New evaluations of neutron cross sections on ²³⁸Pu, ²³⁷Pu and ²³⁶Pu

US National Nuclear Data Week 2017 - CSEWG

<u>S. Quaglioni</u>, E. Jurgenson, M.A. Descalle, I.J. Thompson, E. Ormand, J.E. Escher, W. Younes, C.M. Mattoon, B. Beck, J.T. Burke and T. Bailey

November 8, 2017

This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration by Lawrence Livermore National Laboratory under Contract No DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

Previous evaluations of ²³⁸Pu cross sections did not include data from latest 'surrogate' measurements

Previous evaluations of ²³⁷Pu cross sections did not include data from latest 'surrogate' measurements

Previous evaluations of ²³⁶Pu cross sections did not include data from latest 'surrogate' measurements

- **Excluded** Direct Data:
 - Vorotinikov et al. (1987)
 - Gramova et al. (1990)
 - same data but ~0.5b shift
- Surrogate Data:
 - Britt & Wilhelmy (NSE 72, 222)
 - deduced from (³He,xf)
- Surrogate Data (never used in an evalution):
 - Hughes et al. (PRC 90, 014304):
 - ²³⁵U(p,tf)/²³⁹Pu(p,tf)
 - ~0-7.4 MeV energy range

Evaluation method

- Calculations for neutron energies above the resonance region and up to 20 MeV, using TALYS-1.8
 - Coupled channel calculations
 - **Optical model:** Soukhovitskii et al. (2004) with deformation parameters β_2 =0.212 and β_4 = 0.066 taken from neighboring ²³⁹Pu
 - Rotational states: all known, or a minimum of 10
 - Preequilibrium reactions calculations
 - Two-component exciton model of Koning and Duijvestijn

Convergence of the ²³⁹Pu(n,tot) cross section with maximum number of rotational states. Overlaid are also the (n,tot) cross sections for ²³⁸Pu, ²³⁷Pu and ²³⁶Pu.

Evaluation method

- Calculations for neutron energies above the resonance region and up to 20 MeV, using TALYS-1.8
 - Hauser-Feshbach statistical calculations
 - Decay channels: fission, γ , n, p, d, t, h and α
 - Level densities: constant-temperature model of Gilbert & Cameron with shell correction energy and collective enhancement
 - Adjusted parameters: $a(S_n)$, pairing gap, P_{shift} , δ_W , T, E_0 , and E_M
 - Fission: double-humped barriers, Hill-Wheeler effective transmission coefficient
 - No class II states, continuum states assumed above barriers
 - Adjusted parameters: B_1 , $\hbar\omega_1$, B_2 , $\hbar\omega_2$
 - Gamma-ray strength functions from ENDF/B-VII.1 (= JENDL-AC-2008)
 - E1 transitions: generalized Lorentzian form of Kopecky and Uhl
 - All other transitions: Brink-Axel standard Lorentzian form

Data Processing and Release Procedures

- Translated from TALYS output to ENDL format using GEFT
 - will be translated into ENDF6 format, using TEFAL
- Resonance data and fission product data adopted unchanged from the previous evaluations in the ENDL2011.3 library
 - sourced from JENDL and subsequently ENDF/B-VII
- Released within LLNL in experimental ENDL2011.3-ex2 library (=ENDL2011.3 except for ²³⁸Pu, ²³⁷Pu, and ²³⁶Pu)
- Details in LLNL-TR-739697
 - Report available upon request
 - TALYS-1.8 input/output files available upon request

Results for ²³⁶Pu

okay also below 1 MeV, because ²³⁷Pu compound is an odd-even nucleus

• (n,3n) could be further improved

Results for ²³⁷Pu

Results for ²³⁸Pu

 (n,2n), (n,3n) could be further improved above ~ 14 MeV

²³⁷Pu, ²³⁶Pu evaluations

Not enough non-elastic, constrained by

Verification test: 'Broomstick' problem, LLNL's Monte Carlo particle transport code Mercury

Conclusions

- New evaluations of neutron cross sections on ²³⁸Pu, ²³⁷Pu, ²³⁶Pu
 - Include latest data sets from surrogate measurements that had never been evaluated before
 - Calculations for neutron energies above the resonance region and up to 20 MeV, using TALYS-1.8
 - Resonance data and fission product data adopted unchanged from the previous evaluations in the ENDL2011.3 library
 - Released within LLNL in experimental ENDL2011.3-ex2 library (=ENDL2011.3 except for ²³⁸Pu, ²³⁷Pu, and ²³⁶Pu)
 - Verification test: 'Broomstick' problem, using LLNL's Monte Carlo particle transport code Mercury
 - Possible candidate for ENDF/B-VIII.1

