Covariance Testing at Oak Ridge National Laboratory

D. Wiarda

M.L. Williams

W. J. Marshall

CSEWG

Brookhaven National Laboratory November 6, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

Introduction

- Covariance processing of ENDF/B-VIII.0 Beta 5
- Differences between ENDF/B-VIII.0 Beta 5 and ENDF/B-VII.1 covariance matrices
- Propagation to k_{eff} values
- C_k (similarity) comparison

SCALE-6.2 covariance library

- The SCALE-6.2 covariance library includes
 - ENDF/B-VII.1 for 187 isotopes; SCALE-6.1 data (mainly lo-fi) retained for ~215 missing nuclides
 - Modified ENDF/B-VII.1 ²³⁹Pu, ²³⁵U nubar and H capture uncertainties; these are prerelease ENDF/VIII.0 rev. 632, 631 and 611
 - Chi uncertainties processed from new ENDF/B-VII.1 file 35
 - Chi uncertainties from JENDL4.0 for ²⁴¹Am, ²⁴²Am, ²⁴³Am, ²⁴⁴Am, ²³⁷Np, ²³¹Pa, ²³³Pa, ²⁴¹Pu, ²³²Th, ²³³U, ²³⁴U, ²³⁶U, ²³⁷U
 - Updated thermal capture values for ²⁵⁵Eu, ¹⁴⁷Pm, ¹⁰³Rh, ¹⁴⁹Sm, ¹⁵¹Sm (to be equal to Atlas values)

SCALE sensitivity tools currently use only the following reactions: 1, 2, 4, 16, 18, 102, 103, 104, 105, 106, 107, 452, 455, 456. Therefore, this presentation concentrates on those reactions. Future libraries will contain all cross section data for use in the CE sampler.

Processing of ENDF/B-VIII.0 Beta 5

- Process the cross section data at 293 K
- Using PUFF and a Maxwellian-1/E-fission-1/E flux, generate the covariance matrices for 56 groups
- Using COGNAC, apply our usual correction (extend uncertainties to lower-energy groups; correct correlation and relative uncertainties that are larger than 1
- Compare with ENDF/VII.1 covariance data (for comparison only; use the cross section data from ENDF/VII.1)
- Make two covariance libraries:
 - Library ENDF/B-VIII.0 Beta 5 Covariance Library contains only data from ENDF/B-VIII.0 Beta 5
 - Library ENDF/B-VIII.0 Beta 5 Covariance Library with SCALE 6.2 contains data from ENDF/B-VIII.0 Beta 5 plus all covariance matrices from the SCALE 6.2 library not already present in ENDF/B-VIII.0 Beta 5

Redundant covariance matrices

If desired, PUFF calculates redundant covariance matrices (and all cross correlations) if they are not given in ENDF

- 452 not given (but 455 and 456): ²⁴²Am^m, ²⁴³Am, ²³⁷Np, ²⁴⁰Pu, ²⁴¹Pu, ²³⁴U, ²³⁶U
- 455 not given (but 452 and 456 and cross section data for 455): ²³⁸Pu, ²³⁹Pu
- 4 not given: ¹²C, ⁵⁵Mn, ²³²Th, ²³⁵U, ²³⁸U, ¹⁸⁰W, ¹⁸²W, ¹⁸³W, ¹⁸⁴W
- 1 not given for 37 nuclides

SCALE does not use 1 directly. Only SAMPLER uses 455 and 456.

Covariance with substantial differences

Comparing ENDF/VII.0 and ENDF/VIII.0 Beta 5, the following covariance matrices show large differences in at least one energy range:

- ¹⁰B (elastic, n-alpha), ¹⁶O (elastic, n-alpha), ⁵⁶Fe (elastic, n-n', capture, n-p), ¹⁸²W (elastic, capture), ¹⁸³W (elastic), ¹⁸⁴W (elastic, capture), ¹⁸⁶W (elastic, capture), ¹⁹⁷Au (capture), ²³³U (nubar [prompt, delayed, and total], fission, capture, elastic), ²³⁵U (total nubar, elastic, fission, capture), ²³⁸U (fission, total nubar, elastic, capture), ²³⁹Pu (total nubar, fission, elastic, capture), ²⁴⁰Pu (elastic), ²H (elastic), ¹H (elastic, capture)
- ¹⁰³Rh, 147Pm, ¹⁴⁹Sm, 151Sm, ¹⁵⁵Eu were changed by ORNL to be consistent with ATLAS values in thermal range

SCALE also uses ¹H uncertainty in the thermal region of ¹H bound in H_2O and other moderators with ¹H as the major scatterer

CAK RIDGE

7 Covariance Testing at Oak Ridge National Laboratory

¹H changes

²³⁹Pu nubar changes

Pu-239 total nubar 452

U-235 total nubar (452)

In the resolved range, there is a covariance matrix from resonance parameters (JEFF data, adapted slightly by Marco Pigni) and File 33 covariance information

CAK RIDGE

Covariance testing in SCALE

- Sensitivity data used for testing were generated in SCALE 6.1 using ENDF/VII.0 cross section data
 - Covariance library contains relative uncertainty; thus it should be applicable to the current library
 - Results support that testing is effective even with old sensitivity data because they are stationary with respect to the data changes—change one thing at a time!
- Two categories are compared:
 - Uncertainty in k_{eff} due to cross section covariance data
 - TSUNAMI-IP will calculate k_{eff} uncertainty resulting from covariance data
 - Covariance patching turned off for data testing ("uncert" and "values" keywords in parameters block)
 - Covariances propagated with sensitivities to determine uncertainty in $k_{\rm eff}$
 - $-c_k$ (similarity) of a reference set of experiments with reference applications

LEU-COMP-THERM

12 Covariance Testing at Oak Ridge National Laboratory

Larger error bands than for Scale 6.2 covariance library. Traced to ¹H capture and ²³⁵U nubar.

SCALE 6.2 uses the lower ENDF/B-VII.2 preliminary data, as shown on previous slide.

In systems with soluble B, the change in covariance data in ¹⁰B data also contributes to the difference between Scale 6.2 and Beta 5 results.

MIX-COMP-FAST

Difference between ENDF/B-VIII Beta 5 with and without SCALE 6.2 covariance data is due to a cross correlation between ²³⁸U elastic and (n,n').

ENDF/VII.1 defines elastic as 1 - 4 - 16 - 17 - 18 - 102. This introduces the (2,4) correlation.

ENDF/B-VIII Beta 5 gives an explicit covariance matrix for 51. A correlation between (2,51) is given, but SCALE does not use it and PUFF ignores, creating redundant 4.

c_k (similarity) assessment

• Purpose:

- Calculate c_k parameter for each experiment in a reference set compared with multiple spent fuel storage/transportation applications
- What is c_k ?
 - Correlation coefficient between an experiment and an application based on shared nuclear data uncertainty

$$\mathbf{C}_{\alpha\alpha} = \left[\frac{\mathbf{COV}(\alpha_m, \alpha_p)}{\alpha_m \alpha_p}\right], m = 1, 2, ..., M; p = 1, 2, ..., M$$
 Covariance data
Uncertainty matrix: $\mathbf{C}_{\mathbf{kk}} = \mathbf{S}_{\mathbf{k}} \mathbf{C}_{\alpha\alpha} \mathbf{S}_{\mathbf{k}}^{\dagger}$ given:

$$\mathbf{S}_{\mathbf{k}} = \left[\frac{\alpha_{m}}{k_{i}} \frac{\partial k_{i}}{\partial \alpha_{m}}\right], i = 1, 2, ..., I; m = 1, 2, ..., M \qquad \text{Sensitivity data}$$

$$c_k$$
 (corr. coef.): $c_k = \frac{\sigma_{ij}^2}{(\sigma_i \sigma_j)}$ where

 σ_{ij}^{2} is off-diagonal term of C_{kk} matrix (aka covariance)

 σ_i and σ_j are square root of diagonal terms (aka standard deviations)

CAK RIDGE

c_k (similarity) assessment (2)

Purpose (continued):

- How is it useful in covariance testing?
 - c_k can indicate which covariance data are important in determining similarity
 - Results should be logical results of materials in systems
 - · Especially helpful for comparison of primary fissile species uncertainty data
- Methodology:
 - TSUNAMI-IP calculates c_k-provided sensitivity data files for each application and experiment
 - "c" and "values" keywords in parameter block
 - "c_long" is also helpful because it provides the c_k contribution from each element in the covariance matrix

c_k results—historical context: SCALE 6.1 to SCALE 6.2

¹⁶ Covariance Testing at Oak Ridge National Laboratory

- 1643 unique critical experiments compared with pressurized-water reactor (PWR) spent nuclear fuel cask with fuel at representative discharge burnup
- SCALE 6.1 (purple)
- SCALE 6.2 (various)
- This change caused significant turmoil for use of c_k to select similar experiments for validation

- SCALE 6.2 (various)
- ENDF/B-VIII plus SCALE data (black)
- Low c_k values for MCT are due to h-poly, as it currently is not associated with the uncertainty in ¹H

OAK RIDGE National Laboratory

c_k results—SCALE 44 group library & ENDF/B-VIII

- 44 group library (various)
- ENDF/B-VIII plus SCALE data (pink)
- The balance has shifted back toward MCTs for PWR fuel, and more LCTs get over the 0.9 bar for peak reactivity. Also, the c_ks are a little better for the HTCs in both systems

Summary

- Substantial differences exist between ENDF/VII.1 and ENDF/B-VIII.0 Beta 5 covariance data
- ²³⁵U nubar, ²³⁹Pu, and ¹H covariance data have all increased and were previously identified by ORNL as being very large
- Uncertainty bands have historically been too wide, and they still tend to increase and not decrease with each new release
- Inappropriate uncertainty bands undermine the usefulness of S/U methods for criticality safety validation, reactor physics uncertainty quantification, and depletion calculation uncertainty quantification

