Anson Hook UMD

W. DeRocco, AH : 1802.10093

Strong CP Problem

Axions are the simplest and most minimal solution to the Strong CP problem

Classical Strong CP problem

Neutron contains an up quark and two down quarks

Classical Strong CP problem

Electric Dipole moment

 $d_n = qx$ $\frac{1}{3}$ 2 U D 3

Expected Dipole moment

$$|d_n| \approx ex\sqrt{1 - \cos\theta}$$

 $\approx 10^{-14} e\sqrt{1 - \cos\theta} \text{ cm}$

Measured EDM

$$|d_n| \approx ex\sqrt{1 - \cos\theta}$$

 $\approx 10^{-14} e\sqrt{1 - \cos\theta} \text{ cm}$

 $|d_n| < 2.9 \times 10^{-26} \, e \, \mathrm{cm}$

Baker et. al. hep-ex/0602020 : Institut Laue-Langevin, Grenoble

Classical Strong CP problem

Measurement indicates a small theta

 $\theta < 10^{-12}$

Must be a reason!

Strong CP Problem

Axion solution is the same solution as why carbon dioxide lives on a line

Angle is dynamical and relaxes to minimum

Strong CP Problem

- Axions are the simplest and most minimal solution to the Strong CP problem
- Solves a problem and can be dark matter
- Axion dark matter obtains its number abundance through the misalignment mechanism
 - Produces cold dark matter regardless how light the axion is

- If it is dark matter, how can we look for it?
- The axion is a classical field due to large number abundance
 - If mass is less than eV, then many particles per Compton wavelength

$$\phi(x,t) = \sum \frac{1}{l^{3/2}} \frac{1}{\sqrt{2\omega_n}} (a_n e^{ip \cdot x} + a_n^{\dagger} e^{-ip \cdot x})$$

- First treat dark matter as a particle in a box
- Take velocity profile of dark matter from simulation and find the quantum state that reproduces it
 - Isothermal Profile

$$\rho = \int d^3 v f(v) \omega_v \overline{n}$$

Just like how a laser has Poisson statistics for number of photons, Axion state also has Poisson statistics for number of axions

$$N_n = \left(\frac{2\pi}{m}\right)^3 f(v_n)\overline{n}$$

$$\mid N \rangle = \alpha e^{\sqrt{N_n} a_n^{\dagger}} \mid 0 \rangle$$

$$\phi(t) = \frac{\sqrt{\rho}}{m} \sum_{i_r} \alpha_r \sqrt{f_r 4\pi v^2 \Delta v} \cos\left(\omega_r t + \phi_r\right)$$

Crank through and calculate a(t) in this background

Sum of many sines with random phases

Basically the square root of an integral

Qualitative Features

 Axion acts like a cosine function over distance scales

 $L \sim \frac{1}{m_a v}$

Afterwards amplitude and phase randomly scrambled

• Coherence length of order de Broglie wavelength

Qualitative Features

 Axion acts like a cosine function over time scales

Afterwards amplitude and phase randomly scrambled

Coherence time is large

Qualitative Features

- Frequency of the axion sine wave $\omega \sim m_a \pm 10^{-6} m_a$
- Thus the quality factor of axion dark matter is very large

$$Q = \frac{1}{\omega\tau} \sim 10^6$$

Looking for the axion

 $\mathcal{L} \supset \frac{a}{4f} F\tilde{F}$

- Looking for the axion through the coupling to gluons is HARD
 - Very few experiments can reach the QCD axion line
- Instead look for the axion through its coupling with the photon

DISCLAIMER

- QCD Axion
 - Solves the Strong CP problem
 - Couples to photons and gluons and fermion spin
- ALP (Axion like particles)
 - Does NOT solve the Strong CP problem
 - Couples to photons and/or fermion spin
- Axions
 - Can be either
 - Figure it out from context

Effect of photon coupling

$$\mathcal{L} \supset \frac{a}{4f} F\tilde{F}$$

 $v_{\rm phase} \approx 1 \pm \frac{\dot{a}}{2kf}$

For circularly polarized light

$$-\omega^2 + k^2 \mp \frac{da}{dt}\frac{k}{f} = 0$$

Effect of photon coupling

$$v_{\rm phase} \approx 1 \pm \frac{a}{2kf}$$

- Phase velocity of circularly polarized light is different depending on which polarization it is
- Device most sensitive to differences in phase velocities is an interferometer

Axion interferometry

- One-to-one mapping between axion interferometry and gravity wave interferometry
- An axion interferometer can double as a gravity wave detector
- Axion dark matter appears in the same manner as a continuous gravity wave signal with a quality factor of 10⁶

Gravity wave interferometry

Mirror

Consider a plus polarized gravity wave incident perpendicular to the interferometer

Mirror

Axion interferometry

- Only difference is the presence of wave plates
- Needed to maintain polarization

Axion wave

1011111

Mirror

No Axion DM

Exactly the same as a gravity wave interferometer

Experiment doubles as a gravity wave detector

No need to send the legs in different directions otherwise

Resonant interferometry

Resonant Detector instead!

Resonant interferometry

1. Optimal Length is as expected $L = \lambda_g/2$

2. Resonant detector

Mirror

Detector

Same Mapping as before Otherwise identical to Gravity wave detector

Parameters

- What are reasonable parameters?
 - Similar to gravity wave interferometers : Maybe do as part of setting up and testing a gravity wave interferometer
 - Cost is all in man power
- Assumption : Shot noise and radiation noise limit until 10 Hz where seismic noise becomes an issue
 - 40 m arm length
 - 10 kg mirror
 - 30 days run time : factor of 3 worse limits if you run for 6 hours

Seismic Noise becomes an issue

 Large Finesse/power not needed to probe new regions of parameter space!

- If detector is dedicated to an axion search and not gravity wave search, can do better!
- Radiation pressure can be mitigated if same mirror is used for both arms!

Radiation Pressure replaced by Radiation Torque

10 kg mirror 10 cm diameter 1 cm between beams Red: 1 MW power Black: 1 kW power Dotted : $F = 10^6$ Solid : $F = 10^{2}$

Conclusion

- Axion dark matter changes the phase velocity of circularly polarized light
- Can look for this effect in an interferometer
- Can extend bounds by up to 2-3 orders of magnitude over some range of parameters
- Do not need the newest fanciest technology
 - Need to make sure that birefringent backgrounds are under control!