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2 Bayesian Generalized Data Fitting Method

Outline

• Motivation and background
• SAMMY modernization update
• Bayesian generalized data optimization method
• Phenomenological Dirac relativistic R-matrix formalism
• Thermal neutron scattering, S(a,b), evaluation framework 
• Conclusions and outlook
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Motivation and background

• DOE’s programmatic pursuit of improved nuclear data (ND) 
and uncertainties (variances and covariances)
– Nuclear Criticality Safety, Nuclear Engineering & Applications, Science

• SAMMY modernization approved by the US Nuclear Criticality 
Safety Program (NCSP)
– Modernize the software quality assurance (SQA) programming 

framework (C++ APIs)
– Modernize the evaluation methods  

• Need for simultaneous, consistent evaluation of differential 
and integral benchmark experimental data
– Revisit application of Bayes’ Theorem to ND
– Improve consistency between differential and integral uncertainties
– Evaluated cross sections are now post-adjusted to fit integral data 
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SAMMY 8.1 released by RSICC April 2017:

• SAMINT: integral benchmark experiments inform research 
parameter evaluations (Implemented by Vlad Sobes)

• SAMMY integrated into SCALE SQA in AMPX footsteps
– Automated cmake/ctest suite, revision control repository, FogBugz
– Platforms supported Linux/gfortran, Mac/gfortran, Windows/ifort

• New detector resolution functions in collaboration with 
Rensselaer Polytechnic Institute (RPI)

• Updated physical constants; SAMMY and SAMRML compute 
consistently now

• Corrected a misplaced index that was causing incorrect matrix 
multiplication for non-diagonal data covariance matrix

• Implemented several other bug fixes
• Obtained license for distributing COULCWF with 

SAMMY/AMPX/SCALE   
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SAMSON high-level application programming 
interface (API) diagram
• Defines APIs before implementation

– Enables variety of methods for each API
– Leverages input/output (I/O) and Resonance API from C++ SAMRML

• SAMMY PARameter and GND file reader/writer under development
• To replace SAMMY I/O routines 

Resonance 
API

Fit API

I/O API
Experimental 

effects 
API

SAMSON
driver



6 Bayesian Generalized Data Fitting Method

Fit API: GLS, Bayesian Monte Carlo

• Generalized least squares (GLS)
– Nuclear Engineering Science Laboratory Synthesis (NESLS) summer intern Jinghua

Feng implemented a prototype
– Andrew Holcomb ported the prototype into the FitAPI

– Compact expressions by Froehner were used 
(Sect. 2.2 of JEFF Report 18, 2000)

• Bayesian generalized data optimization method (CW2017)
– NESLS summer intern Jinghua Feng implemented a prototype
– Prototype avoids  Peelle's Pertinent Puzzle (PPP) issue plaguing GLS of reduced data

• Fit differential and/or integral benchmark experiment data performed 
simultaneously instead of adjusting differential data retroactively

GLS
Bayesian 

Monte Carlo
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Interface
Data

getNumberParams
Get the number of parameters

getNumData
Get the number of 
experimental data

getData
Get the list of experimental 
data (1-dim Array)

getParam
Get the list of initial params
(1-dim Array)

getCovMatrix
Get the full covariance matrix 
(2-dim Array)

getTheory
Get theoretical values based 
on current parameters 
(1-dim Array)

setParam
Set the current parameters 
(1-dim Array)

setCovMatrix
Set the full covariance matrix
(2-dim Array)

Interface
Fit

setData
Set an instance of Data 
interface

initialize
After setting data object 
initialize internal data 
structures

execute 
Do the actual fitting 

finalize
Clean up any internal 
resources

Interface
Array

getNumDim
Get the number of dimensions

getSize(int dim)
Get the array size for 
dimension m

getValue(int i1, int i2, …)
Get the value for the indicated 
indices. In C++ we would pass 
in a vector of length 
getNumDim

setValue(int i1,int i2, …_
Set value

• Actual instances are instantiated by a factory class

• Data will have a method to obtain the derivatives 
(2-dim Array: getNumberParams x getNumData); 
there will be a function that computes derivatives 
numerically

• Fit calls setParams, getTheory, setCovMatrix
repeatedly in the course of fitting the data

Fit API: Preliminary interface
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V11
Covariance for 

Exp.1

V12
Cross-

Covariance 
between 

Exp.1 and 2
(optional)

V22
Covariance for 

Exp.2
V21=V12

M

Params Concatenated 1D array of exp. data

• Parameters and experimental data cast into 1D array by implementation of data 
– for generic use inside SCALE framework
– Froehner’s formulation and notation:

Fit API: GLS implementation

“C”=

“z” =

(optional cross covariance)
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Fit API: GLS implementation

• Generalized least squares (GLS)
– Compact expressions by Froehner (Sect. 2.2 of JEFF Report 18, 2000)

(Warning: Nondiagonal data covariance matrix [DCM] may lead to PPP 
syndrome)

• Implementation uses cpp-array library (CPC 185,1681, 2014) 
– Transparently parallelized via BLAS library (Intel MKL, cuBLAS, MAGMA)
– Compact notation for matrix operations, e.g. parameter set update
– P =  P + inv( transpose(S) * inv(C) * S) * transpose(S) * inv(C) * ( P – T )

• BLAS advantages: drastically speeds up large matrix operations 
in SAMMY and shortens code (Arbanas, Dunn, Wiarda, M&C2011)

GLS
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Experimental effects (EE) API
• Convolution of Doppler broadening, target, and detector effects, each 

one implenting the EE API:

Doppler broadening:
FGM, DDXS, S(a,b) 
BROADEN/AMPX

Neutron transport:  
SHIFT API

(DBRC, LH, 
multiple scatter.)

Resolution function
via Monte Carlo N-
Particle (MCNP) for 

example

• SHIFT API for on-the-fly neutron transport aspects
– To enable fitting integral benchmark experiments (IBEs)
– Developed for SCALE by Cihangir Celik (ORNL Nuclear Data and Criticality 

Safety) during FY2017
– Message passaging interface (MPI) enabled
– Could use MCNP input 

• In principle, the entire experimental setup could be simulated
– Fitting to raw data may be possible; varying opinions
– Raw data may become publicly available (needed for Bayesian MC)
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Relevant quotes from Edwin T. Jaynes (1922-1998)
• “… every Bayesian problem is open ended; no matter how much 

analysis you have completed, this only suggests still other kinds 
of prior information that you might have had, and therefore still 
more interesting calculations that need to be done to get still 
deeper insight into the problem.” 

model defect and its covariance introduced as priors
• “The difficulties are never mathematical; at no point do we 

encounter any mathematical problem that could not be dealt with 
by an undergraduate…”

Bayes’ theorem is straightforward for given priors

from “Straight Line Fitting – a Bayesian Solution”  (1999), which chronicles 
Bayesian straight line fitting during his lifetime 
(http://bayes.wustl.edu/etj/articles/leapz.pdf )
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Principles and notation used in derivation

• Distinction is maintained between the variables’ values and 
their expectation values for both prior and posterior
– Prior generalized data expectation values <z>=(<P>, <D>) 
– PDF of a particular value z=(P,D) is p(z|<z>,C,T(.))
– Posterior expectation values denoted by a prime: <z>’=(<P>’, <D>’) 

• Symmetry of any normal PDFs was enforced:
(z-<z>)+C-1(z-<z>), where C=<(z-<z>) (z-<z>)+>

• The model, its defect, and defect covariance introduced as 
priors, which has important implications in the application of 
Bayes’ theorem
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1 Introduction

Advancement of scientific understanding of natural phe-
nomena is partly due to a complementary activity of con-
ceiving better models while performing experiments that
test those models or explore their limits of validity. There
are many historical examples of constructive interplay be-
tween conceptual models and experiments that have re-
sulted in improved understanding of some phenomena.
Although experiments are often viewed as objective and
independent from the model they were designed to test,
that their conception and design may be based upon some
model in which measured data are to be interpreted and
compared to the prediction of the model being tested.
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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Definitions used in derivation
• Generalized data,                     ,  and its covariance matrix
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Advantages of constrained least squares (CLS) fitting method over the �2 mini-
mization method have been detailed in [1]. Nevertheless, the �2 method has been
a preferred choice in the Nuclear Data community because of the perception that
it derives from the Bayes’ theorem [4]. We find that application of Bayes’ theorem
to generalized data indicates that the CLS method, and its special case Gener-
alized Linear Least Squares (GLLS) implemented in the TSURFER code [2], are
the methods consistent with Bayes’ theorem, whereas the �2 minimization method
may not be. This may explain the known shortcomings of the �2 minimization
method [1], and may lead to adoption of fitting methods based on Bayes’ theorem
in the Nuclear Data evaluation codes, like [5], that presently uses �2 minimization
method. This work also describes a Bayesian Monte Carlo algorithm for general-
ized data fitting.

2. Derivation

In Subsection 2.1 the posterior probability distribution function (PDF) of gen-
eralized data is derived by application of the Bayes’ theorem and by utilizing
compact generalized data notation whenever possible. Application of Bayes’ the-
orem to generalized data implies that prior parameters and the experimental data
together constitute prior generalized data. In other words, even though the given
experimental data may be new to the evaluator it is nevertheless to be treated as a
prior from the perspective of the Bayes’ theorem. Since experimental data is to be
treated as a prior, one may expect that Bayes’ theorem would naturally yield its
optimal posterior PDF, just as it does for model parameter values. A distinction
is maintained in this derivation between PDFs, that is, probability that a variable
attains a particular value and the corresponding expectation values denoted by
angled brackets h·i. A posterior PDF of generalized data is derived, and then used
to compute posterior expectation values and covariances. In Subsection 2.3 we
start with conventional expression for posterior probability distribution of model
parameters, and employ the total probability theorem to derive the same expres-
sion. The first derivation may be more compact but the conventional derivation
may be more intuitive to those accustomed to it. Primed quantities represent
posterior values and unprimed ones represent prior ones.

2.1. Derivation in generalized data notation. A generalized data vector z is
a union of parameters P and experimental data D, namely

(1) z ⌘ (P,D),

and the covariance matrix of generalized data is block diagonal matrix with pa-
rameter covariance matrix M and data covariance matrix V along the diagonal,
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (37)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of general-
ized data and their covariances

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Note that posterior data D0 could be thought of as nuisance parameters whose
e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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that coincides with the definition of �2 implemented in the TSURFER code [2] and
in the APLCON code [?]. The constraint T (P 0) = D0 is enforced by the Lagrange
multiplier method, and the values of z0 = (P 0, D0) that minimize chi2 are reported
as the expectation values of posterior generalized data hz0i = (hP 0i, hD0i). Since
TSURFER makes a linear approximation of the model its method is referred to
as Generalized Linear Least Squares (GLLS) . The term ”Generalized” indicates
that posterior values of parameters and of data are optimized simultaneously to
find the minimum of the �2 given by Eq. (33). APLCON can
However, there is another commonplace definition of �2 in which the posterior

data D0 appearing in z0 ⌘ (P 0, D0) in Eq. (33) is replaced by T (P 0) (while using
the same covariance matrix C) in an apparent attempt to minimize the di↵erence
between the data hDi and the model prediction T (P 0) (computed from posterior
parameter values P 0), where the constraint hci ⌘ hT (P 0)i � hD0i = 0 used in the
CLS is not enforced. In other words, the di↵erence (z0�hzi) in Eq. (33) is replaced
by

(34) (z0 � hzi) ⌘ (P 0 � hP i, D0 � hDi) ! (P 0 � hP i, T (P 0)� hDi)
and no constraint is imposed. This definition of �2 has been used in nuclear data
evaluations and is also the quantity that is minimized in generic optimization codes
like MINUIT. Although this definition of �2 may appear to be similar in form to
Q(z0) in Eq. (33) used in the CLS method, the two methods have been found
to yield tangibly di↵erent optimal values of parameters and their covariances,
especially in cases of highly correlated data. Several cases of departure between
the CLS and the ”�2” method have been catalogued by V. Blobel in [1].
In particular, one common form of this �2 expression is given for a block-diagonal

generalized data covariance matrix C with parameter covariance matrix M and
experimental data covariance matrix V being the blocks along the diagonal:

(35) �2 = (P 0 � hP i)+M�1(P 0 � hP i) + (T (P 0)� hDi)+V�1(T (P 0)� hDi)
For CLS and G(L)LS the corresponding expression is

(36) �2 = (P 0 � hP i)+M�1(P 0 � hP i) + (D0 � hDi)+V�1(D0 � hDi)
with the constraint

(37) T (P 0)�D0 = 0

5. Appendix

Here we state generic equations used in this work. A generic product rule of
probability theory is

(38) p(↵�|�) = p(↵|��)p(�|�)
and generic Bayes theorem could be stated as

(39) p(↵|��) / p(↵|�)p(�|↵�).
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (37)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of general-
ized data and their covariances

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Note that posterior data D0 could be thought of as nuisance parameters whose
e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters

• Generic Bayes’ theorem:

• Generic Product Rule of Probability Theory:

where     ,    and       will be specified for each particular application
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (37)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of general-
ized data and their covariances

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Note that posterior data D0 could be thought of as nuisance parameters whose
e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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M W
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covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Note that posterior data D0 could be thought of as nuisance parameters whose
e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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to obtain
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The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of general-
ized data and their covariances

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C
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Z
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as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Note that posterior data D0 could be thought of as nuisance parameters whose
e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters

Goran Arbanas et al.: Bayesian Generalized Data Fitting Method 5

referred to as Generalized Linear Least Squares (GLLS) .
The term ”Generalized” indicates that posterior values of
parameters and of data are optimized simultaneously to
find the minimum of the �2 given by Eq. (34). APLCON
can

However, there is another commonplace definition of
�2 in which the posterior dataD0 appearing in z0 ⌘ (P 0, D0)
in Eq. (34) is replaced by T (P 0) (while using the same co-
variance matrix C) in an apparent attempt to minimize
the di↵erence between the data hDi and the model pre-
diction T (P 0) (computed from posterior parameter values
P 0), where the constraint hci ⌘ hT (P 0)i � hD0i = 0 used
in the CLS is not enforced. In other words, the di↵erence
(z0 � hzi) in Eq. (34) is replaced by

(z0 � hzi) ⌘ (P 0 � hP i, D0 � hDi)
! (P 0 � hP i, T (P 0)� hDi) (35)

and no constraint is imposed. This definition of �2 has
been used in nuclear data evaluations and is also the quan-
tity that is minimized in generic optimization codes like
MINUIT [6]. Although this definition of �2 may appear
to be similar in form to Q(z0) in Eq. (34) used in the
CLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data.
Several cases of departure between the CLS and the ”�2”
method have been catalogued by V. Blobel in [1].

In particular, one common form of this �2 expression
is given for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and exper-
imental data covariance matrix V being the blocks along
the diagonal:

�2 = (P 0 � hP i)+M�1(P 0 � hP i)
+ (T (P 0)� hDi)+V�1(T (P 0)� hDi) (36)

For CLS and G(L)LS the corresponding expression is

�2 = (P 0 � hP i)+M�1(P 0 � hP i)
+ (D0 � hDi)+V�1(D0 � hDi) (37)

with the constraint

T (P 0)�D0 = 0 (38)

5 Appendix

The following expression are referenced within the paper
by assigning a context-dependent meaning to generic vari-
ables ↵, �, and � used below. A generic product rule of
probability theory is

p(↵�|�) = p(↵|��)p(�|�) (39)

and generic Bayes theorem could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�). (40)

The law of total probability

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�) (41)

is equivalent to marginalization of nuisance parameter �
by integrating over its all possible values.

6 Authors contributions
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final manuscript.

References

1. V. Blobel, http://www.desy.de/⇠blobel/apltalk.pdf (2010).
2. M. L. Williams, B. L. Broadhead, M. A. Jessee, J. J.
Wagschal, Version 6.2.1, Vol. III, Sect. M21, ORNL/TM-
2005/39 (2016).

3. B.T. Rearden and M.A. Jessee, Eds., ORNL/TM-2005/39,
Version 6.2.1, Oak Ridge National Laboratory, Oak Ridge,
Tennessee (2016). Available from Radiation Safety Informa-
tion Computational Center as CCC-834.
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Direct derivation in generalized data notation
• Application of Bayes’ theorem

with the following substitutions:

yields a posterior PDF for generalized data:

Prior LikelihoodPosterior
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contained in Eq. (8) and their covariance matrix contained in Eqs. (10,11) include
integration over all values of D0. In other words, one sets f(z0) = P 0 to compute
hP 0i and f(z0) = (P 0�hP 0i)(P 0�hP 0i)+ to compute its posterior covariance matrix
M

0

hP 0i =

Z
dP 0P 0

Z
dD0p(z0|hzi,C, T (·))(12)

hP 0P 0+i =

Z
dP 0P 0P 0+

Z
dD0p(z0|hzi,C, T (·))(13)

M

0 = hP 0P 0+i � hP 0ihP 0i+.(14)

where M

0 is the posterior parameter covariance matrix.

2.2. Normal PDF. Although this formalism is applicable to arbitrary PDFs,
normal PDFs are assumed to simplify exposition:

(15) p(z0|hzi,C) / e�
1
2 (z

0�hzi)+C�1(z0�hzi),

and

(16) p(T (·)|z0, hzi,C) / e�
1
2 (D

0�T (P 0)�hc(·)i)+X0�1(D0�T (P 0)�hc(·)i),

where X

0 is a covariance matrix of di↵erences between posterior data D0 and
posterior model values T (P 0) (computed from posterior parameter values P 0), i.e.,

(17) X

0 ⌘ h(D0 � T (P 0)� hc(·)i)(D0 � T (P 0)� hc(·)i)+i.
with a constraint c(·) imposed on the di↵erence of posterior expectation values

(18) hc(·)i = hT (P 0)i � hD0i.
Setting the constraint hc(·)i = 0 is the optimal choice for minimizing the di↵er-
ences between posterior model values T (P 0) and posterior data D0. This is the
constraint used by the GLLS method implemented in the TSURFER module of
the SCALE code system, and by the CLS method implemented in the APLCON
code. Nevertheless, this constraint could be set arbitrarily. For example, the
following choice of constraint

(19) hc(·)i = T (hP i)� hDi.
would make the posterior PDF identical to the prior one. Any one of these con-
straints could be imposed by sampling D0 values around hT (P 0)i � hc(·)i as ex-
plained in the Sect.

2.3. Conventional Derivation. Making the following substitutions into a generic
Bayes’ theorem in Eq. (39)

(20)
↵ ! P 0

� ! T (·)
� ! (hP i, hDi,C) = (hzi,C)
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (39)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of gener-
alized data and their covariances, where for hz0i f(z0) = z0 = (P 0, D0) and for C0

f(z0) = (z0 � hz0i)(z0 � hz0i)+

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).
Note that posterior data D0 could be thought of as nuisance parameters whose

e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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referred to as Generalized Linear Least Squares (GLLS) .
The term ”Generalized” indicates that posterior values of
parameters and of data are optimized simultaneously to
find the minimum of the �2 given by Eq. (34). APLCON
can

However, there is another commonplace definition of
�2 in which the posterior dataD0 appearing in z0 ⌘ (P 0, D0)
in Eq. (34) is replaced by T (P 0) (while using the same co-
variance matrix C) in an apparent attempt to minimize
the di↵erence between the data hDi and the model pre-
diction T (P 0) (computed from posterior parameter values
P 0), where the constraint hci ⌘ hT (P 0)i � hD0i = 0 used
in the CLS is not enforced. In other words, the di↵erence
(z0 � hzi) in Eq. (34) is replaced by

(z0 � hzi) ⌘ (P 0 � hP i, D0 � hDi)
! (P 0 � hP i, T (P 0)� hDi) (35)

and no constraint is imposed. This definition of �2 has
been used in nuclear data evaluations and is also the quan-
tity that is minimized in generic optimization codes like
MINUIT [6]. Although this definition of �2 may appear
to be similar in form to Q(z0) in Eq. (34) used in the
CLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data.
Several cases of departure between the CLS and the ”�2”
method have been catalogued by V. Blobel in [1].

In particular, one common form of this �2 expression
is given for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and exper-
imental data covariance matrix V being the blocks along
the diagonal:

�2 = (P 0 � hP i)+M�1(P 0 � hP i)
+ (T (P 0)� hDi)+V�1(T (P 0)� hDi) (36)

For CLS and G(L)LS the corresponding expression is

�2 = (P 0 � hP i)+M�1(P 0 � hP i)
+ (D0 � hDi)+V�1(D0 � hDi) (37)

with the constraint

T (P 0)�D0 = 0 (38)

5 Appendix

The following expression are referenced within the paper
by assigning a context-dependent meaning to generic vari-
ables ↵, �, and � used below. A generic product rule of
probability theory is

p(↵�|�) = p(↵|��)p(�|�) (39)

and generic Bayes theorem could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�). (40)

The law of total probability

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�) (41)

is equivalent to marginalization of nuisance parameter �
by integrating over its all possible values.
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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1 Introduction

Advancement of scientific understanding of natural phe-
nomena is partly due to a complementary activity of con-
ceiving better models while performing experiments that
test those models or explore their limits of validity. There
are many historical examples of constructive interplay be-
tween conceptual models and experiments that have re-
sulted in improved understanding of some phenomena.
Although experiments are often viewed as objective and
independent from the model they were designed to test,
that their conception and design may be based upon some
model in which measured data are to be interpreted and
compared to the prediction of the model being tested.

New prior:
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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✓

M W

W

|
V

◆
. (7)
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@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,
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(Normalized) generalized data posterior PDF
• Enables computation of arbitrary posterior expectation values:
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (39)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of gener-
alized data and their covariances, where for hz0i f(z0) = z0 and for C

0 f(z0) =
(z0 � hz0i)(z0 � hz0i)+

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).
Note that posterior data D0 could be thought of as nuisance parameters whose

e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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This provides a recipe for computation of posterior expectation values of gener-
alized data and their covariances, where for hz0i f(z0) = z0 and for C

0 f(z0) =
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be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).
Note that posterior data D0 could be thought of as nuisance parameters whose

e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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• Integration is over all posterior values of z’=(P’,D’)
– Analogous to integrating out “nuisance parameters” (Jaynes 1999) 
– Posterior expectation values <z’>=(<P’>,<D’>) ≠ <z>=(<P>,<D>)

• <D’>≠<D>; posterior experimental data are informed by the model
• This appears to be an organic aspect of Bayes’ theorem, not an adjustment

– Evaluated model covariance matrix can be computed to all orders
– Use f(z’) below; cf. 1st order approximation (dT/dP’)M’(dT/dP’), and V’ 
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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New Bayesian derivation outline

The GLS in ND is at the bottom of this approximation hierarchy

Bayes’ Theorem

Bayesian Generalized Data Fitting Method

Constrained Generalized Least Squares (CGLS)

A Form Specialized for Normal PDFs

Generalized Least Squares (GLS)
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Hierarchy of approximations I: posterior PDFs
• The most general posterior generalized data PDF is

• Assuming normal forms of PDFs, where                            , 
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.

Goran Arbanas et al.: Bayesian Generalized Data Optimization Method 5

covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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have converged.
Elements of MC ensemble of generalized data, {zk},
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0 (from the previ-
ous iteration) are constructed as
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p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
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and replace the second term by a constraint � = 0. This
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that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:
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• Application of constraint into prior yields UMC-B w/o constraint
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reported in evaluated nuclear data files like the ENDF
[10].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (19)

⌘ N (z|hzi,C) (20)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(T (·), h�i,�|z, hzi,C) / e�
1
2 (�̃�h�i)|��1(�̃�h�i), (21)

⌘ N (�̃|h�i,�) (22)

where h�i is a given model defect, � ⌘ h(��h�i)(��h�i)|i
is its given covariance matrix, and

�̃ ⌘ T (P )�D (23)

is the deviation between the model prediction and exper-
imental data2. Consequently, the posterior PDF becomes
a product of 2 normal PDFs

p(z|hzi,C, T (·), h�i,�) / N (z|hzi,C)⇥N (�̃|h�i,�)
(24)

This posterior PDF of generalized data, i.e., parameters
and data, di↵ers from the PDF used for the Universal
Monte Carlo (UMC) method in Capote, [15], in that the
latter one is a PDF of parameters only.

A theory without a defect would have h�i = 0, and the
likelihood function in Eq. (21) would impose a penalty on
deviations between model prediction and data according
to

p(T (·), h�i = 0,�|z, hzi,C) / e�
1
2 �̃

|��1�̃

= N (�̃|h�i = 0,�) (25)

where �̃ ⌘ T (P )�D. Such a theory would also likely have
a small covariance matrix �, so that ��1 would be very
large. In the limit ��1 ! 1 there would be an e↵ective
constraint �̃ = 0, that is, T (P ) = D. Under these circum-
stances, the likelihood function in Eq. (25) could be ap-
proximated by a constant, so the posterior PDF in Eq. (9)
can be approximated by the prior PDF in Eq. (19), with
the same constraint enforced. In Section 4, it will be shown
that this is equivalent to the CGLS method implemented
in the APLCON code, or to its linear approximation im-
plemented in the TSURFER module of the SCALE code
system. However, our general formalism can accommodate
any probabilistic model defect specified by h�i and � via
the likelihood function.

2 Note that h�i is not necessarily equal to h�̃i. In fact, setting
h�i = h�̃i would lead to hzi0 ⇡ hzi to the extent p(z|hzi,C) and
p(�̃|h�̃i,�) are symmetric around z = hzi.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! T (·), h�i,�
� ! (hP i, hDi,C) = (hzi,C),

(26)

one obtains

p(P |hzi,C, T (·), h�i,�) / p(P |hzi,C)

⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior
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⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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reported in evaluated nuclear data files like the ENDF
[10].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (19)

⌘ N (z|hzi,C) (20)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(T (·), h�i,�|z, hzi,C) / e�
1
2 (�̃�h�i)|��1(�̃�h�i), (21)

⌘ N (�̃|h�i,�) (22)

where h�i is a given model defect, � ⌘ h(��h�i)(��h�i)|i
is its given covariance matrix, and

�̃ ⌘ T (P )�D (23)

is the deviation between the model prediction and exper-
imental data2. Consequently, the posterior PDF becomes
a product of 2 normal PDFs

p(z|hzi,C, T (·), h�i,�) / N (z|hzi,C)⇥N (�̃|h�i,�)
(24)

This posterior PDF of generalized data, i.e., parameters
and data, di↵ers from the PDF used for the Universal
Monte Carlo (UMC) method in Capote, [15], in that the
latter one is a PDF of parameters only.

A theory without a defect would have h�i = 0, and the
likelihood function in Eq. (21) would impose a penalty on
deviations between model prediction and data according
to

p(T (·), h�i = 0,�|z, hzi,C) / e�
1
2 �̃

|��1�̃

= N (�̃|h�i = 0,�) (25)

where �̃ ⌘ T (P )�D. Such a theory would also likely have
a small covariance matrix �, so that ��1 would be very
large. In the limit ��1 ! 1 there would be an e↵ective
constraint �̃ = 0, that is, T (P ) = D. Under these circum-
stances, the likelihood function in Eq. (25) could be ap-
proximated by a constant, so the posterior PDF in Eq. (9)
can be approximated by the prior PDF in Eq. (19), with
the same constraint enforced. In Section 4, it will be shown
that this is equivalent to the CGLS method implemented
in the APLCON code, or to its linear approximation im-
plemented in the TSURFER module of the SCALE code
system. However, our general formalism can accommodate
any probabilistic model defect specified by h�i and � via
the likelihood function.

2 Note that h�i is not necessarily equal to h�̃i. In fact, setting
h�i = h�̃i would lead to hzi0 ⇡ hzi to the extent p(z|hzi,C) and
p(�̃|h�̃i,�) are symmetric around z = hzi.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! T (·), h�i,�
� ! (hP i, hDi,C) = (hzi,C),

(26)

one obtains

p(P |hzi,C, T (·), h�i,�) / p(P |hzi,C)

⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior
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1. Generalized data, z ⌘ (P,D), is a union of model pa-
rameters (P ) and experimental data (D),

2. Bayes theorem is applied directly to generalized data,
3. A model, i.e., theory T (·), and its defect, i.e., the ex-

pectation value of its deviation from data, h�i, and the
corresponding covariance,� ⌘ h(��h�i)(��h�i)|i, are
accounted for in the Bayes’ theorem, where h�i and �

should be known independently of the data. In partic-
ular, it should not be assumed that h�i = hT (P )�Di.

4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P
and experimental data D, namely

z ⌘ (P,D), (4)

and the covariance matrix of generalized data is a block
diagonal matrix with parameter covariance matrix M and
data covariance matrix V along the diagonal, and W

cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)|i (5)

=

✓
h(P�hP i)(P�hP i)|i h(P�hP i)(D�hDi)|i
h(D�hDi)(P�hP i)|i h(D�hDi)(D�hDi)|i

◆
(6)

⌘
✓

M W

W

|
V

◆
. (7)

The Bayes’ theorem is used to write the posterior PDF
for z ⌘ (P,D) by making the following substitution in
Eq. (1),

↵ ! z
� ! T (·), h�i,�
� ! hzi,C,

(8)

to obtain

p(z|hzi,C, T (·), h�i,�) / p(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, the model T (·), and its defect
specified by h�i and �, rather than an arbitrary adjust-
ment to data made solely for the sake of improving the
agreement between the model and the data.

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·), h�i,�). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·), h�i,�) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dDp(z|hzi,C, T (·), h�i,�), (14)

hPP |i0 =
Z
dPPP |

Z
dDp(z|hzi,C, T (·), h�i,�), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
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reported in evaluated nuclear data files like the ENDF
[10].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (19)

⌘ N (z|hzi,C) (20)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(T (·), h�i,�|z, hzi,C) / e�
1
2 (�̃�h�i)|��1(�̃�h�i), (21)

⌘ N (�̃|h�i,�) (22)

where h�i is a given model defect, � ⌘ h(��h�i)(��h�i)|i
is its given covariance matrix, and

�̃ ⌘ T (P )�D (23)

is the deviation between the model prediction and exper-
imental data2. Consequently, the posterior PDF becomes
a product of 2 normal PDFs

p(z|hzi,C, T (·), h�i,�) / N (z|hzi,C)⇥N (�̃|h�i,�)
(24)

This posterior PDF of generalized data, i.e., parameters
and data, di↵ers from the PDF used for the Universal
Monte Carlo (UMC) method in Capote, [15], in that the
latter one is a PDF of parameters only.

A theory without a defect would have h�i = 0, and the
likelihood function in Eq. (21) would impose a penalty on
deviations between model prediction and data according
to

p(T (·), h�i = 0,�|z, hzi,C) / e�
1
2 �̃

|��1�̃

= N (�̃|h�i = 0,�) (25)

where �̃ ⌘ T (P )�D. Such a theory would also likely have
a small covariance matrix �, so that ��1 would be very
large. In the limit ��1 ! 1 there would be an e↵ective
constraint �̃ = 0, that is, T (P ) = D. Under these circum-
stances, the likelihood function in Eq. (25) could be ap-
proximated by a constant, so the posterior PDF in Eq. (9)
can be approximated by the prior PDF in Eq. (19), with
the same constraint enforced. In Section 4, it will be shown
that this is equivalent to the CGLS method implemented
in the APLCON code, or to its linear approximation im-
plemented in the TSURFER module of the SCALE code
system. However, our general formalism can accommodate
any probabilistic model defect specified by h�i and � via
the likelihood function.

2 Note that h�i is not necessarily equal to h�̃i. In fact, setting
h�i = h�̃i would lead to hzi0 ⇡ hzi to the extent p(z|hzi,C) and
p(�̃|h�̃i,�) are symmetric around z = hzi.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! T (·), h�i,�
� ! (hP i, hDi,C) = (hzi,C),

(26)

one obtains

p(P |hzi,C, T (·), h�i,�) / p(P |hzi,C)

⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior

• Taking the limit 
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reported in evaluated nuclear data files like the ENDF
[10].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (19)

⌘ N (z|hzi,C) (20)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(T (·), h�i,�|z, hzi,C) / e�
1
2 (�̃�h�i)|��1(�̃�h�i), (21)

⌘ N (�̃|h�i,�) (22)

where h�i is a given model defect, � ⌘ h(��h�i)(��h�i)|i
is its given covariance matrix, and

�̃ ⌘ T (P )�D (23)

is the deviation between the model prediction and exper-
imental data2. Consequently, the posterior PDF becomes
a product of 2 normal PDFs

p(z|hzi,C, T (·), h�i,�) / N (z|hzi,C)⇥N (�̃|h�i,�)
(24)

This posterior PDF of generalized data, i.e., parameters
and data, di↵ers from the PDF used for the Universal
Monte Carlo (UMC) method in Capote, [15], in that the
latter one is a PDF of parameters only.

A theory without a defect would have h�i = 0, and the
likelihood function in Eq. (21) would impose a penalty on
deviations between model prediction and data according
to

p(T (·), h�i = 0,�|z, hzi,C) / e�
1
2 �̃

|��1�̃

= N (�̃|h�i = 0,�) (25)

where �̃ ⌘ T (P )�D. Such a theory would also likely have
a small covariance matrix �, so that ��1 would be very
large. In the limit ��1 ! 1 there would be an e↵ective
constraint �̃ = 0, that is, T (P ) = D. Under these circum-
stances, the likelihood function in Eq. (25) could be ap-
proximated by a constant, so the posterior PDF in Eq. (9)
can be approximated by the prior PDF in Eq. (19), with
the same constraint enforced. In Section 4, it will be shown
that this is equivalent to the CGLS method implemented
in the APLCON code, or to its linear approximation im-
plemented in the TSURFER module of the SCALE code
system. However, our general formalism can accommodate
any probabilistic model defect specified by h�i and � via
the likelihood function.

2 Note that h�i is not necessarily equal to h�̃i. In fact, setting
h�i = h�̃i would lead to hzi0 ⇡ hzi to the extent p(z|hzi,C) and
p(�̃|h�̃i,�) are symmetric around z = hzi.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! T (·), h�i,�
� ! (hP i, hDi,C) = (hzi,C),

(26)

one obtains

p(P |hzi,C, T (·), h�i,�) / p(P |hzi,C)

⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data z ⌘ (P,D) ! (P, T (P )), and the di↵erence
(z � hzi) in Eq. (39) is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)
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reported in evaluated nuclear data files like the ENDF
[10].

2.2 Posterior PDF for normal PDFs

Although this formalism applies to arbitrary PDFs, a par-
ticularly simple form is attained when normal form is as-
sumed for all PDFs. In that case, the prior PDF becomes

p(z|hzi,C) / e�
1
2 (z�hzi)|C�1(z�hzi), (19)

⌘ N (z|hzi,C) (20)

where N stands for a normal PDF, and the likelihood
function could be stated as

p(T (·), h�i,�|z, hzi,C) / e�
1
2 (�̃�h�i)|��1(�̃�h�i), (21)

⌘ N (�̃|h�i,�) (22)

where h�i is a given model defect, � ⌘ h(��h�i)(��h�i)|i
is its given covariance matrix, and

�̃ ⌘ T (P )�D (23)

is the deviation between the model prediction and exper-
imental data2. Consequently, the posterior PDF becomes
a product of 2 normal PDFs

p(z|hzi,C, T (·), h�i,�) / N (z|hzi,C)⇥N (�̃|h�i,�)
(24)

This posterior PDF of generalized data, i.e., parameters
and data, di↵ers from the PDF used for the Universal
Monte Carlo (UMC) method in Capote, [15], in that the
latter one is a PDF of parameters only.

A theory without a defect would have h�i = 0, and the
likelihood function in Eq. (21) would impose a penalty on
deviations between model prediction and data according
to

p(T (·), h�i = 0,�|z, hzi,C) / e�
1
2 �̃

|��1�̃

= N (�̃|h�i = 0,�) (25)

where �̃ ⌘ T (P )�D. Such a theory would also likely have
a small covariance matrix �, so that ��1 would be very
large. In the limit ��1 ! 1 there would be an e↵ective
constraint �̃ = 0, that is, T (P ) = D. Under these circum-
stances, the likelihood function in Eq. (25) could be ap-
proximated by a constant, so the posterior PDF in Eq. (9)
can be approximated by the prior PDF in Eq. (19), with
the same constraint enforced. In Section 4, it will be shown
that this is equivalent to the CGLS method implemented
in the APLCON code, or to its linear approximation im-
plemented in the TSURFER module of the SCALE code
system. However, our general formalism can accommodate
any probabilistic model defect specified by h�i and � via
the likelihood function.

2 Note that h�i is not necessarily equal to h�̃i. In fact, setting
h�i = h�̃i would lead to hzi0 ⇡ hzi to the extent p(z|hzi,C) and
p(�̃|h�̃i,�) are symmetric around z = hzi.

2.3 Conventional derivation of posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (1):

↵ ! P
� ! T (·), h�i,�
� ! (hP i, hDi,C) = (hzi,C),

(26)

one obtains

p(P |hzi,C, T (·), h�i,�) / p(P |hzi,C)

⇥ p(T (·), h�i,�|P, hzi,C), (27)

where the second factor on the right hand side can be
expanded as an integral over all possible values of data D,
given its expectation values hDi and its covariance matrix
C, by using the total probability theorem in Eq. (3):

p(T (·), h�i,�|P, hzi,C) = (28)Z
dD p(T (·), h�i,�|D,P, hzi,C)⇥ p(D|P, hzi,C).

The first term in Eq. (27) and the second term in Eq. (28)
could be combined by making the following substitutions:

↵ ! P
� ! D
� ! hzi,C

(29)

into the product rule in Eq. (2) to obtain

p(z|hzi,C) = p(P,D|hzi,C)

/ p(P |hzi,C)⇥ p(D|P, hzi,C). (30)

Combining all terms yields

p(P |hzi,C, T (·), h�i,�) /
Z

dDp(z|hzi,C)

⇥ p(T (·), h�i,�|z, hzi,C)

/
Z
dDp(z|hzi,C, T (·), h�i,�), (31)

where Bayes’ theorem stated by Eq. (9) was used to re-
place the integrand by p(z|hzi,C, T (·), h�i,�) on the last
line above. Therefore, posterior parameter expectation val-
ues and covariances computed with this PDF are equiva-
lent to those derived in Eqs. (14–16).

3 Iterative Bayesian Monte Carlo method

An iterative Bayesian MC method is devised for comput-
ing expectation values of posterior parameters hz0i and
of the posterior covariance matrix C

0 by using the MC
method to compute the integrals in Eqs. (11,13). Due to
the iterative nature of the method, calculations are initi-
ated with a prior generalized data hzi0 ! hzi and the prior
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.

Goran Arbanas et al.: Bayesian Generalized Data Optimization Method 5

covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.

becomes CGLS in the limit  
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

!̂kzk, (33)

C

0 !
X

k

!̂k(zk � hzi0)(zk � hzi0)|. (34)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
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Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
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Updated posterior expectation values of hzi0 and C

0 are
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ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C
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[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.
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Updated posterior expectation values of hzi0 and C

0 are
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ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C
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[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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covariance matrix C
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semble MC weight !k associated with the kth element of
the ensemble are computed as
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p(zk|hzi0,C0)
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1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:
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Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C
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[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.

• Application of constraint before cost minimization yields GLS 
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X
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!̂kzk, (33)
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0 !
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Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight !k associated with the kth element of
the ensemble are computed as

!k =
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p(zk|hzi0,C0)
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1
2 (�̃k�h�i)|��1(�̃k�h�i), (32)

where zk ⌘ (Pk, Dk) and �̃k = T (Pk)�Dk, and where the
model defect is described by h�i and �, and where the
normal form has been assumed for the likelihood function
in Eq. (21) only.
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k !̂k = 1 and
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Updated posterior expectation values of hzi0 and C

0 are
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ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (32).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (35)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (36)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:
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data hzi0 ⇡ zmin and of its covariance matrix C
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and replace the second term by a constraint � = 0. This
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that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
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constrained least squares (CLS) method implemented in
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4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi)
+ (�̃ � h�i)|��1(�̃ � h�i), (38)

where �̃ ⌘ T (P ) � D, and the model defect is given by
h�i and �. This cost function can be minimized by using
Laplace transform and Newton-Raphson method to yield
approximate posterior expectation values of generalized
data hzi0 ⇡ zmin and of its covariance matrix C

0 ⇡ Cmin

[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)
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the �2 implemented in the TSURFER code [8] and in
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equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
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vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
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Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
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vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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ance, and where the eigenvector matrix V and a diagonal
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of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (37)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.
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[11]. For a perfect model, one may set h�i ! 0 and� ! 0,
and replace the second term by a constraint � = 0. This
leads to

Q(z) ⇡ (z � hzi)|C�1(z � hzi) (39)

that coincides with the definition of the constraint and
the �2 implemented in the TSURFER code [8] and in
the APLCON code [14]. In these codes, the constraint
equivalent to �̃ = 0, that is, T (P ) = D, is enforced by the
Lagrange multiplier method, and the values of zmin that
minimize �2 are assumed to equal the expectation values
of posterior generalized data hzi0 ⇡ zmin. Since TSURFER
makes a linear approximation of the model, its method
is referred to as generalized linear least squares (GLLS).
The CLS method implicitly applies to generalized data
and it could be rightfully called constrained generalized
least squares (CGLS) to distinguish from the conventional
(unconstrained) generalized least squares (GLS) method
described below.

In conventional GLS, which is also known as the �2

minimization method, the di↵erence (z � hzi) in Eq. (39)
is replaced by

(z � hzi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (40)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13]. Although this definition of �2 may appear to
be similar in form to Q(z) in Eq. (39), as used in the
CGLS method, the two methods have been found to yield
tangibly di↵erent optimal values of parameters and their
covariances, especially in cases of highly correlated data
and systematic uncertainties. Several such cases of depar-
ture between the CGLS and the �2 minimization method
have been catalogued by Blobel [7].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (41)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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Testing favors CGLS over GLS: c2 minimization

• CGLS has been used in high energy physics for 50+ years 
(APLCON; no PPP when used for systematic or data 
reduction parameters

• V. Blobel (U. Hamburg, DESY) compiled cases for which 
CGLS finds more reasonable fits than GLS or c2 minimization
– http://www.desy.de/~blobel/apltalk.pdf
– 2-D fitting with line, parabola, uncertainties in x- and y-dimensions
– PPP appears in c2-min. but not in CGLS (p.17, 18)
– Related to non-diagonal reduced DCM computed at experimental vs. 

theoretical values (N. Larson, SAMMY)
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Constrained iterative Monte Carlo algorithm
• Iterate on posterior distribution until convergence is attained 

– “k,” random sample label from posterior normal distribution N (      ,     )
– is the Monte Carlo weight for computing expectation values
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one obtains

(21) p(P 0|hzi,C, T (·)) / p(P 0|hzi,C)⇥ p(T (·)|P 0, hzi,C),

where the second factor on the RHS can be expanded as an integral over all possible
values of data D0, given its expectation values hDi and its covariance matrix C,
by using total probability theorem in Eq. (40):

(22) p(T (·)|P 0, hzi,C) =

Z
dD0 p(T (·)|D0, P 0, hzi,C) ⇥ p(D0|P 0, hzi,C).

The first term in Eq. (21) and the second term in Eq. (22) could be combined by
making the following substitution

(23)
↵ ! P 0

� ! D0

� ! hzi,C
into the product rule in Eq. (38) to obtain

(24) p(z0|hzi,C) = p(P 0, D0|hzi,C) / p(P 0|hzi,C)⇥ p(D0|P 0, hzi,C).

Combining all terms yields

p(P 0|hzi,C, T (·)) /
Z

dD0p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C)(25)

/
Z

dD0p(z0|hzi,C, T (·)),(26)

where Bayes’ theorem stated by Eq. (6) was used to replace the integrand by
p(z0|hzi,C, T (·)) on the last line above. Therefore, posterior parameter expectation
values and covariances computed with this PDF are identical to those in Eqs. (12-
14) derived in the previous Subsection.

3. Monte Carlo Method

In Monte Carlo computation this constraint is imposed by sampling data D0

around theoretical value hT (P 0)i, while the unknown posterior covariance matrix
C

0 and the unknown matrix X

0 are to be determined by iterating Monte Carlo cal-
culations until convergence is achieved. Posterior expectation values of generalized
data, hz0i, could be obtained as:

(27) hz0i =
X

k

!̂kz
0
k

where !̂k’s are normalized weights !k’s

(28) !k =
p(z0k|hzi,C)

p(z0k|hz0i,C0)
e�

1
2 (D

0
k�T (P 0

k))
+X0�1(D0

k�T (P 0
k)),

where hz0i and C

0 = h(z0�hz0i)(z0�hz0i)+i are the averaged generalized data and
its covariance computed from the random ensemble of the previous Monte Carlo
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(22) p(T (·)|P 0, hzi,C) =

Z
dD0 p(T (·)|D0, P 0, hzi,C) ⇥ p(D0|P 0, hzi,C).

The first term in Eq. (21) and the second term in Eq. (22) could be combined by
making the following substitution

(23)
↵ ! P 0

� ! D0

� ! hzi,C
into the product rule in Eq. (38) to obtain

(24) p(z0|hzi,C) = p(P 0, D0|hzi,C) / p(P 0|hzi,C)⇥ p(D0|P 0, hzi,C).

Combining all terms yields

p(P 0|hzi,C, T (·)) /
Z

dD0p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C)(25)

/
Z

dD0p(z0|hzi,C, T (·)),(26)

where Bayes’ theorem stated by Eq. (6) was used to replace the integrand by
p(z0|hzi,C, T (·)) on the last line above. Therefore, posterior parameter expectation
values and covariances computed with this PDF are identical to those in Eqs. (12-
14) derived in the previous Subsection.

3. Monte Carlo Method

In Monte Carlo computation this constraint is imposed by sampling data D0

around theoretical value hT (P 0)i, while the unknown posterior covariance matrix
C

0 and the unknown matrix X

0 are to be determined by iterating Monte Carlo cal-
culations until convergence is achieved. Posterior expectation values of generalized
data, hz0i, could be obtained as:

(27) hz0i =
X

k

!̂kz
0
k

where !̂k’s are normalized weights !k’s

(28) !k =
p(z0k|hzi,C)

p(z0k|hz0i,C0)
e�

1
2 (D

0
k�T (P 0

k))
+X0�1(D0

k�T (P 0
k)),

where hz0i and C

0 = h(z0�hz0i)(z0�hz0i)+i are the averaged generalized data and
its covariance computed from the random ensemble of the previous Monte Carlo
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0 = h(z0�hz0i)(z0�hz0i)+i are the averaged generalized data and
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iteration. The constraint hD0i = hT (P 0)i is enforced in each iteration by defining
the random ensemble as

(29) z0 = hP 0, T (P 0)i+ VE1/2R

where R is a matrix of normally distributed random numbers with zero mean
and unit variance, and where the eigenvector matrix V and a diagonal eigenvalue
matrix E of the generalized data covariance matrix C

0 could be defined by its
singular value decomposition

(30) C

0 = VEV+.

The mean values used for sampling governed by Eq. (29) guarantee that the con-
straint hD0i = hT (P 0)i is satisfied and that the covariance matrix of z0k equals
C

0. To avoid extremely small weights caused by discrepant model and data, these
weights could be divided for numerical convenience by a constant number

(31) p(hz0i|hzi,C),

that is equivalent of subtracting (potentially large) exponents, prior to normalizing
weights.

4. Implications and Connections

In its most general form the presented method
In its most general form the presented method enables sampling of 1-, 2- or

higher-dimensional data, just as the constrained least squares (CLS) method im-
plemented in the APLCON code does.
CLS has been successfully used for data analysis in high-energy physics for over

50 years. Both CLS and the Generalized Linear Least Squares (GLLS) method
implemented in the TSURFER module of SCALE enforce the same constraint on
posterior expectation values of data and theory. CLS uses Lagrange multipliers to
enforce the respective constraint. The method presented here uses MC sampling
of data to enforce the constraint in each Monte Carlo iteration.
Posterior experimental data, D0, in this method could be viewed as nuisance

parameters that may be marginalized by integrating over all possible values of D0.
When normal PDF’s are assumed, the exponents in Eqs. (15,16) could be com-

bined to define a generalized cost function:

(32) Q(z0) ⌘ (z0 � hzi)+C�1(z0 � hzi) + (D0 � T (P 0))+X0�1(D0 � T (P 0)),

where X

0 is a covariance matrix defined in Eq. (17) and where the constraint
defined in Eq. (18) was set to 0, namely, hc(·)i ⌘ hT (P 0)i � hD0i = 0. With this
constraint one could argue that the second term in Eq. (32) is negligible relative
to the first, so that

(33) Q(z0) ⇡ (z0 � hzi)+C�1(z0 � hzi)
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• Resample using SVD of C’: 
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and W cross-covariance in the o↵ diagonal block:

C ⌘ h(z � hzi)(z � hzi)+i(2)

=

✓
h(P � hP i)(P � hP i)+i h(P � hP i)(D � hDi)+i
h(D � hDi)(P � hP i)+i h(D � hDi)(D � hDi)+i

◆
(3)

⌘
✓

M W

W

+
V

◆
(4)

The Bayes’ theorem is used to write the posterior PDF for z0 ⌘ (P 0, D0) by making
the following substitution in Eq. (39)

(5)
↵ ! z0

� ! T (·)
� ! hzi,C

to obtain

(6) p(z0|hzi,C, T (·)) / p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C).

The posterior PDF of generalized data must be normalized to unity, and posterior
expectation values of any function f(z0) could be computed by integrating over
the normalized posterior generalized data PDF

(7) hf(z0)i =
Z

dz0f(z0)p(z0|hzi,C, T (·)).

This provides a recipe for computation of posterior expectation values of gener-
alized data and their covariances, where for hz0i f(z0) = z0 = (P 0, D0) and for C0

f(z0) = (z0 � hz0i)(z0 � hz0i)+

hz0i =

Z
dz0z0p(z0|hzi,C, T (·))(8)

C

0 ⌘ h(z0 � hz0i)(z0 � hz0i)+i(9)

=

Z
dz0(z0 � hz0i)(z0 � hz0i)+p(z0|hzi,C, T (·))(10)

= hz0z0+i � hz0ihz0i+,(11)

as well as for computation of posterior model expectation values hT (P 0)i and their
covariances h(T (P 0) � hT (P 0)i)(T (P 0) � hT (P 0)i)+i. A natural consequence of
Bayes’ theorem is that posterior PDF of generalized data contains posterior PDF
of parameters and of measured data. The posterior PDF of measured data should
be viewed as the optimal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).
Note that posterior data D0 could be thought of as nuisance parameters whose

e↵ect on the posterior expectation values and covariance of model parameters has
been marginalized by integrating over all possible values of D0. This can be seen
by observing that expressions for expectation values of posterior model parameters
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one obtains

(21) p(P 0|hzi,C, T (·)) / p(P 0|hzi,C)⇥ p(T (·)|P 0, hzi,C),

where the second factor on the RHS can be expanded as an integral over all possible
values of data D0, given its expectation values hDi and its covariance matrix C,
by using total probability theorem in Eq. (40):

(22) p(T (·)|P 0, hzi,C) =

Z
dD0 p(T (·)|D0, P 0, hzi,C) ⇥ p(D0|P 0, hzi,C).

The first term in Eq. (21) and the second term in Eq. (22) could be combined by
making the following substitution

(23)
↵ ! P 0

� ! D0

� ! hzi,C
into the product rule in Eq. (38) to obtain

(24) p(z0|hzi,C) = p(P 0, D0|hzi,C) / p(P 0|hzi,C)⇥ p(D0|P 0, hzi,C).

Combining all terms yields

p(P 0|hzi,C, T (·)) /
Z

dD0p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C)(25)

/
Z

dD0p(z0|hzi,C, T (·)),(26)

where Bayes’ theorem stated by Eq. (6) was used to replace the integrand by
p(z0|hzi,C, T (·)) on the last line above. Therefore, posterior parameter expectation
values and covariances computed with this PDF are identical to those in Eqs. (12-
14) derived in the previous Subsection.

3. Monte Carlo Method

In Monte Carlo computation this constraint is imposed by sampling data D0

around theoretical value hT (P 0)i, while the unknown posterior covariance matrix
C

0 and the unknown matrix X

0 are to be determined by iterating Monte Carlo cal-
culations until convergence is achieved. Posterior expectation values of generalized
data, hz0i, could be obtained as:

(27) hz0i =
X

k

!̂kz
0
k

where !̂k’s are normalized weights !k’s

(28) !k =
p(z0k|hzi,C)

p(z0k|hz0i,C0)
e�

1
2 (D

0
k�T (P 0

k))
+X0�1(D0

k�T (P 0
k)),

where hz0i and C

0 = h(z0�hz0i)(z0�hz0i)+i are the averaged generalized data and
its covariance computed from the random ensemble of the previous Monte Carlo

ite
ra

te

– is a (#P + #D) × (#k)  matrix of N (0,1) normal random numbers
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iteration. The constraint hD0i = hT (P 0)i is enforced in each iteration by defining
the random ensemble as

(29) z0 = hP 0, T (P 0)i+ VE1/2R

where R is a matrix of normally distributed random numbers with zero mean
and unit variance, and where the eigenvector matrix V and a diagonal eigenvalue
matrix E of the generalized data covariance matrix C

0 could be defined by its
singular value decomposition

(30) C

0 = VEV+.

The mean values used for sampling governed by Eq. (29) guarantee that the con-
straint hD0i = hT (P 0)i is satisfied and that the covariance matrix of z0k equals
C

0. To avoid extremely small weights caused by discrepant model and data, these
weights could be divided for numerical convenience by a constant number

(31) p(hz0i|hzi,C),

that is equivalent of subtracting (potentially large) exponents, prior to normalizing
weights.

4. Implications and Connections

In its most general form the presented method
In its most general form the presented method enables sampling of 1-, 2- or

higher-dimensional data, just as the constrained least squares (CLS) method im-
plemented in the APLCON code does.
CLS has been successfully used for data analysis in high-energy physics for over

50 years. Both CLS and the Generalized Linear Least Squares (GLLS) method
implemented in the TSURFER module of SCALE enforce the same constraint on
posterior expectation values of data and theory. CLS uses Lagrange multipliers to
enforce the respective constraint. The method presented here uses MC sampling
of data to enforce the constraint in each Monte Carlo iteration.
Posterior experimental data, D0, in this method could be viewed as nuisance

parameters that may be marginalized by integrating over all possible values of D0.
When normal PDF’s are assumed, the exponents in Eqs. (15,16) could be com-

bined to define a generalized cost function:

(32) Q(z0) ⌘ (z0 � hzi)+C�1(z0 � hzi) + (D0 � T (P 0))+X0�1(D0 � T (P 0)),

where X

0 is a covariance matrix defined in Eq. (17) and where the constraint
defined in Eq. (18) was set to 0, namely, hc(·)i ⌘ hT (P 0)i � hD0i = 0. With this
constraint one could argue that the second term in Eq. (32) is negligible relative
to the first, so that

(33) Q(z0) ⇡ (z0 � hzi)+C�1(z0 � hzi)

where 
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2.3 Conventional derivation: posterior parameter PDF

Making the following substitutions into a generic Bayes’
theorem in Eq. (43)

↵ ! P 0

� ! T (·)
� ! (hP i, hDi,C) = (hzi,C)

(22)

one obtains

p(P 0|hzi,C, T (·)) / p(P 0|hzi,C)⇥p(T (·)|P 0, hzi,C), (23)

where the second factor on the RHS can be expanded as
an integral over all possible values of data D0, given its
expectation values hDi and its covariance matrix C, by
using total probability theorem in Eq. (44):

p(T (·)|P 0, hzi,C) =

Z
dD0 p(T (·)|D0, P 0, hzi,C)

⇥ p(D0|P 0, hzi,C). (24)

The first term in Eq. (23) and the second term in Eq. (24)
could be combined by making the following substitution

↵ ! P 0

� ! D0

� ! hzi,C
(25)

into the product rule in Eq. (42) to obtain

p(z0|hzi,C) = p(P 0, D0|hzi,C)

/ p(P 0|hzi,C)⇥ p(D0|P 0, hzi,C). (26)

Combining all terms yields

p(P 0|hzi,C, T (·)) /
Z

dD0p(z0|hzi,C)⇥ p(T (·)|z0, hzi,C)

/
Z

dD0p(z0|hzi,C, T (·)), (27)

where Bayes’ theorem stated by Eq. (6) was used to re-
place the integrand by p(z0|hzi,C, T (·)) on the last line
above. Therefore, posterior parameter expectation values
and covariances computed with this PDF are identical to
those in Eqs. (14-16) derived in the previous Subsection.

3 Iterative Constrained Monte Carlo Method

An iterative constrained Monte Carlo (MC) method is de-
vised for computing expectation values of posterior pa-
rameters hz0i and of the posterior covariance matrix C

0,
by using the MC method to compute the integrals in Eqs.
(8,11). The constraint hc(·)i given by Eq. (21) is built into
the random sampling method that is satisfied by construc-
tion of the random ensemble described below; this sam-
pling method could also be used to enforce a more general
constraint in Eq. (20).

Due to the iterative nature of the method, one initi-
ates calculations with a prior generalized data hz0i ! hzi,

the prior covariance matrix C

0 ! C, and matrix X

0 ! V

where V is the diagonal block of C corresponding to mea-
sured data. Using this initial random ensemble one com-
putes MC weight !k associated with the kth element of
the ensemble as

!k =
p(z0k|hzi,C)

p(z0k|hz0i,C0)
e�

1
2 (D

0
k�T (P 0

k))
+X0�1(D0

k�T (P 0
k)), (28)

where for hc(·)i = 0 matrix X

0 simplifies to

X

0 = h(D0 � T (P 0))(D0 � T (P 0))+i. (29)

These weights are then normalized as
P

k !̂k = 1 and
used to compute updated values of hz0i, C0, and X

0 for
use in the next iteration, as:

hz0i !
X

k

!̂kz
0
k, (30)

C

0 !
X

k

!̂k(z
0
k � hz0i)(z0k � hz0i)+, (31)

X

0 !
X

k

!̂k(D
0
k � T (P 0

k))(D
0
k � T (P 0

k)). (32)

Updated values of hz0i and C

0 are used for random sam-
pling in the next iteration according to the PDF p(z0|hz0i,C0),
while matrix X

0 a↵ects only the computation of weights
in Eq. (28). Since z0k are sampled from p(z0|hz0i,C0), the
weights for MC evaluation of integrals Eqs. (8,11) must
be divided by p(z0k|hz0i,C0) that explains its appearance
in the denominator of Eq. (28). These MC computations
are iterated until hz0i, C0 and X

0 have converged.
The constraint hD0i = hT (P 0)i is enforced on random

ensemble {z0k} ⌘ {(P 0
k, D

0
k)} in each iteration via

z0k = hP 0, T (P 0)i+ VE1/2Rk, (33)

where Rk is a vector (of the length of vector z) of nor-
mally distributed random numbers with zero mean and
unit variance, and where the eigenvector matrix V and
a diagonal eigenvalue matrix E of the generalized data
covariance matrix C

0 are defined by its singular value de-
composition

C

0 = VEV+. (34)

The mean values used for sampling governed by Eq. (33)
guarantee that the constraint hD0i = hT (P 0)i is satisfied
and that the covariance matrix of {z0k} equalsC0. To avoid
extremely small weights caused by discrepant model and
data, these weights could be divided for numerical conve-
nience by a constant number

p(hz0i|hzi,C), (35)

that is equivalent of subtracting (potentially large) expo-
nents, prior to normalizing weights.

4 Implications and connections to other

methods

In its most general form the presented method enables
sampling of 1-, 2- or higher-dimensional data, just as the

For constraint
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Conclusions and future applications
• Generalized data fitting method based on the Bayes’ theorem

– Accommodates model defect via constraint on expectation values 
– Implemented via iterative Monte Carlo method (J. Feng for SAMMY)
– Its special cases:

• Constrained [generalized] least squares (CLS) of V. Blobel in APLCON
• Generalized linear least squares (GLLS) [constrained] TSURFER WHISPER
• But NOT the c2 = (D-T(P’))V-1(D-T(P’)), which may yield different results (Blobel)

• Comparison of CLS/GLS to quantify accuracy of approximations

• Consideration of log normal random distributions (I. Kodeli)

• Enables multidimensional sampling such as cross sections and energies

• The new method could be used for consistent simultaneous optimization of 
differential and integral benchmark experiments
– To simultaneously fit differential and integral parameters
– To yield more complete and consistent evaluations
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Phenomenological Dirac R-matrix formalism
• Originally derived for calculable R-matrix, but expressed in a 

form that could be used for phenomenological fitting
– Ph.D. Thesis  (2011): http://scholarworks.wmich.edu/dissertations/411

• Boundary condition is determined by the channel radius
• Compare to approximations and the non-relativistic R-matrix

J. GRINEVICIUTE AND DEAN HALDERSON PHYSICAL REVIEW C 85, 054617 (2012)

approximation for the matrix elements with pseudovector πN
coupling.

II. R MATRIX FORMALISM

Solutions to the one-channel Dirac equation will be written
in the two-component form

uD =
(

[F (r)/r]"κm

[iG(r)/r]"−κm

)
τ, (1)

where

"κm =
∑

mℓms

Cl1/2j
mlmsm

Ylml
(θ,φ)χms

, (2)

wherej = |κ| − 1
2 and ℓ = κ for κ > 0 but ℓ = −(κ + 1) for

κ < 0 and τ indicates a proton or neutron. The regular and
irregular Dirac-Coulomb functions are generated as given by
Young and Norrington [11] employing the code COULCC [12],
and they are given the asymptotic form

FR =
√

E + m sin φ(r) and GR =
√

E − m cos φ(r),

FIR =
√

E + m cos φ(r) and GIR = −
√

E − m sin φ(r),

where ϕ(r) = kr + y log 2kr + δ′
κ − ℓπ /2, k is the momentum

of the proton in the center-of-momentum system, y =
Ze2E/k, E2 = m2

p + k2, δ′
κ = + − arg ,(γ + iy) + π

2 (l +
1 − γ ), e2i+ = iZe2 / k−κ

γ+iy
, and γ = (κ2 − Z2e4)1/2. Throughout

this paper, c = h̄ = 1. Incoming and outgoing waves are
constructed as

FI = FIR − iFR and GI = GIR − iGR making up Ic,

and

FO = FIR + iFR and GO = GIR + iGR making up Oc,

where c indicates a particular channel, |ljκτ, JA(JB)⟩, JA is
the target spin, and JB the total angular momentum. A wave
function with unit outgoing flux is Oc/

√
2kc.

The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ψ =

∑
λ Aλ|λ⟩. The set of |λ⟩ will be Dirac

oscillators coupled to the spin of the target. The Hamiltonian
to be solved is

∑

λ′

[
⟨λ|H − E|λ′⟩ +

∑

c

γλc(bλ′c − bc)γλ′c

]
Aλ′ = 0, (3)

where

bc = Gc(ac)/Fc(ac), (4)

bλc = Gλc(ac)/Fλc(ac), (5)

and

γλc = Fλc(ac). (6)

Gc and Fc are the components of the physical wave function
in channel c. The theory is placed in calculable form in the

method of Philpott [13] in which one finds a transformation T
such that

∑

λλ′

Tλµ[⟨λ|H |λ′⟩ +
∑

c

γλcbλ′cγλ′c]Tλ′µ′ = Eµδµµ′ . (7)

With this transformation, Eq. (3) becomes
∑

µ′

[(Eµ − E)δµµ′ −
∑

c

γµcbcγµ′c]Aµ′ = 0, (8)

where γµc =
∑

λ γλcTλµ andAλ =
∑

µ TλµAµ. One changes c

to c′ in Eq. (8), multiplies by γµc/(Eµ − E), and sums over µ
to obtain

γc =
∑

c′µ

γµc′γµcbc′

Eµ − E

∑

µ′

Aµ′γµ′c′ , (9)

or
∑

c′

[δcc′ − Rcc′bc′ ]γc′ = 0, (10)

where

γc =
∑

µ

Aµγµc, (11)

and

Rcc′ =
∑

µ

γµcγµc′/(Eµ − E). (12)

The amplitudes are extracted from Eq. (9),

Aµ = 1
Eµ − E

∑

c

γµcbcγc = 1
Eµ − E

∑

c

γµcGc(ac). (13)

A general solution for the coupled channels wave function
in the external region is [1]

+ =
∑

c

(
xc√
2kc

Oc + yc√
2kc

Ic

)
. (14)

The collision matrix S provides an expression for the xc in
terms of the yc. In matrix notation,

x = −Sy. (15)

From Eqs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

Fc =
∑

c′

Rcc′Gc′ =
∑

c′

Rcc′ [GOc′xc′/
√

2kc′ + GIc′yc′/
√

2kc′ ]

= FOcxc/
√

2kc + FIcyc/
√

2kc. (16)

If one defines diagonal matrices vcc ′ = 2kcδcc ′ , xcc ′ = δcc ′xc,
ycc ′ = δcc ′yc, GOcc ′ = δcc ′GOc, GIcc ′ = δcc ′GIc, FOcc ′ =
δcc ′FOc, and FIcc ′ = δcc ′FIc, this equation can be written as

FOv−1/2x + FIv−1/2y = RGOv−1/2x + RGIv−1/2y. If one
solves for x, one obtains the form in Eq. (15), x = −Sy, where

S = v1/2(Fo − RGo)−1(FI − RGI)v−1/2. (17)

Then the T matrix, Tcc′ , is in the usual form, i(δcc′ − Scc′ )/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |αJAMA⟩,
where JA, MA are the spin and its projection and α
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A general solution for the coupled channels wave function
in the external region is [1]

+ =
∑

c

(
xc√
2kc

Oc + yc√
2kc

Ic

)
. (14)

The collision matrix S provides an expression for the xc in
terms of the yc. In matrix notation,

x = −Sy. (15)

From Eqs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

Fc =
∑

c′

Rcc′Gc′ =
∑

c′

Rcc′ [GOc′xc′/
√

2kc′ + GIc′yc′/
√

2kc′ ]

= FOcxc/
√

2kc + FIcyc/
√

2kc. (16)

If one defines diagonal matrices vcc ′ = 2kcδcc ′ , xcc ′ = δcc ′xc,
ycc ′ = δcc ′yc, GOcc ′ = δcc ′GOc, GIcc ′ = δcc ′GIc, FOcc ′ =
δcc ′FOc, and FIcc ′ = δcc ′FIc, this equation can be written as

FOv−1/2x + FIv−1/2y = RGOv−1/2x + RGIv−1/2y. If one
solves for x, one obtains the form in Eq. (15), x = −Sy, where

S = v1/2(Fo − RGo)−1(FI − RGI)v−1/2. (17)

Then the T matrix, Tcc′ , is in the usual form, i(δcc′ − Scc′ )/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |αJAMA⟩,
where JA, MA are the spin and its projection and α
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
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, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
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× i(ℓ−ℓ′)ei(δ′
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B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ
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A
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, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],
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1 γ2λ
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2
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r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
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J
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The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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I. INTRODUCTION

The R matrix formalism of Lane and Thomas [1] has
proven to be the most physical and convenient reaction
theory for solving many-coupled-channel systems in light-
and medium-mass nuclei. It is not uncommon to couple
30 or more residual states of the target in nonrelativistic
calculations, and new computer codes need not be written
each time states are added. Microscopic models and nonlocal
potentials are easily incorporated in the theory. In addition
to providing scattering states, the formalism yields bound
states and resonances. Coupled-channel techniques, which
involve integrating coupled differential equations, can become
unstable for large numbers of channels, and they can miss
narrow resonances because the equations must be solved for
each energy over the resonance. Also, scattering observables
are calculated quickly at a given energy in the R matrix
formalism because they require diagonalizing matrices whose
dimensions are just the number of channels. Additional
advantages may be found in a review paper by Descouvemont
and Baye [2] and applications in a review in Ref. [3].

This paper is the last of a series of three papers that
describe the extension of the R matrix theory to the relativistic
case so that the many-coupled channels problem may be
solved for systems in which binary breakup channels satisfy
a relative Dirac equation. The first paper [4] demonstrated
that a R matrix theory exists for the Dirac equation and
derived the appropriate Bloch operator. Then, an example was
given for 35.5-MeV neutron scattering from a Woods-Saxon
potential. The expansion basis consisted of the free-particle
Dirac solutions whose upper components were zero at twice
the R matrix radius.

Paper [5] demonstrated that Dirac oscillator wave functions
[6,7] provided an excellent and convenient expansion basis.
This paper also demonstrated that the R matrix formalism
allows one to easily orthogonalize scattering solutions to

bound-state solutions and to treat nonlocal potentials; and,
hence, to calculate exchange terms in relativistic impulse ap-
proximation exactly. Examples were given for 160–200-MeV
elastic proton scattering from 16O, 40Ca, and 90Zr in the
impulse approximation with the two-nucleon t matrix elements
of Ref. [8]. In Ref. [5], it was shown that the common local-
density approximation for the exchange terms was inadequate
in relativistic calculations. The discrepancy between the exact
and the local-density approximation calculations was traced
to the extreme difference between the matrix elements of the
negative energy states of the basis functions and, hence, was a
relativistic effect.

The present paper provides derivations of the collision
matrix expression for coupled channels and the scattering
amplitude from which scattering observables can be extracted.
As an example of the formalism, relativistic continuum
Tamm-Dancoff approximation (TDA) calculations for 16O
are performed with interactions derived from relativistic
mean-field theory. Specifically, the formalism referred to as
quantum hydrodynamics (QHD) [9] is employed. The classical
meson fields of the original QHD are replaced by one-meson
exchange potentials. The validity of this replacement is
checked by comparing single-particle energies (SPEs) for
90Zr, calculated from both treatments with the same coupling
constants. Surprising agreement is found between the two
procedures with the simple σ + ω + ρ exchange. In addition,
the simple σ + ω + ρ exchange with QHD coupling
constants provides reasonable agreement with experimental
15N (p,p) 15N cross sections at 39.84 MeV. This is, there-
fore, a simple, physically justifiable interaction for later use
in knockout reactions. The importance of coupled-channel
solutions in (e,e′x) was emphasized in Ref. [10]. Finally, the
role of pions is investigated. It is found that pions have a
significant effect on SPEs and the 15N + p cross section,
however, a definitive conclusion on their utility awaits a better
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dimensions are just the number of channels. Additional
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case so that the many-coupled channels problem may be
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that a R matrix theory exists for the Dirac equation and
derived the appropriate Bloch operator. Then, an example was
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Dirac solutions whose upper components were zero at twice
the R matrix radius.
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allows one to easily orthogonalize scattering solutions to
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hence, to calculate exchange terms in relativistic impulse ap-
proximation exactly. Examples were given for 160–200-MeV
elastic proton scattering from 16O, 40Ca, and 90Zr in the
impulse approximation with the two-nucleon t matrix elements
of Ref. [8]. In Ref. [5], it was shown that the common local-
density approximation for the exchange terms was inadequate
in relativistic calculations. The discrepancy between the exact
and the local-density approximation calculations was traced
to the extreme difference between the matrix elements of the
negative energy states of the basis functions and, hence, was a
relativistic effect.

The present paper provides derivations of the collision
matrix expression for coupled channels and the scattering
amplitude from which scattering observables can be extracted.
As an example of the formalism, relativistic continuum
Tamm-Dancoff approximation (TDA) calculations for 16O
are performed with interactions derived from relativistic
mean-field theory. Specifically, the formalism referred to as
quantum hydrodynamics (QHD) [9] is employed. The classical
meson fields of the original QHD are replaced by one-meson
exchange potentials. The validity of this replacement is
checked by comparing single-particle energies (SPEs) for
90Zr, calculated from both treatments with the same coupling
constants. Surprising agreement is found between the two
procedures with the simple σ + ω + ρ exchange. In addition,
the simple σ + ω + ρ exchange with QHD coupling
constants provides reasonable agreement with experimental
15N (p,p) 15N cross sections at 39.84 MeV. This is, there-
fore, a simple, physically justifiable interaction for later use
in knockout reactions. The importance of coupled-channel
solutions in (e,e′x) was emphasized in Ref. [10]. Finally, the
role of pions is investigated. It is found that pions have a
significant effect on SPEs and the 15N + p cross section,
however, a definitive conclusion on their utility awaits a better
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ORNL S(a,b) evaluation framework overview
• The objective is to combine experimental double differential 

scattering data and model parameters to yield the best 
estimate of double differential cross section (DDCS) and 
uncertainties

• Data and simulation fit is achieved using the Unified Monte 
Carlo (UMC) [1] method

• Simulations are constrained by physical properties of material
• Framework tested on light water

– Data collected from ORNL Spallation Neutron Source (SNS)
– RPI collaboration

• Validated using benchmarks from the International Criticality 
Safety Benchmark Evaluation Project (ICSBEP) handbook

• C. Chapman’s Ph.D. https://smartech.gatech.edu/handle/1853/58693



24 Bayesian Generalized Data Fitting Method

Framework specifics: simulation

• Ran simulations of TIP4P/2005f [2] water in a box in the 
classical molecular dynamics (MD) code GROMACS [3]

• Computed density of states using trajectories from 
GROMACS 

• Intermediate structure factor calculated using Gaussian 
approximation found in Abe and Tasaki [4]
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Framework specifics: simulation

• Calculated scattering law using code developed for this 
project:
Intermediate structure factor → dynamic structure factor → 
scattering law

• Ran simplified MCNP code
• DDCS convoluted with SNS detector resolution function

𝑑*𝜎
𝑑𝐸Q𝑑Ω

=
𝜎S

4𝜋𝑘:𝑇
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Framework outline

Identify & 
sample MD 
parameters for 
ensemble of 
runs

GROMACS, post-
process, and 
MCNP for 
ensemble of runs

UMC to compare 
against experiment to 
obtain mean and 
covariance for 
ensemble of runs

Check for differences 
between new 
parameter set and 
previous parameter set

Resample 
parameters using 
UMC from 
previous run

Validate using 
ICSBEP 

benchmarks

Compare against 
physical properties 
of material

Sufficient physical 
properties and 
parameter sets?

yesno
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Results: properties of water
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Results: DDCS – SNS 
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Results: DDCS – independent 
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Results: total cross section
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Results: ICSBEP benchmarks

Benchmarks
• PST-033-003: plutonium 

nitrate solution surrounded 
by water

• LCT-079-007: water 
moderated and reflected 
triangular pitched UO2
fuel elements

• HCT-006-003: water 
moderated hexagonally 
pitched high enriched (80% 
235U) fuel rods

Sensitivity plot

██ PST-
033-003
██ LCT-
079-007
██ HCT-
006-003
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Results: PST-033-003

ENDF Library Keff
St.Dev
(pcm)

Δ Keff
(pcm)

Benchmark 1.00000 162 N/A

ENDF/B-VII.1 0.99349 4 651

ENDF/B-VIII.β3 0.99422 4 578

New XS 0.99483 4 517

• Noticeable improvement

• Issues may be caused by 
materials other than light water
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Results: LCT-079-007

ENDF Library Keff
St.Dev
(pcm)

Δ Keff
(pcm)

Benchmark 1.00030 80 N/A

ENDF/B-VII.1 0.99933 4 97

ENDF/B-VIII.β3 0.99982 4 48

New XS 1.00006 4 24

• Inconclusive improvement

• Results within error bounds 
of experimental uncertainty
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Results: HCT-006-003

ENDF Library Keff
St.Dev
(pcm)

Δ Keff
(pcm)

Benchmark 0.97690 490 N/A

ENDF/B-VII.1 0.98190 4 -500

ENDF/B-VIII.β3 0.98232 4 -542

New XS 0.98245 4 -555

• Slightly worse results

• Still within 2 standard 
deviations of experiment
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Conclusions

• Evaluation Framework was presented to generate thermal 
scattering law and uncertainties

• It showed sufficient agreement with the properties of light water
• It also showed good agreement with ENDF/B-VII.1 and 

ENDF/B-VIII.β3
• It has been validated against independent DDCS and ICSBEP 

benchmarks
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Future work 

• Other temperatures for light water: recent discussion about 
deficiencies at high temperatures

• Other models of light water
• Other materials
• Covariance generation and propagation
• ENDF format for 𝑆 𝛼, 𝛽 covariance and uncertainties
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