Benchmarking of Fe at BNL

M. Herman, R. Arcilla, D. Brown, G. Nobre National Nuclear Data Center Brookhaven National Laboratory

a passion for discovery

Criticality benchmarks

	ICSBEP name	Common name
1	HEU-MET-FAST-013	VNIITF-CTF-SS-13
2	HEU-MET-FAST-021	VNIITF-CTF-SS-21
3	HEU-MET-FAST-024	VNIITF-CTF-SS-24
4	HEU-MET-FAST-087	VNIITF-CTF-Fe
5	HEU-MET-FAST-088	hmf088-1
6	HEU-MET-FAST-088	hmf088-2
7	HEU-MET-INTER-001	ZPR-9/34
8	HEU-MET-THERM-013	hmt013-2
9	HEU-MET-THERM-015	hmt015
10	IEU-MET-FAST-005	VNIITF-CTF-SS-5
11	IEU-MET-FAST-006	VNIITF-CTF-SS-6
12	LEU-COMP-THERM-042	lct042-1
13	LEU-COMP-THERM-042	lct042-2
14	$\label{eq:leu-comp-THERM-043} LEU-COMP-THERM-043$	IPEN/MB-01
15	LEU-MET-THERM-015	lmt015
16	MIX-COMP-FAST-001	ZPR-6/7
17	MIX-COMP-FAST-005	ZPR-9/31
18	MIX-COMP-FAST-006	ZPPR-2
19	PU-MET-FAST-015	BR-1-3
20	PU-MET-FAST-025	pmf025
21	PU-MET-FAST-026	pmf026
22	PU-MET-FAST-028	pmf028
23	PU-MET-FAST-032	pmf032
24	PU-MET-INTER-002	ZPR-6/10

Brookhaven Science Associates

0

Critical assemblies

Brookhaven Science Associates

Critical assemblies (cont.)

Critical assemblies (cont.)

- Compared to ENDF/B-VII.1 irons, the new iron evaluations coupled to the ENDF/B- VIII.0 library:
 - improve performance of 13 benchmarks
 - maintain the performance for 8.
 - worsen the agreement for 3 benchmarks

γ transmission ²⁵²Cf by S. Simakov

- 60 cm iron sphere with 2 cm hole in the middle
- 252Cf neutron source
- VIII.0 under-calculates
 γ-leakage between 1-4 MeV
 and over-calculates below
 1 MeV still better than VII.1
- major players: inelastic, capture, ²⁵²Cf source

VIII.0 performs better than VII.1

n transmission T(d,n) by S. Simakov

- 60 cm iron sphere with 2 cm hole in the middle
- T(d,n) neutron source
- VIII.0 under-calculates n-leakage between 1-4 MeV
- major player: inelastic

VIII.0 performs better than VII.1

n transmission ²⁵²Cf by S. Simakov

- 60 cm iron sphere with 2 cm hole in the middle
- 252Cf neutron source
- VIII.0 under-calculates leakage between 1-10 MeV

VIII.0 performs worse than VII.1

n transmission ²⁵²Cf by S. Simakov

- 60 cm iron sphere with 2 cm hole in the middle
- 252Cf neutron source
- VIII.0 under-calculates leakage between 1-10 MeV
- major player: elastic
- Beyond VIII.0 CC elastic angular distributions above RR (change between 846 keV and 4 MeV) - step in the right direction

Neutron scattering cross section measurements with a new scintillator array

Elisa Pirovano

Beyond VIII.0 - new measurements of elastic at GELINA & nELBE indicate that VIII.0 is too low => inelastic is too high.

(b) Comparison with the nELBE dataset.

https://www-nds.iaea.org/publications/indc/indc-blg-0002/

Conclusions

Overall, VIII.0 improves criticality results

- Gamma leakage from iron spheres gets better
- Neutron leakage from iron spheres
 - results for the d-T source are improved
 - results for the ²⁵²Cf source get worse
- Possible improvements
 - elastic angular distributions
 - elastic to inelastic ratio

OMNIA MUTANTUR, NIHIL INTERIT

(everything evolves, nothing is lost)

OMNIA DICTA FORTIORA SI DICTA LATINA (everything is stronger if said in Latin)

