer sensors per area -more sensors per area -less sensitive to interface variation -more sensitive to interface variation -slow timescales (order-ms) -faster timescales (order-µs) -less information -more information Al quasiparticle Sensor diffusion phonon phonons -> heat diffusion Sensor Absorber excitation excitation target

in both cases: key design goal is to match sensor bandwidth to signal timescales

large-area calorimetry: a universal sensor photo gallery of some thermal or quasi-thermal detectors

sensor: TES

sensor: KID

sensor: NTD

highly athermal design (ala cdms)

State of the Field

	resolution [eV]								
ZUTOLAIK				₩, 10~ 41.0111K		10 ⁻¹	10 ⁰	10 ¹	10 ²
J. Rothe JLTP 18 Pyle et al	12.6 45.6	4.1 3.5	O(1) 0.06	TES W, Tc~10-15mK TES	active area [cm ²				
								CUPID G	LDER
CUPID 1704.01758	4.9	7.6	6.4	NTD TES					
								DEFSST	
							Ο		
CALDER 1801.08403	4.0	26	0.8	MKID AI/Ti/AI	10 ²		scaling pre scaling 1503 arXiv 1503	diction 0.01200 0.01200	018
	Area [cm²]	Baseline Resolution [eV]	Falltime [ms]	Sensor Type					

signals, one by one

assuming you can sense electron excitations well...

The primary question is: what is the energy of an electronic signal quantum? The secondary question: what [p,E] states are available, both initial and final?

Sensing single semiconductor e-h pairs: a solved problem!

Sensing single semiconductor e-h pairs: a solved problem!

4k x 1k : 0.5g

10x10x4 mm : 1g

Sensing single semiconductor e-h pairs: a solved problem!

Sensing single semiconductor e-h pairs: a solved problem!

doing the same thing via photons.... why bother?

-easier to scale mass to kg or even ton-scale

arXiv:1607.01009, 1802.09171

-No need to apply potential energies to the target (potential for even lower dark counts)

photon sensor goals:

photon-counting 4pi coverage efficiency ~1 dark count ~0

crystal goals:

low band-gap (CsI: 6eV, GaAs: 1.5eV) photon energy just under that (GaAs: 1.3eV) high quantum efficiency (GaAs: 60%) low dark counts (GaAs: so far so good)

What electron excitations are available below the eV scale?

1-100 meV gap energies for 1-100 keV dark matter: a couple of the several ideas

superconductors 1512.04533	semi-metals (meV-gap semiconductors) 1708.08929
Al: 0.6meV gap	ZrTe5: few-meV gap, tunable by doping
calorimetric readout (either of quasiparticles directly, or of phonons from qp decay)	readout unclear, most promising idea is a FET-like resistance change
alternative: qp-counting via qubit	
requires significant R&D	

elephant in the room: what does the dark count do for meV-scale excitations?

- typically, less energy than electron recoil case (unless taking advantage of low-momentum-per-E states)
- typically, low or no energy in the electronic signal quanta (plus side: no need to argue about 'quenching' anymore...)

Generic two-pillar strategy:

1: use excitations of low momentum-per-E

(low-mass nucleus or lowmomentum phonon states)

2: push calorimetry threshold as low as possible

(pull energy into calorimeter, match sensor and signal timescales, push Tc down, shrink all heat capacities)

crystal target

1: use excitations of low momentum-per-E

(low-mass nucleus or lowmomentum phonon states)

2: push calorimetry threshold as low as possible

(pull energy into calorimeter, match sensor and signal timescales, push Tc down, shrink all heat capacities)

superfluid 4He target mass

Two-pillar strategy:

1: use excitations of low momentum-per-E

(low-mass nucleus or lowmomentum phonon states)

2: push calorimetry threshold as low as possible

plus some other good ideas if you can:

3: distinguishable 'flavors' of meV-scale excitations

phonons, R-, R+

(differ in velocity and transmission)

4: amplification of signal before reaching calorimeter

phonon

- -> free atom (quantum evaporation)
 - -> electrostatic attraction (gain: x10-40)

superfluid

summary points

keV-MeV mass range

meV-to-eV threshold requirements gram (or even smaller) target masses can be world-leading useful diverse ideas, very fun for an experimentalist

electron recoils

can benefit from electron momentum in bound-state counting semiconductor e-h pairs: now ready to scale up counting photons: R&D done, now ready for first exposure meV-scale excitations: some good ideas, time to be doing this R&D

nuclear recoils

can benefit from optical phonon modes and other low-momentum states great progress on calorimeter threshold in recent years continuity with existing NR approaches, plus new phonon modes