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Strong CP Problem

Axions are the simplest and most minimal 
solution to the Strong CP problem



Classical Strong CP 
problem

Neutron contains an up quark and two down 
quarks
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Electric Dipole moment
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Strong CP Problem

Axion solution is the same solution as why 
carbon dioxide lives on a line 

Angle is dynamical and relaxes to minimum

CO O

CO
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Strong CP Problem

• Axions are the simplest and most minimal 
solution to the Strong CP problem 

• Solves a problem and can be dark matter 

• Axion dark matter obtains its number 
abundance through the misalignment 
mechanism 

• Produces cold dark matter regardless how light the axion is



Axion dark matter

• If it is dark matter, how can we look for it?  

• The axion is a classical field due to large 
number abundance 

• If mass is less than eV, then many particles per Compton 
wavelength



Axion dark matter

• First treat dark matter as a particle in a box 

• Take velocity profile of dark matter from 
simulation and find the quantum state that 
reproduces it 

• Isothermal Profile

�(x, t) =
X 1

l3/2
1p
2!n

(ane
ip·x + a†ne

�ip·x)



Axion dark matter

Just like how a laser has Poisson statistics for 
number of photons, Axion state also has 
Poisson statistics for number of axions

⇢ =

Z
d3vf(v)!vn
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Calculating a(t) for the axion Notes

Anson Hook

Our goal is to get an expression for �(t) assuming that the distribution of energies/velocities of the particles of
�(t) is known. In order to know the velocities, the positions are completely unknown by the uncertainty principle.
Thus we will consider a theory at finite volume.

At finite volume, the Hamiltonian is
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treat a and a
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Let us first express Nn in terms of the distribution of particles in phase space. Lets place our experiment at
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Axion dark matter

Crank through and calculate a(t) in this 
background 

Sum of many sines with random phases 

Basically the square root of an integral

�(t) =

p
⇢

m

X

ir

↵r

p
fr4⇡v2�v cos (!rt+ �r)



Axion dark matter
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Qualitative Features

• Axion acts like a cosine function over 
distance scales 

L ⇠ 1

mav

Afterwards amplitude and phase randomly 
scrambled

• Coherence length of order de Broglie 
wavelength



Qualitative Features

• Axion acts like a cosine function over time 
scales 

Afterwards amplitude and phase randomly 
scrambled

• Coherence time is large

⌧ ⇠ 1

mav2



Qualitative Features

• Frequency of the axion sine wave

! ⇠ ma ± 10�6ma

Q =
1

!⌧
⇠ 106

• Thus the quality factor of axion dark matter 
is very large



Looking for the axion

L � a

4f
F F̃

• Looking for the axion through the coupling 
to gluons is HARD 

• Very few experiments can reach the QCD axion line 

• Instead look for the axion through its 
coupling with the photon



DISCLAIMER

• QCD Axion 
• Solves the Strong CP problem 

• Couples to photons and gluons and fermion spin 

• ALP (Axion like particles) 
• Does NOT solve the Strong CP problem 

• Couples to photons and/or fermion spin 

• Axions 
• Can be either 

• Figure it out from context



Effect of photon coupling

L � a

4f
F F̃
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We propose using interferometry of circularly polarized light as a mechanism by which to test for
axion dark matter. These interferometers di↵er from standard interferometers only by the addition
of a few quarter waveplates to preserve the polarization of light upon reflection. We show that using
current technology, interferometers can probe new regions of axion parameter space up to a couple
orders of magnitude beyond current constraints.

I. INTRODUCTION

One of the leading candidates for dark matter (DM) is
a light pseudo-scalar derivatively coupled to the Standard
Model (SM). The most well-known example of such a
candidate is the QCD axion [1–4]. The axion can have a
multitude of di↵erent couplings to the SM. The coupling
that produces the e↵ect of interest in this article is

L � a

4f
F F̃ (1)

which is the axion coupling to photons. While in the
simplest models of the QCD axion, the axion-photon cou-
pling is a function of the axion mass, there exist models
where the coupling to photons is a free parameter (i.e. f
is independent of ma) [5, 6]. We consider axions, which
do not necessarily have to be the QCD axion, where f
and ma are independent of each other. These generalized
axions are sometimes called axion-like particles (ALPs).
There are many proposals for experiments to look for
axions and ALPs. See Refs. [7–13] for a small subset of
these proposals.

In the presence of ALP dark matter, the coupling
shown in Eq. 1 generates a di↵erence in phase velocity be-
tween right and left circularly polarized light. This e↵ect
is often equivalently stated as the fact that a background
axion field causes the polarization angle of linearly po-
larized light to slowly rotate. The dispersion relation of
a beam of circularly polarized light (A±) is

�!2 + k2 ⌥ da

dt

k

f
= 0 (2)

Thus the phase velocity of left and right polarized light
is

vphase ⇡ 1± ȧ

2kf
(3)

As the e↵ect of axion dark matter is to change the
phase velocity of circularly polarized light, the natural
experiment to build is an interferometer where one arm
has left circularly polarized light while the other arm has
right polarized light. Axion DM would produce a di↵er-
ence in phase velocity between the two arms, generating
an interference pattern.

II. MAPPING BETWEEN GRAVITATIONAL

WAVES AND AXION DM

If the light in the interferometer is circularly polarized,
there is an exact mapping between the e↵ects of axions
and gravitational waves. Therefore all of the literature
on gravitational wave interferometry can be imported di-
rectly into axion interferometry.
To map between gravitational waves and axions, we

compare an axion interferometer with left and right po-
larized light respectively in each of the two arms with a
gravitational wave interferometer with arms along the x
and y directions subject to a + polarized gravitational
wave propagating along the z-axis. Since the velocity of
dark matter is small (v ⇠ 10�3), the length of the inter-
ferometer is ⌧ 1/mav, so it is safe to neglect the e↵ect
of the spatial gradients of the axion field. The equivalent
GW propagates along the z-axis because this maps to
the situation of having negligible spatial gradients in the
axion DM.
To map between the amplitude of the gravitational

wave h0 and the e↵ect of the axion DM, we note that
the axion field behaves as a classical field due to its large
occupation number. The axion field is approximately

a(t) = a0 cos(mat+ kaz). (4)

Using the dispersion relation and neglecting spatial gra-
dients, this gives us an e↵ective path length of

L ,� =

Z t0+⌧

t0

1± maa0
2f!

cos(mat) dt (5)

Comparison to the standard formula for path length in
the case of gravitational waves [14]

Lx,y =

Z t0+⌧

t0

1± 1

2
h0 cos(!gt) dt (6)

shows that the correct mapping between the two scenar-
ios is

h0 ! maa0
f!

=

p
2⇢DM

!f
!g ! ma (7)

• For circularly polarized light
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Effect of photon coupling

• Phase velocity of circularly polarized light is 
different depending on which polarization it 
is 

• Device most sensitive to differences in 
phase velocities is an interferometer
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Axion interferometry

• One-to-one mapping between axion 
interferometry and gravity wave interferometry 

• An axion interferometer can double as a gravity 
wave detector 

• Axion dark matter appears in the same manner 
as a continuous gravity wave signal with a 
quality factor of 106



Gravity wave interferometry
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Consider a plus polarized 
gravity wave incident 
perpendicular to the 

interferometer



Axion interferometry

Equivalent Axion 
interferometer involves 
adding 4 waveplates
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Axion interferometry
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Left Polarized Light

Right Polarized Light

Equivalent Axion 
interferometer involves 
adding 4 waveplates



Axion wave

• Only difference is the presence of wave plates 

• Needed to maintain polarization



Axion wave

M
irror

M
irror
1/4

M
irror

Mirror

M
irror



No Axion DM

Exactly the same as a gravity wave 
interferometer

Experiment doubles as a gravity 
wave detector

No need to send the legs in different 
directions otherwise



Resonant interferometry

What happens if you don’t 
add in the extra wave 

plates?
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M
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Resonant Detector instead!
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Detector

M
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Mirror

Not to scale

Resonant interferometry



1. Optimal Length is as expected 

2. Resonant detector

L = �g/2

ωg

Δϕ

Resonant interferometry



Fabry-Perot
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Axion Interferometer
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The axion equivalent of a 
standard interferometer (still acts 

like a gravity wave detector) 

Add 5 wave plates



Axion Interferometer

Same Mapping as before 

Otherwise identical to Gravity 
wave detector



Parameters

• What are reasonable parameters? 
• Similar to gravity wave interferometers : Maybe do as part of 

setting up and testing a gravity wave interferometer 

• Cost is all in man power 

• Assumption : Shot noise and radiation 
noise limit until 10 Hz where seismic noise 
becomes an issue 

• 40 m arm length 

• 10 kg mirror 

• 30 days run time : factor of 3 worse limits if you run for 6 hours
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FIG. 3: A diagram of our proposed axion interferometer
where the same mirrors are used to form both cavities. The
dotted line is linearly polarized light, the red line is  polar-
ized light and the blue line is � polarized light. Two quarter
waveplates and a half waveplate are used to maintain the
circular polarization of the light. This setup cancels the radi-
ation pressure noise associated with the displacement of the
mirror, leaving only noise due to radiation torque. Torque
noise in this setup can be several orders of magnitude smaller
than the radiation pressure noise experienced by the setup in
Fig. 2.

the arms do not need to be perpendicular to each other
and could be run using the same mirrors for both cavities
to reduce noise. This improved version of the interferom-
eter is shown diagrammatically in Fig. 3.

Since our proposed experiment requires the addition of
various waveplates, the waveplates must be assessed for
potential sources of systematic error. One e↵ect is that
the waveplates are not perfect. Losses in the waveplates
and increased thermal noise due to absorption will likely
limit the highest possible finesse achievable within a cav-
ity. As such, we choose to display the reach of axion
interferometers using finesses of both the easily realiz-
able 102 and the much more speculative 106, which is
the highest finesse that current cavities can attain in the
absence of any waveplates [17].

Another possible source of noise is due to birefringent
e↵ects coming from reflecting o↵ of these polarization-
preserving mirrors. Previous experiments have mainly
focused on controlling birefringent e↵ects in the context
of linearly polarized light [18, 19]. It will be an experi-
mental question whether or not these e↵ects can be suf-
ficiently suppressed as to be a subdominant source of
noise.

IV. PARAMETER SPACE PROBED BY AXION

INTERFEROMETERS

In this section, we calculate the reach of an axion inter-
ferometer assuming that noise from the waveplates have
been mitigated such that we are at the standard quantum
limit (SQL) as is the case in LIGO and the Holometer for
a range of frequencies. Under this assumption, the data
analysis is identical to that of a continuous gravitational
wave detector. The standard SQL signal-to-noise ratio
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FIG. 4: The reach of an axion interferometer in ga�� = 1/f
as a function of mass. We cut o↵ the plot at frequencies of
roughly 10 Hz where there start to be unavoidable sources
of noise stemming from gravity gradient and seismic noise.
The plot was made assuming a 40 m long interferometer and
10 kg mirrors. The solid (dotted) line shows F = 102 (F =
106). The black (red) line assumes a power of 1 kW (1 MW)
circulating inside the Fabry-Perot cavities. Bounds placed by
CAST are shown in blue [20].

(SNR) [14] is

SNR =
h0

S1/2
SQL

(T ⌧)
1
4 (8)

where T is the observation time, ⌧ is the coherence time
of the axion field (= 2⇡

mav2 ) and h0 is given by Eq. 7. The

T
1
4 dependence is due to the fact that the axion field

is only coherent on a timescale ⌧ ⇠ (mav2)�1, so the
sensitivity of the experiment increases as

p
T up until

the coherence time, then as T
1
4 .

The SQL is a combination of shot noise and radiation
pressure noise, SSQL = Sshot + Sradiation. The shot noise
is

S1/2
shot =

1

4L

r
2�

⇡P0

sin�0

sin 2�0

p
1 + r2 � 2r cos 2maL (9)

where P0 is the power incident on the beam-splitter, � is
the wavelength of laser light, �0 is how far o↵ of the dark
spot the interferometer is tuned to, L is the length of the
cavity, and r is the reflectivity of the mirror closer to the
beam-splitter (the reflectivity of the further mirror in a
cavity is taken to be 1). The radiation pressure noise is

Sradiation =
16F

MLm2
a

r
P

⇡�

maL

sinmaL

1� r2

2
p
1 + r2 � 2r cos 2maL

where M is the mass of the mirror and F is the finesse of
a cavity (r ⇡ 1� ⇡

F ).
This noise can be reduced by running the interferom-

eter in the configuration shown in Fig. 3. Since both
cavities are now formed by the same mirrors, any change
in the displacement of the mirror occurs equally in both

Axion Interferometer

Seismic Noise becomes an issue

Red : 1 MW power 

Black : 1 kW power 

Dotted : F = 106 

Solid : F = 102



Axion Interferometer

• Large Finesse/power not needed to probe 
new regions of parameter space!



Axion Interferometer

• If detector is dedicated to an axion search 
and not gravity wave search, can do better! 

• Radiation pressure can be mitigated if 
same mirror is used for both arms!
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FIG. 5: Same as Fig. 4 but using the configuration shown
in Fig. 3. Radiation pressure noise is cancelled leaving only
radiation torque noise. We take the beams to be separated
by 1 cm and the mirror to be circular and 10 cm in diameter.

cavities, hence the overall displacement noise due to ra-
diation pressure is cancelled. What remains is radiation
torque noise, which arises when fluctuations in power be-
tween the two beams cause a torque on the mirror, lead-
ing to slightly di↵erent path-lengths for the two beams.
This noise is then given by

Sradiation torque =
Mr2

I
Sradiation (10)

where r is the distance between a beam and the center of
a mirror and I is the moment of inertia of the mirror. By
reducing r, the noise from radiation torque can be made
to be several orders of magnitude smaller than the usual
radiation pressure noise.

To compute the reach shown in Fig. 4 and Fig. 5, we
set SNR = 1 and solve for f as a function of ma. The
dominant experimental constraint is the power contained
within the cavity, which is given by ( 2⇡ )P0F . The inci-
dent power and finesse must be chosen such that this
quantity does not exceed hundreds of kW, which is the
maximal power that can be currently contained within
a cavity [17]. For this reason, one cannot increase P0

arbitrarily without a corresponding reduction in finesse.
Fig. 4 (Fig. 5) was made taking L = 40 m using the

design shown in Fig. 2 (Fig. 3). Solid (dotted) lines have
a finesse of 102 (106). We took a standard 1064 nm laser,
�0 = ⇡/4, M = 10 kg, and T = 30 days. As one of the
limiting factors is the power stored in the cavity, we show
exclusions in black (red) using the reasonable (futuristic)
value of 1 kW (1 MW) of power stored in the cavity.

The general shape of the reach curves can be under-
stood as follows. At low frequencies, the reach curves
weaken due to radiation pressure noise. At high frequen-
cies, a given reach curve has two di↵erent slopes in dif-
ferent regimes of the axion mass. The first, more gradual
weakening of the reach curve comes from the change in
the coherence time as the mass increases. The second,
steeper slope occurs when the axion field is fluctuating

on time-scales comparable to or shorter than the trapping
time of the cavity. The phase shift begins to be averaged
out since the light is trapped for greater than one half-
period of the axion field. A longer trapping time (equiva-
lently a longer e↵ective arm length) therefore means that
the interferometer starts losing sensitivity at higher axion
masses.

An interesting aspect of this experimental design is
that interferometers with larger e↵ective arm length do
not necessarily probe more of parameter space than in-
terferometers with smaller e↵ective arm length. As can
be seen from the figures, interferometers with di↵erent
finesses probe di↵erent regions of parameter space. The
reason for this di↵erence is that, as mentioned before,
larger finesse cavities require lower power input lasers.
Lower power on the beam splitter results in larger noise
that can degrade sensitivity. Therefore axion interferom-
eters of di↵erent finesses and laser powers can comple-
ment each other to better cover parameter space.

It is worth noting that unlike a gravitational wave de-
tector, the reach of an axion interferometer improves for
decreasing !. This is due to the inverse !-dependence
of h0, which is not present in the case of gravitational
waves. Though the fact that longer wavelengths of light
are preferred might suggest that the experiment should
attempt to use the longest wavelengths possible, the as-
sumption of shot noise limitation is no longer valid for
wavelengths much longer than those of visible light due
to the inability to detect single low energy photons. This
makes experimental control of noise significantly more
di�cult at longer wavelengths and weakens the potential
sensitivity. Optimistically, if future advances in Tran-
sition Edge Sensors [21] and/or Microwave Kinetic In-
ductance Devices [22] allow for the use of a meV scale
standard quantum limited maser, then the reach would
be improved by a factor of ⇠ 30.

V. CONCLUSION

In this article, we proposed an interferometer-based
search strategy for ALP dark matter. Because there is
a direct mapping between gravitational wave interferom-
eters and axion interferometers, much of the technology
developed for interferometry applies equally well to axion
detection. The only technical di↵erence is the addition
of quarter waveplates to preserve the polarization of the
light. If an experiment of this sort were to be undertaken,
it would be able to push beyond current constraints on
ALPs by several orders of magnitude for reasonable re-
gions of parameter space. Once the ALP mass is known,
other designs such as resonant gravity wave interferome-
ters [23, 24] could be transformed into axion interferom-
eters and used as well.
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Conclusion

• Axion dark matter changes the phase 
velocity of circularly polarized light 

• Can look for this effect in an interferometer 

• Can extend bounds by up to 2-3 orders of 
magnitude over some range of parameters 

• Do not need the newest fanciest 
technology  

• Need to make sure that birefringent backgrounds are under 
control!


