WPEC SG38 status report

CSEWG, Nov. 9 2017

Lawrence Livermore National Laboratory

Caleb M Mattoon

LLNL-PRES-730621

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

WPEC Subgroup #38 "Beyond the ENDF format: A modern nuclear database structure"

- Goal: design and document a new structure for storing and exchanging nuclear data, including
 - nuclear reaction evaluations
 - processed (application-ready) data
 - documentation
 - particles
- First meeting November 2012, 7 subsequent meetings. Most recent meeting May 2017
- Nearly complete, but reports still need to be finalized

Final product from subgroup 38: requirements and specifications for storing data in Generalized Nuclear Database Structure (GNDS)

Lawrence Livermore National Laboratory

- Detailed Requirements for a next generation nuclear data structure
 - High-level design decisions, outlines specific data needs addressed by SG38
 - Final version completed June 2016
- Specifications for the next generation nuclear data hierarchy
 - Details of how data will be stored. Describes each level of the data hierarchy including allowed sub-nodes, attributes, etc.
 - Estimate 60% complete

Draft and final versions available from https://www.oecd-nea.org/science/wpec/sg38/

- Requirements and specifications for a particle database
 - Details for storing particle properties like mass, spin, decay data, etc.
 - Estimate 80% complete
- General-purpose data containers
 - Describes containers for storing interpolation functions, tables, arrays, polynomial series, etc.
 - Estimate 70% complete
- Specifications for documentation elements
 - Containers for documentation, bibliography, storing code input, etc.
 - Estimate 80% complete

Draft and final versions available from https://www.oecd-nea.org/science/wpec/sg38/

GNDS data are organized into 4 types of file:

- reactionSuite: contains a full reaction evaluation. Also called a ProTarE (projectile + target + evaluation)
- covarianceSuite: collects covariances in a separate file, with links connecting them to the reactionSuite

PoPs: Properties of Particles

thermalScattering: for low-energy neutron scattering including S(α,β)

LLNL-PRES-XXXXXX

Lawrence Livermore National Laboratory

File type #1: reactionSuite

- Contains all reactions between specified projectile and target, organized in following nodes:
 - styles
 - documentation
 - externalFiles
 - PoPs
 - resonances
 - reactions
 - orphanProducts
 - sums
 - productions
 - incompleteReactions
 - fissionComponents
 - applicationData

'evaluated', 'heated', etc.

files linked to by this reactionSuite

resolved, unresolved, scattering radius all reactions that sum to total e.g. gammas of unknown origin summed cross sections & multiplicities production cross sections designed to handle sub-actinide fission 1st-chance, 2nd-chance, etc.

reactionSuite overview:

- Contains all reactions between specified projectile and target, organized in following nodes:
 - styles
 - documentation
 - PoPs
 - resonances
 - reactions
 - orphanProducts
 - sums
 - productions
 - incompleteReactions
 - fissionComponents
 - applicationData

'evaluated', 'heated', etc.

resolved, unresolved, scattering radius all reactions that sum to total e.g. gammas of unknown origin summed cross sections & multiplicities production cross sections designed to handle sub-actinide fission 1st-chance, 2nd-chance, etc.

Contents of many nodes are very similar

reactions, orphanProducts, etc. have similar layout:

- reactions:
 - reaction
 - crossSection
 - outputChannel
 - Q
 - products
 - availableEnergy
 - availableMomentum
 - reaction
 - ...
- orphanProducts
 - reaction
 - ...
- productions
 - production
 different name, but same contents as the reaction node

also looks like a reaction inside

63

- · ...
- incompleteReactions
 - reaction
 - ...
- fissionComponents
 - fissionComponent
 - ...

derived from incident energy + Q during processing

me but same contents as the reaction nod

Lawrence Livermore National Laboratory

scatteringRadius

required, may be constant or energy-dependent

- resolved
 - BreitWigner
 LRF=1 or 2 equivalent

or

• RMatrix *LRF=3 or 7 equivalent*

parameters stored as tables, one row per resonance

- unresolved
 - tabulatedWidths

average parameters stored as interpolation functions: interpolate parameters, not cross sections

I I NI -PRES-XXXXXX

- Covariances can be stored inside the reactionSuite, or gathered together in the covarianceSuite. Contents:
 - styles
 - documentation
 - externalFiles
 - covarianceSections handles MF31, 33, 34, 35, 40

67

67

- List of 'covarianceSection' nodes.
- parameterCovariances MF30, 32
 - List of 'parameterCovariance' and 'averageParameterCovariance' nodes.

similar to reactionSuite

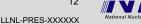
Most ENDF-6 covariances fit into the GNDS 'covarianceSection'

- covarianceSection label="..." crossTerm="true"
 - rowData href="..."
 - columnData href="..."

rowData/columnData may contain additional metadata, such as Legendre L-value (for MF34), incident energy range (MF35), etc.

columnData only required for cross-terms

rowData/columnData tell what data the covariance applies to. Actual data is stored in one of the following:


• covarianceMatrix

has various compression options to support symmetric, diagonal, sparse and full arrays

- weightedSumOfCovariances
- sandwichProduct

- Particle properties are collected inside the PoPs node. May be a stand-alone file, or stored inside a reactionSuite. Contents:
 - documentation
 - aliases
 - gaugeBosons
 - leptons
 - baryons
 - chemicalElements

similar to reactionSuite supports multiple names for the same particle i.e. photon electron, neutrinos, etc. neutron, proton

chemicalElements is the largest section inside PoPs:

- Each chemicalElement has a symbol, name and atomic number Z, plus child nodes:
 - documentation optional
 - isotopes
 - isotope defines symbol and A (Z inherited from chemicalElement)
 - nuclides
 - nuclide stores properties of the neutral atom with ground
 - or excited-state nucleus
 - nucleus properties of the bare nucleus

File type #4: thermalScattering

- Thermal neutron scattering law data representation, still subject to change (suggestions welcome)
 - documentation
 - reaction
 - doubleDifferentialCrossSection
 - elastic (coherent using cumulative S-factor or incoherent using Debye-Waller)
 - reaction
 - doubleDifferentialCrossSection
 - incoherent inelastic
 - S(α,β) stored as 3-d array or list of 2-d arrays (to support temperaturedependent α,β grids)
- Currently only supports MF7 equivalents, no phonon spectra or other representations

- Thanks to Dave for pushing through the main requirements document!
- Working through remaining documents
 - Moving slowly due to other priorities
- Any help with reading / editing documents would be appreciated!

All documents need to be delivered as part of final SG38 report

GNDS specification is nearing completion

- FUDGE is still being modified to match GNDS specifications
- U.S. nuclear data community plans to release ENDF/B-VIII in both ENDF and GNDS
 - Estimated release date is mid-December 2017 early February 2018
 - ENDF \Leftrightarrow GNDS translation needs to be nearly one-to-one
 - Still a few types of data to support
 - New version of Fudge will be released at the same time as ENDF/B-VIII
 - same version used to translate ENDF-VIII into GNDS
 - After the release, further changes to GNDS specifications will need to be approved by new format governance board, EG-GNDS.

