

• One more thing...

"Calibration"? "Adjustment"? "Lucky Draw"?

- A proof of principle: Using knowledge of Jezebel k_{eff} to constrain fission cross section (in fact, $v\sigma_f$)
- Kawano et al, NSE 153, 1 (2006)
- No change to mean values (already "adjusted") but strong impact on covariance matrix

Figure 8. The correlation matrix associated with the evaluated neutron-induced fission cross section of ²³⁹Pu changes dramatically if the integral benchmark data from the Jezebel ²³⁹Pu critical assembly is included (b) or not (a) in the evaluation. In the posterior correlation plot (b), the blocks surrounded by a solid line indicate negative correlation regions. For more information, see [70].

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Main Updates from ENDF/B-VII.1

- Resonance region
 - Adoption of WPEC SG-34 results up to 2.5 keV
 - New resonance parameters and nubar values
- Fast region: not a new full-blown evaluation!
 - Capture
 - Experimental data by Mosby et al. (DANCE, LANL)
 - Theoretical advances (Kawano)
 - Fission
 - Adoption of new IAEA standards result
 - Prompt Fission Neutron Spectrum
 - Chi-nu data (cf. Kelly's talk) still preliminary
 - New evaluation above 5 MeV incident neutron energy
 - Updated covariances

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

- Fission Cross Section
 Adoption of new IAEA standard results above 30 keV
 New covariance, including a
- New covariance, including a 1.2% fully correlated component

2.8 Tovesson, 2010 (b) 1.042.6 Shcherbakov, 2002 Fission Cross Section (b) Lisowski, 1988 🛏 Ratio to ENDF/B-VII.1 860 001 001 100 2.4 ENDF/B-VIII.0 ENDF/B-VII.1 - - -JENDL-4.0 2.2 JEFF-3.3T3 2 1.8 1.6 β₃ ²³⁹Pu (n,f) 1.4 0.96 1.2 10 10^{-1} 10^{0} 10^{1} Incident Neutron Energy (MeV) Incident Neutron Energy (MeV) Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Slide 6

(n,γ) Cross Section

- New experimental results from DANCE measurement (Mosby et al.)
- New theoretical work (Kawano, CoH₃), including M1 "scissors" mode (also, Ullmann et al.)

Uncertainties on (n, γ)

Slight reduction of uncertainties below
 1 MeV but increase at higher energies

(n,2n) Cross Section

Elastic/Inelastic Cross Sections

- No change
- Study P₁ uncertainties before the final release of the library?

Incident Neutron Energy (MeV)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 11

Prompt Fission Neutron Spectrum

- Small tweak for thermal PFNS to improve modeling of Plutonium thermal solution benchmarks
- Unchanged from B-VII.1 from 0.5 to 5 MeV
- New evaluation (**Neudecker et al.**) above 5 MeV
- Preliminary chi-nu data (Kelly et al.)

PFNS Uncertainties

- Better handling of experimental errors
- Large effort as part of chi-nu experimental and simulation work → revisit many past experiments for unrecognized systematic biases

10

Incident Neutron Energy (MeV)

²³⁹Pu PFNS

15

20

Thermal: <E_{out}>=2.116 +/- 0.037 MeV

ENDF/B-VIII.0

ENDF/B-VII.1

5

JENDL-4.0

JEFF-3.2 -----

2.6

2.5

2.4

2.3

2.2

2.1

2

0

Mean Energies (MeV)

Average Prompt Fission Neutron Multiplicity

- WPEC SG-34 results adopted
- $(n,\gamma f)$ process invoked to interpret fluctuations < 100 eV

ENDF/B-VIII.0

JEFF-3.3T3 · --

Frehaut, 1973 -----

JENDL-4.0 ENDF/B-VII.1

20

40

60

80

JEFF-3.

3

2.9

2.8

2.7

2.6

0

2.8

100

Slide 14

Holden, Holden,

New format, but does not include covariance information

Prompt Fission *γ* Rays

- New evaluation (Stetcu, Chadwick)
 - Hauser-Feshbach calculations
 - New experimental data by Oberstedt (Geel), Ullmann and Chyzh (LANSCE)
- New N_y-dependent spectra in progress
- No ENDF format for uncertainties

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

10¹

0.0

Gammas/MeV/fission

²³⁹Pu (n_{th},f)

0.5

1.0

Outgoing Gamma-Ray Energy (MeV)

 10^{0}

Gatera, 2017

Chyzh (s), 2014

Chyzh (b), 2014 Verbinski, 1973

Ullmann, 2014 ENDF/B-VII.1 JENDL 4.0

ENDF/B-VIII.0

1.5

2.0

20

6.0

JEFF 3.3

Slide 17

Summary & Perspectives

	CIELO-1	B-VII.1	JEFF-3.3	JENDL-4.0u1
	Jezebel	Jezebel	Jezebel	Jezebel
	k-eff Unc.	k-eff Unc.	k-eff Unc.	k-eff Unc
	(pcm)	(pcm)	(pcm)	(pcm)
fission	903	331	305	434
nubar	241	81	413	209
PFNS E_{av}	185	186	443	286
elastic	463	438	90	198
inelastic	797	797	150	250
capture	67	74	30	59
Summed	1025	562	645	648
Exp. unc.	110	110	110	110
C-E	15	12	68	185

Impact of ²³⁹Pu covariances on Jezebel (**Chadwick et al**, CIELO NDS paper)

- In the next few weeks:
 - Finalize all uncertainties and covariances
 - Possible tweak to PFNS uncertainties
 - Fix "double-counting" issue with ORNL
 - Revisit nu-bar uncertainties
 - Include P₁ uncertainties?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA