Naval Nuclear Laboratory Analysis of the ENDF/B-VIII.0β5 Library

Andrew Pavlou and Jason Thompson Naval Nuclear Laboratory

> CSEWG 2017 November 6-9, 2017

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy and the U.S. Department of the Navy by Bechtel Marine Propulsion Corporation, a wholly owned subsidiary of Bechtel National, Inc.

Outline

- Suite of 180 ICSBEP critical models run using:
 - ENDF/B-VII.1 and ENDF/B-VIII.0β5
 - C/E comparisons
 - Above thermal leakage fraction (ATLF) and above thermal fission fraction (ATFF) comparisons for HST and LST series
 - Neutron balance analysis for selected models
- FUND_IPPE_VDF_MULTI_TRANS_001 Iron streaming benchmark

Model	Benchmark	Model		Model	Benchmark	Model		Model	Benchmark	Model		Model	Benchmark	Model	
#	Name	k-eff	Exp. Unc.	#	Name	k-eff	Exp. Unc.	#	Name	k-eff	Exp. Unc.	#	Name	k-eff	Exp. Unc.
1	HCI_003_01	1.00000	0.00570	46	hst_001_02	1.00210	0.00720	91	hst_050_10	0.99660	0.00900	136	lst_004_29	0.99990	0.00090
2	HCI_003_02	1.00000	0.00610	47	hst_001_03	1.00030	0.00350	92	hst_050_11	0.99640	0.00890	137	lst_004_33	0.99990	0.00090
3	HCI_003_03	1.00000	0.00560	48	hst_001_04	1.00080	0.00530	93	ICT_003_C132	0.99865	0.00015	138	lst_004_34	0.99990	0.00100
4	HCI_003_04	1.00000	0.00550	49	hst_001_05	1.00010	0.00490	94	ICT_003_C133	1.00310	0.00015	139	lst_004_46	0.99990	0.00100
5	HCI_003_05	1.00000	0.00470	50	hst_001_06	1.00020	0.00460	95	IMF_003	1.00000	0.00170	140	lst_004_51	0.99940	0.00110
6	HCI_003_06	1.00000	0.00470	51	hst_001_07	1.00080	0.00400	96	IMF_004	1.00000	0.00300	141	lst_004_54	0.99960	0.00110
7	HCI_003_07	1.00000	0.00500	52	hst_001_08	0.99980	0.00380	97	IMF_005	1.00000	0.00210	142	lst_007_14	0.99610	0.00090
8	HMF_001_01A	1.00000	0.00100	53	hst_001_09	1.00080	0.00540	98	IMF_006	1.00000	0.00230	143	lst_007_30	0.99730	0.00090
9	HMF_001_01B	1.00000	0.00100	54	hst_001_10	0.99930	0.00540	99	IMF_007	0.99480	0.00130	144	lst_007_32	0.99850	0.00100
10	HMF_002_01	1.00000	0.00300	55	hst_009_01	0.99900	0.00430	100	IMF_009	1.00000	0.00530	145	lst_007_36	0.99880	0.00110
11	HMF_002_02	1.00000	0.00300	56	hst_009_02	1.00000	0.00390	101	LCT_002_01	0.99970	0.00200	146	lst_007_49	0.99830	0.00110
12	HMF_002_03	1.00000	0.00300	57	hst_009_03	1.00000	0.00360	102	LCT_002_02	0.99970	0.00200	147	lst_016_105	0.99960	0.00130
13	HMF_002_04	1.00000	0.00300	58	hst_009_04	0.99860	0.00350	103	LCT_002_03	0.99970	0.00200	148	lst_016_113	0.99990	0.00130
14	HMF_002_05	1.00000	0.00300	59	hst_010_01	1.00000	0.00290	104	LCT_002_04	0.99970	0.00180	149	lst_016_125	0.99940	0.00140
15	HMF_002_06	1.00000	0.00300	60	hst_010_02	1.00000	0.00290	105	LCT_002_05	0.99970	0.00190	150	lst_016_129	0.99960	0.00140
16	HMF_003_01	1.00000	0.00500	61	hst_010_03	1.00000	0.00290	106	LCT_008_02	1.00070	0.00120	151	lst_016_131	0.99950	0.00140
17	HMF_003_02	1.00000	0.00500	62	hst_010_04	0.99920	0.00290	107	LCT_010_01	1.00000	0.00210	152	lst_016_140	0.99920	0.00150
18	HMF_003_03	1.00000	0.00500	63	hst_011_01	1.00000	0.00230	108	LCT_010_08	1.00000	0.00210	153	lst_016_196	0.99940	0.00150
19	HMF_003_04	1.00000	0.00300	64	hst_011_02	1.00000	0.00230	109	LCT_010_12	1.00000	0.00210	154	MCT_006_08	1.00350	0.00440
20	HMF_003_05	1.00000	0.00300	65	hst_012_01	0.99990	0.00580	110	LCT_010_17	1.00000	0.00280	155	MCT_006_09	1.00350	0.00440
21	HMF_003_06	1.00000	0.00300	66	hst_013_01	1.00120	0.00260	111	LCT_010_21	1.00000	0.00280	156	MCT_006_10	1.00210	0.00440
22	HMF_003_07	1.00000	0.00300	67	hst_013_02	1.00070	0.00360	112	LCT_010_30	1.00000	0.00280	157	MCT_006_11	1.00320	0.00440
23	HMF_004_01	1.00200	0.00010	68	hst_013_03	1.00090	0.00360	113	LCT_029_01	1.00000	0.00100	158	MCT_006_12	1.00320	0.00440
24	HMF_009_01	0.99920	0.00150	69	hst_013_04	1.00030	0.00360	114	LCT_029_02	1.00000	0.00100	159	MMF_008_07	1.03000	0.00250
25	HMF_015_01	0.99960	0.00170	70	hst_032_01	1.00150	0.00260	115	LCT_029_03	1.00000	0.00100	160	PCI_001	1.00000	0.01100
26	HMF_018_01	1.00000	0.00140	71	hst_042_01	0.99570	0.00390	116	LCT_029_04	1.00000	0.00100	161	PMF_001	1.00000	0.00200
27	HMF_019_01	1.00000	0.00280	72	hst_042_02	0.99650	0.00360	117	LCT_029_05	1.00000	0.00100	162	PMF_002	1.00000	0.00200
28	HMF_019_02	1.00000	0.00280	73	hst_042_03	0.99940	0.00280	118	LCT_061_03	1.00050	0.00230	163	PMF_003_103	1.00000	0.00300
29	HMF_020_01	1.00000	0.00280	74	hst_042_04	1.00000	0.00340	119	LCT_061_04	1.00050	0.00230	164	PMF_006	1.00000	0.00300
30	HMF_021_01	1.00000	0.00240	75	hst_042_05	1.00000	0.00340	120	LCT_061_05	1.00050	0.00230	165	PMF_008	1.00000	0.00060
31	HMF_022_01	1.00000	0.00190	76	hst_042_06	1.00000	0.00370	121	LCT_061_06	1.00050	0.00230	166	PMF_011	1.00000	0.00100
32	HMF_027_01	1.00000	0.00250	77	hst_042_07	1.00000	0.00360	122	lst_001_01	0.99910	0.00290	167	PST_021_03	1.00000	0.00650
33	HMF_028_01	1.00000	0.00300	78	hst_042_08	1.00000	0.00350	123	lst_002_01	1.00380	0.00400	168	PST_031_01	1.00000	0.00510
34	HMF_029_01	1.00000	0.00200	79	hst_043_01	0.99860	0.00310	124	lst_002_02	1.00240	0.00370	169	PST_031_02	1.00000	0.00510
35	HMF_032_01	1.00000	0.00160	80	hst_043_02	0.99950	0.00260	125	lst_002_03	1.00240	0.00440	170	PST_031_03	1.00000	0.00390
36	HMF_032_02	1.00000	0.00270	81	hst_043_03	0.99900	0.00250	126	lst_003_01	0.99970	0.00390	1/1	PST_031_04	1.00000	0.00440
37	HMF_032_03	1.00000	0.00170	82	hst_050_01	0.99530	0.00860	127	lst_003_02	0.99930	0.00420	1/2	PST_031_05	1.00000	0.00370
38	HMF_032_04	1.00000	0.00170	83	hst_050_02	0.99870	0.00830	128	lst_003_03	0.99950	0.00420	1/3	PST_031_06	1.00000	0.00340
39	HMF_034_01	0.99900	0.00120	84	hst_050_03	0.99840	0.00790	129	lst_003_04	0.99950	0.00420	174	PST_031_07	1.00000	0.00230
40	HMF_034_02	0.99900	0.00120	85	hst_050_04	0.99870	0.00840	130	lst_003_05	0.99970	0.00480	175	UMF_005_02	1.00000	0.00300
41	HMF_034_03	0.99900	0.00120	86	nst_050_05	0.99850	0.00850	131	Ist_003_06	0.99990	0.00490	1/6	001_001_03	1.00070	0.00250
42	HMT_001_01	1.00100	0.00600	87	nst_050_06	0.99850	0.00810	132	Ist_003_07	0.99940	0.00490	1//	UMF_001	1.00000	0.00100
43	HIVIT_001_01D	1.00100	0.00600	88	nst_050_07	0.99780	0.00780	133	Ist_003_08	0.99930	0.00520	1/8	UMF_006	1.00000	0.00140
44	HMT_014_01	0.99390	0.00150	89	nst_050_08	0.99750	0.00840	134	Ist_003_09	0.99960	0.00520	1/9	USI_001	1.00000	0.00830
45	hst_001_01	1.00040	0.00600	90	hst_050_09	0.99660	0.00820	135	lst_004_01	0.99940	0.00080	180	US1_008	1.00060	0.00290

C/E Plots: ENDF/B-VIII.0β5 and ENDF/B-VII.1

C/E Figure of Merit - ICSBEP

$$FoM = \left| \left(\frac{C}{E} \right)_{VU,1} - 1 \right| - \left| \left(\frac{C}{E} \right)_{VU,0,0,5} - 1 \right|$$

5

Trend Analysis (HST & LST Series): Above Thermal Leakage Fraction (ATLF)

Trend Analysis (HST & LST Series): Above Thermal Fission Fraction (ATFF)

C/E Series Average Results

- Some notable changes observed for HCI and MCT series
 - 264 pcm increase and 214 pcm decrease, respectively, away from 1.0 in ENDF/B-VIII.0β5
- C/E deviation from 1.0 is about the same overall

	# Models	ENDF/B-VII.1	ENDF/B-VIII.0β5	Diff.	
All	180	1.00029(21)	0.99954(21)	-0.00075(30)	
HCI	7	1.00119(20)	1.00384(20)	0.00264(28)	
HMF	34	1.00056(20)	0.99925(20)	-0.00131(28)	
HMT	3	1.00693(14)	1.00687(13)	-0.00006(19)	
HST	48	0.99988(19)	0.99922(19)	-0.00066(27)	
ICT	2	1.00182(24)	1.00261(23)	0.00079(33)	
IMF	6	1.00326(19)	1.00141(18)	-0.00185(27)	
LCT	21	1.00131(31)	1.00047(31)	-0.00084(44)	
LST	32	1.00029(20)	1.00017(19)	-0.00012(27)	
MCT	5	0.98960(22)	0.98746(22)	-0.00214(31)	
MMF	1	0.98990(21)	0.99398(21)	0.00408(30)	
Pu	15	1.00201(20)	0.99977(20)	-0.00224(29)	
U233	6	0.99705(20)	0.99615(20)	-0.00090(28)	
Red highlight indicates C/E has gotten further from 1.0 in ENDF/B-VIII.085					

Comparison of ENDF/B-VII.1 and ENDF/B-VIII.065

Population C/E

Notable Changes (C/E)

Closer to 1.0:

	ENDF/B-VII.1	ENDF/B-VIII.0β5	Benchmark	ENDF/B-VII.1	ENDF/B-VIII.0β5	Difference
	1 00000	0.99954	PST_031_07	1.00840(21)	1.00368(20)	-0.00473(29)
Average	1.00029		PST_031_06	1.00883(21)	1.00421(21)	-0.00462(30)
Std. Dev.	0.00511 0.00776	0.005110.005160.007760.00754	PST_031_05	1.00549(21)	1.00087(21)	-0.00461(30)
			MMF_008_07	0.98990(21)	0.99398(21)	0.00408(30)
χ^2			PCI_001	1.01137(20)	1.00761(20)	-0.00377(28)

Further from 1.0:

	Benchmark	ENDF/B-VII.1	ENDF/B-VIII.0β5	Difference
	USI 001	0.98527(20)	0.98057(19)	<u>-0.00470(28)</u>
<	HCI_003_04	1.00383(28)	1.00792(25)	0.00409(38)
	PST_031_04	0.99947(22)	0.99564(21)	-0.00383(31)
	PST_031_02	0.98438(22)	0.98101(22)	-0.00337(31)
	HST_050_07	1.00035(18)	0.99739(21)	-0.00296(28)

HCI_003_04 Benchmark: Capture and Fission Tallies

fission

NAVAL NUCLEAR

+1.5%

Difference

HCI_003_04 Benchmark: Fe-56 Substitution

Substituting Fe-56 results in even more U-235 fissions, likely due to the redistribution of neutrons from the changes made to the elastic scattering angular distributions (ESAD)

HCI_003_04 Benchmark: Effect of ν

	E7.1	E7.1 + U-235 E8.0β5	Difference [%]	5. /
Capture $(\Sigma_{\gamma}\phi)$	2.094E-01	2.084E-01	-0.466	$k = \frac{\nu \Sigma_f \phi}{\Sigma_f \phi + \Sigma_f \phi + DB^2 \phi} = \nu \Sigma_f$
Leakage ($DB^2\phi$)	3.908E-01	3.889E-01	-0.470	$\Delta_{\gamma} \psi + \Delta_{f} \psi + DD \psi$
Fission ($\Sigma_f \phi$)	3.998E-01	4.026E-01	+0.703	Average neutrons per
Nu (ν)	2.511	2.502	-0.351	fission (nu) dropped from
Nu-Fission ($\nu \Sigma_f \phi$)	1.00383	1.00734	+0.349	E7.1 and E8.0β5
k-eff (k)	1.00383	1.00734	+0.349	

- 409 pcm increase from:
 - Fe-56 ESAD/capture
 - U-235 capture/fission
 - U-235 ν

Comparison of ENDF/B-VII.1 and ENDF/B-VIII.065

Population C/E

Notable Changes (C/E)

Closer to 1.0:

	ENDF/B-VII.1	ENDF/B-VIII.0β5	Benchmark	ENDF/B-VII.1	FNDF/B-VIII.0 <u>65</u>	Difference
Average	1 00020	0.00054	PST_031_07	1.00840(21)	1.00368(20)	-0.00473(29)
Average	1.00029	0.99904	PST_031_06	1.00883(21)	1.00421(21)	-0.00462(30)
Std. Dev.	0.00511	0.00516	PST_031_05	1.00549(21)	1.00087(21)	-0.00461(30)
	0.00776	0.00776 0.00754	MMF_008_07	0.98990(21)	0.99398(21)	0.00408(30)
χ^2			PCI_001	1.01137(20)	1.00761(20)	-0.00377(28)

Further from 1.0:

Benchmark	ENDF/B-VII.1	ENDF/B-VIII.0β5	Difference
USI_001	0.98527(20)	0.98057(19)	-0.00470(28)
HCI_003_04	1.00383(28)	1.00792(25)	0.00409(38)
PST_031_04	0.99947(22)	0.99564(21)	-0.00383(31)
PST_031_02	0.98438(22)	0.98101(22)	-0.00337(31)
HST_050_07	1.00035(18)	0.99739(21)	-0.00296(28)

PST_031_07 Benchmark

Library	C/E	Diff. to E7.1
E7.1	1.00840(21)	
E8.0β5	1.00368(20)	-0.00473(29)
E7.1 + Pu-239 E8.0β5	1.00495(21)	-0.00345(30)
E7.1 + O-16 E8.0β5	1.00711(21)	-0.00130(30)

- Large decrease in eigenvalue between E7.1 and E8.0β5 driven by:
 - Increase in O-16 capture (accounts for ~25% of eigenvalue change)
 - Changes in Pu-239 evaluation account for remaining difference (~75%).

O-16 (n,α) Cross Section – 293.6K

Change in capture profile dominated by O-16 (n, α) increase

NAVAL NUCLEAR

PST_031_07 Benchmark

Library	C/E	Diff. to E7.1
E7.1	1.00840(21)	
E8.0β5	1.00368(20)	-0.00473(29)
E7.1 + Pu-239 E8.0β5	1.00495(21)	-0.00345(30)
E7.1 + O-16 E8.0β5	1.00711(21)	-0.00130(30)

- Decrease in Pu-239 fission caused by
 - Overall increase in capture making less neutrons available for fission
 - New Pu-239 evaluation from CIELO

Pu-239 (n,f) and (n,disapp.) Cross Sections – 293.6K

Version	Library	0.625 eV RI MT 18	0.625 eV RI MT 101
V297	ENDF/B-VII.1	2.713E+02	1.678E+02
V385	ENDF/B-VIII.β5	2.769E+02	1.666E+02
	Difference	+2.1%	-0.5%

PST_031_07 Benchmark

	E7.1	E7.1 + Pu-239 E8.0β5	Difference [%]
Capture ($\Sigma_{\gamma}\phi$)	6.100E-01	6.106E-01	+0.101
Leakage ($DB^2\phi$)	3.992E-02	3.988E-02	-0.109
Fission ($\Sigma_f \phi$)	3.501E-01	3.496E-01	-0.163
Nu (ν)	2.880	2.875	-0.180
Nu-Fission ($\nu \Sigma_f \phi$)	1.00840	1.00495	-0.342
k-eff (k)	1.00840	1.00495	-0.342

$$k = \frac{\nu \Sigma_f \phi}{\Sigma_\gamma \phi + \Sigma_f \phi + DB^2 \phi} = \nu \Sigma_f \phi$$

Average neutrons per fission (nu) dropped from 2.880 to 2.875 (-0.18%) between E7.1 and E8.0β5

- 473 pcm drop from:
 - O-16 (n,α) (-130 pcm)
 - Pu-239 ν (-180 pcm)
 - Pu-239 other changes (-163 pcm)

Iron Streaming Benchmark

- FUND_IPPE_VDF_MULTI_TRANS_001 ICSBEP model
- Transmission measurements for a collimated neutron beam incident on iron samples of various thicknesses:
 - 1.62 cm, 4.81 cm, 9.57 cm, 31.74 cm, 44.44 cm
- Uniform in energy from 100 keV to 4 MeV
- Tallies binned for six energy groups:
 - 100 keV, 200 keV, 400 keV, 800 keV, 1.4 MeV, 2.5 MeV, 4.0 MeV

Transmission Results

- ENDF/B-VII.1 outperforms ENDF/B-VIII.0β5 in the 100-200 keV range
- Above 200 keV, ENDF/B-VIII.0β5 performs better

Transmission Results

- ENDF/B-VIII.0β5 performs better at higher energy ranges
 - Improvement of Fe-56 in the new evaluation

Summary of ENDF/B-VIII.085 Analysis

- ENDF/B-VIII.0β5 data result in a net decrease in C/E for ICSBEP models of 75pcm – overall good agreement with ENDF/B-VII.1.
- HEU intermediate-spectrum models (HCI) are sensitive to changes in U-235 and O-16
 - nubar change has a 300-400 pcm affect
 - Fe-56 ESAD have changed substantially
- ENDF/B-VIII.0β5 Fe-56 is an improvement from ENDF/B-VII.1
 - Transmission analysis shows improvement of Fe-56 from 200 keV to 2.5 MeV

EXTRA

Fe-56 (n,γ) Cross Section and ESAD – 293.6K

Version	Library	0.625 eV RI MT 102
V297	ENDF/B-VII.1	1.223E+00
V385	ENDF/B-VIII.0β5	1.254E+00
	Difference	+2.6%

 Despite more captures in Fe-56, ESAD change increases neutron economy available to fission by U-235

U-235 (n,f) and (n, γ) Cross Sections – 293.6K

Version	Library	0.625 eV RI MT 18	0.625 eV RI MT 102
V297	ENDF/B-VII.1	2.599E+02	1.384E+02
V385	ENDF/B-VIII.0β5	2.638E+02	1.407E+02
	Difference	+1.5%	+1.6%

U-238 (n,f) and (n, γ) Cross Sections – 293.6K

Version	Library	0.625 eV RI MT 18	0.625 eV RI MT 102
V297	ENDF/B-VII.1	2.054E+00	2.754E+02
V385	ENDF/B-VIII.0β5	2.070E+00	2.749E+02
	Difference	+0.7%	-0.2%

