Latest Results from MiniBooNE

R. T. Thornton

On behalf of the MiniBooNE-DM Collaboration

For more information see:

Dark Matter Search in Nucleon, Pion, and Electron Channels from a Proton Beam Dump with MiniBooNE

arXiv:1807.06137 – submitted to PRD

Current Direct Detection Limits

Current Direct Detection Limits

Use Accelerators To Increase Sensitivity to Lower Masses

Resonance signal, rate gives coupling information

Complementary to DM searches

NATIONAL LABORATORY

- EST. 1943

Production of Dark Matter

Dark Matter Interactions

The MiniBooNE Detector

- Cherenkov/Scintillation Detector
- 1280 inner, 240 veto PMTS
- Veto region helps reject backgrounds coming from the outside
- Designed to test LSND neutrino oscillation excess
- Has been running since 2002

Long strait tracks
 → Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - → Scattered fuzzy rings

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

NC elastic scattering

No Cherenkov radiation
 → Isotropic scintillation hits

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - → Scattered fuzzy rings

 $\langle \cdot \rangle$

Neutral pions

- Decays to 2 photons
 - \rightarrow Double fuzzy rings

NC elastic scattering

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

EST. 1943

- Long strait tracks
 - \rightarrow Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

Los Alamos

EST. 1943

- Decays to 2 photons
 → Double fuzzy rings
- NC elastic scattering
- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

- Long strait tracks
 - → Sharp clear rings

Electrons

- Multiple scattering
- Radiative processes
 - \rightarrow Scattered fuzzy rings

Neutral pions

LOS Alamos

NATIONAL LABORATORY

EST. 1943

- Decays to 2 photons
 - \rightarrow Double fuzzy rings.

NC elastic scattering

- No Cherenkov radiation
 - \rightarrow Isotropic scintillation hits

Booster Neutrino Beamline

 17 V/POT imes 10⁻¹⁷

os Alamos

DI2018

NATIONAL LABORATORY

EST. 1943

2.0E19 4.0E21 Comissioning Beam Dump Neutrino Antineutrino Accelerator has • 3.0E21 1.5E19 delivered more than 30×10²⁰ proton-on-Cumulative PO1 POT 1.0E19 2.0E21 target (POT) for 3 different modes of 5.0E18 1.0E21 running 0.0E00 0.0E00 12/28/2015 712812003 41512004 12/13/2004 812212005 51112006 11/11/2002 015 91512016 91512018 206/2007/2007/2008/2008/2009/2019/2014/2014/2014/2013/2013/2013/2014/2015 1/8/9/1715/26/2022/2011/2016/2019/2016/2014/2015/2013/2013/2013/2014/2015 Week Neutrin Number of ν • 10² $v/POT = (102.1 \pm 0.1) \times 10^{-17}$ 0.2)×10⁻ v/**POT = (99.7** ± χ^2 /ndf = 840.35/862 Neutrino γ^2 /ndf = 146.09/171 per POT Stable for ν • ⊽/POT = (20.79 ± 0.05)× 10⁻¹⁷ Antineutrino 10 χ^2 /ndf = 815.44/782 Mode after ~8 years apart to $v/POT = (2.00 \pm 0.04) \times 10$ Beam Dump γ^2 /ndf = 101.81/97 within 2% 01/Jan/04 31/Dec/04 31/Dec/05 31/Dec/06 01/Jan/08 31/Dec/08 31/Dec/09 31/Dec/10 01/Jan/12 31/Dec/12 31/Dec/13 31/Dec/14 01/Jan/16 31/Dec/16

New To Nucleon Analysis (Full Nucleon)

Neutral-Current elastic nucleon cut

- Large beam unrelated bkg. (BUB)
- DM at high Q_{QE}^2 has large % of true 1 π^0 sample

- Neutral-Current single π^0 cut
 - Reduced to almost no dirt and BUB
 - Simultaneous fit of NCE and NC π^0 cuts
 - Constrained by v and \bar{v} data

New To Nucleon Analysis (Full Nucleon)

Neutral-Current elastic nucleon cut

- Large beam unrelated bkg. (BUB)
- DM at high Q_{QE}^2 has large % of true 1 π^0 sample

- Neutral-Current single π^0 cut
 - Reduced to almost no dirt and BUB
 - Simultaneous fit of NCE and NC π^0 cuts
 - Constrained by v and \bar{v} data

New To Nucleon Analysis ("Time-of-Flight")

Comparing Time Distributions

Dark matter could come later \Rightarrow Distort timing distribution

Distributions in Fit

- Fit 11 Correlated Distributions
- Bold = in PRL
- Highlighted = Signal Channels

	Neutrino CCQE	Antineutrino CCQE	Off-Target CCQE
	Neutrino NCE	Antineutrino NCE	Off-Target NCE
	Neutrino ${ m NC}\pi^0$	Antineutrino $NC\pi^0$	Off-Target NCπ ⁰
	Off-Target NCE Timing	Off-Target NC π^0 Timing	
Lo	S Alamos		

NATIONAL LABORATORY

EST.1943

Electron Analysis

- Search for v—electron neutral-current like interactions
- Outgoing electrons are very forward ($\cos \theta_e > 0.99$)
- Low Evis cut to remove Beam unrelated bkg.
- Beam related bkg. constrained by $0.9 \le \cos \theta_e < 0.99$
- Statistical only fit in 3D
 - Evis

s Alamos

NATIONAL LABORATORY

- $\cos \theta_e$
- Bunch Time

<u>New</u> 90% Confidence Limits

- No significant excess observed
- Results improved from 2017 PRL (MB Elastic N)
- Set world leading limits
- Sensitivity

.os Alamos

EST. 1943

- Low mass ⇒ Electron
- High mass ⇒ Full N

arxiv:1807:06137
 submitted to PRD

Various Looks

Direct detection

Does not require coupling to leptons

DI2018

NATIONAL LABORATORY

EST.1943

Various Looks (different slices)

DI2018

NATIONAL LABORATORY

EST. 1943

Neutrino Oscillation Analysis

	ν mode	$ar{m{ u}}$ mode	Combined
Data	1959	478	2437
Unconstr. Background	1590.5	398.2	1988.7
Constr.	1577.8	398.7	1976.5
Excess	381.2 ± 85.2 4.5σ	79.3 ± 28.6 2.8σ	460.5 ± 99.0 4.7σ
0.26% (LSND) $ u_{\mu} ightarrow u_{e}$	463.1	100.0	563.1

DI2018

NATIONAL LABORATORY

EST.1943

Neutrino Oscillation Analysis

	ν mode	$ar{m{ u}}$ mode	Combined
Data	1959	478	2437
Unconstr. Background	1590.5	398.2	1988.7
Constr.	1577.8	398.7	1976.5
Excess	381.2 ± 85.2 4.5σ	79.3 ± 28.6 2.8σ	460.5 <u>±</u> 99.0 4.7σ
0.26% (LSND) $ u_{\mu} ightarrow u_{e}$	463.1	100.0	563.1

DI2018

Los Alamos

NATIONAL LABORATORY

0.8

1

1.2

0.6

R. T. Thornton – Latest Results from MiniBooNE

0.2

8.2

0.4

3.0 E_v^{QE} (GeV)

1.4

Checking if Excess Scales with only with POT

- Scale total combined excess to predict how many excess events expected for offtarget running
- Expected 35.5 ± 7.4 excess events between 200 and 1250 MeV
- Measured -2.8 excess events
- Explanations that scale by only by POT instead of neutrino production are ruled out at 4.6σ

Summary

- Can use accelerators to help guide where to look for dark matter
- MiniBooNE/BNB was repurposed for a dark matter search
- First results were published in PRL (Editors Suggestions)
- PiO and Electron searches improved upon the first results (submitted to PRD) – new parameter space excluded
- Off-target run was able to rule out explanations of the oscillation excess that scale solely on number of POT

Extra Slides

Example of an Empirical Exotic Model: An MSW-Like Resonance

DI2018

An MSW-Like Resonance Model

Short Baseline Neutrino Program

DI2018

NATIONAL LABORATORY

- EST.1943 -

Dedicated SBN "Beam-Dump" Target (Expression of Interest to 2017 FNAL PAC)

- A dedicated SBN "beam-dump" target would decrease the ν rate by another factor of 20
- Adding an extra target to the BNB in the dog leg region would allow simultaneous v/beam-dump running

Dedicated SBN "Beam-Dump" Target (Expression of Interest to 2017 FNAL PAC)

- Increase SBN physics output at low cost
- Positive response from FNAL PAC, seeking DOE funding

DI2018

NATIONAL LABORATORY

EST. 1943

New To Nucleon Analysis ("Time-of-Flight")

 $u_{\mu}\, ext{CCQE}_{ ext{Off}}\, ext{Bunch Time (ns)}$

DI2018

LOS Alamos

EST. 1943

DI2018

Alamos

MiniBooNE Result

- Missing Mass/Energy Experiments X
- Direct Detection
 Experiments ×
- Direct Detection from Electron/Proton Beamdumps
- Sensitive to models that weakly couple to leptons ✓

First Results: (quasi-) Elastic Scattering

PRL 118, 221803 (2017) Editors' Suggestion

DI2018

s Alamos

DI2018

Alamos

- Missing Mass/Energy Experiments
- Direct Detection Experiments
- Direct Detection from Electron/Proton Beamdumps
- Sensitive to models that weakly couple to leptons

- Missing Mass/Energy Experiments
- Direct Detection Experiments
- Direct Detection from Electron/Proton Beamdumps
- Sensitive to models that weakly couple to leptons

