November 8th, 2017: CSEWG 2017, BNL

K.J. Kelly¹
J.A. Gomez¹, J.M. O'Donnell¹, M. Devlin¹, R.C. Haight¹, T.N. Taddeucci¹,
S.M. Mosby¹, H.Y. Lee¹, N. Fotiades¹, D. Neudecker¹, P. Talou¹,
M.E. Rising¹, M.C. White¹, C.J. Solomon¹,
C.Y. Wu², M.Q. Buckner², B. Bucher², R.A. Henderson²

¹Los Alamos National Laboratory ²Lawrence Livermore National Laboratory

Work performed under the auspices of U.S. DOE by LANL under contract DE-AC52-06NA25396 and LLNS, LLC under contract DE- AC52-07NA27344

LA-UR-17-XXXXX (DC Reviewed)

Slide 1 of 9

Chi-Nu Goals, Method, and Challenges

The Chi-Nu Arrays

MCNP[®] ⁶Li-glass Detector Response Matrix

Detector Response Changes with Experimental Environment

What is the Average *n* Energy Upon Detection?

Average Neutron Energy Upon Detection, E' (MeV)

Method of PFNS Extraction: Ratio-of-Ratios Method[†]

True within \sim 5–10% for a typical PFNS

$$egin{aligned} D_lpha &= ext{Double Ratio} \ &= rac{C(p_lpha(E), E_t)/p_lpha(E_t)}{C(p_{maxw}(E), E_t)/p_{maxw}(E_t)} \end{aligned}$$

Average over reasonable PFNS range and set equal to the experimental ratio

$$\frac{1}{\kappa} \sum_{\alpha=1}^{\kappa} \frac{C(p_{\alpha}, E_{t})}{p_{\alpha}(E_{t})} = \frac{C(p_{exp}, E_{t})}{p_{exp}(E_{t})}$$
$$\Rightarrow \boxed{p_{exp}(E) = \frac{C(p_{exp}, E_{t})}{\frac{1}{\kappa} \sum_{\alpha=1}^{\kappa} \frac{C(p_{\alpha}, E_{t})}{p_{\alpha}(E_{t})}}}$$

 \rightarrow Quickly extracts PFNS → Uncertainties are increased to account for bias towards average PFNS

T.N. Taddeucci et al., Nucl. Data Sheets, **1232** (2015) 135 Slide 6 of 9

²³⁵U Combined ⁶Li-glass and Preliminary L.S. Results

Preliminary ²³⁹Pu PFNS: 2nd-Chance Fission Region

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Future Directions

- Systematic Uncertainties:
 - MCNP[®] nuclear physics
 - Background normalization
 - Other sources
- More sophisticated analyses
 - Forward Analysis
 - max(\mathcal{L}) or min(χ^2)
 - Maxwellian & Watt PFNS
 - CoH₃ (LAM), CGMF
 - Unfolding
 - MCMC p(E) Variations
 - ROOT routines
 - SVD, Bayesian Analysis
- Finalize HE analysis of ²³⁵U
- Finalize LE analysis of ²³⁹Pu
- Analyze HE ²³⁹Pu data

