Charged Particle Evaluations plans for post - ENDF/B-VIII.0

Ian Thompson, Caleb Mattoon Nuclear Data and Theory Group

LLNL-PRES-740950

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Past, Present and Future Evaluations

Evaluations in ENDF/B-VII.1

Evaluations in ENDF/B-VIII.0 and 1

Submitted from LLNL in October 2016:

ENDF for a+a, d+7Li, h+h, h+a, p+a, p+7Li, t+a, t+7Li

Thermonuclear Reaction Library

- Legacy ECPL/ENDL99 evaluations
 - Incident charged particles (p,d,t,He3,He4), light targets Z<=3 (p,d,t,He3,He4,Li6,Li7)
 - R.M. White, D.A. Resler, S.I. Warshaw 'Evaluation of Charged-Particle Reactions for Fusion Applications,' Proc. from Nuclear Data for Sci. and Tech., Ed. S.M. Qaim, Juelich, Fed. Rep. Germany, 13-17 May (1991)
 - S.T. Perkins, D.E. Cullen, 'Elastic Nuclear plus Interference cross sections for light-charge particles' Nucl. Sci. Eng. 77, 20-39 (1981)

• 2010 evaluations at LLNL by Petr Navratil, David Brown & Chris Hagmann

- Main sources for new evaluations
 - Descouvemont R-Matrix analysis
 - P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, Atomic Data & Nucl. Data Tables 88, 203 (2004)
 - NACRE (Nuclear Astrophysics Compilation of REaction rate)
 - C. Angulo et al., Nucl. Phys. A656 (1999)3-187
 - Experimental data not in EXFOR
- Include also parts from:
 - LANL n+n evaluation by Gerry Hale
 - JENDL-4 n+d, n+He3 evaluations
- All the new evaluations are already in ENDL2011, and tested in applications.

Major Improvements

- d+Li6 evaluation
- t+Li6 evaluation

d+Li6 evaluation

- ENDF/B-VIII.0 (Page 2004)
 - (d,el), (d,n₀), (d,p₀), (d,a₀)
- ENDF/B-VIII.1 (Navratil 2010)
 - (d,el) from ENDF (extended to higher energies)
 - (d,a) from ENDF (up to 4.55 MeV)
 - extended to higher energies to match data from [3,4]
 - ENDF low, needs re-evaluating
 - (d,n+He3) from ECPL

[3] R. Risler, W. Gruebler, A. A. Debenham, V. Koenig, P. A. Schmelzbach, D. O. Boerma, Nucl. Phys. A 286, 115 (1977)

[4] N Arena, I Ya Barit, S Cavallaro, A d'Arrigo, G Fazio, G Giardina, V V Ostashko, M Sacchi, V N Urin and S V Zuyev, J. Phys. G 20, 12, 1973 (1994)

d+Li6 evaluation

- ENDF/B-VIII.0 (Page 2004)
 - $(d,el), (d,n_0), (d,p_0), (d,a_0)$
- ENDF/B-VIII.1 (Navratil 2010)
 - (d,n) from ECPL
 - (d,p) from ENDF (extended to higher energies)
 - (d,t+p) from ECPL, expt data labeled as (d,t)

t+Li6 evaluation

- ENDF/B-VIII.0 (Hale 2001)
 (t,el), (t,na), (t,d₀)
- ENDF/B-VIII.1 (Navratil, Brown, Hale 2010)
 - (t,el) from ENDF
 - (t,2n) from ECPL
 - (t*,*na)
 - Based on data by Valter et al. [3] and Gluzhovskij et al.
 [4]
 - Angular distributions: From ECPL
 - (t,p)
 - Based on data by Abramovich [7].
 - Un-normalized data by Ciric [6] scaled by 24000 to match [7]
 - Voronchev data [5] for cross section of 8Li excited state seems to justify existence of peak around 1.5 MeV
 - Angular distributions: proton distribution same as neutron distribution from the (n2a) reaction, ignoring the mass differences
 - (t,d) from ENDF
- [3] A.K.Valter, P.I.Vacet, L.Ja.Kolesnikov, S.G.Tonapetjan, K.K.Chernjavskij,
- A.I.Shpetnyj, Atomnaya Energiya 10, (6), 577 (1961)

[4] B.Ja.Guzhovskij, S.N.Abramovich, A.G.Zvenigorodskij, S.V.Trusillo, Prikladnaya Yadernaya, Spektroskopiya 13, 135 (1984)

- [5] V T Voronchev, V I Kukulin, J. Phys. G: Nucl. Part. Phys. 26 L123 (2000)
- [6] D.Ciric, B.Stepancic, R.Popic, D.Stanojevic, M.Aleksic, Fizika, 4, 193, (1972)
- 7] S.N.Abramovich, B.Ja.Guzhovskij, A.G.Zvenigorodskij, S.V.Trusillo, S.A.Dunaeva, Izv. Rossiiskoi Akademii Nauk, Ser.Fiz. 50, (1), 65 (1986)

Minor Improvements

- Better fits within error bars
 - p+H3 evaluation p+t
 - p+Li6 evaluation
 - d+t evaluation

- Adding gamma capture channels
 - p+H3 evaluation p+t
 - d+t evaluation

p+H3 evaluation

- ENDF/B-VIII.0 (Hale 1999)
 - (p,el), (p,n₀), (p,d₀) [0-12 MeV]
- ENDF/B-VIII.1 (Navratil et al., 2009)
 - (p,el) from ECPL
 - (p,n_0) from ECPL (ENDF newer fit with more recent data)
 - (p,d₀) from ENDF/B-VIII.0
 - An extension to 20 MeV is given for the T(p,n) reaction, based on the inverse of the 3He(n,p) reaction given in the ENDF/B file.
 - (p,g) fit to 5 new data sets from PRC
 - [3] Phys. Rev. C 65: 044008 (2002)
 - [4] McBroom et al., Phys. Rev. C 25, 1644 (1982) [in EXFOR]
 - [5] Phys. Rev. 99, 1368 (1955).
 - [6] Calarco et al., Phys. Rev. C 28, 483 (1983) [EXFOR problem]
 - [7] Phys. Rev. C 51, 1624 (1995)

p+H3 evaluation

- ENDF/B-VIII.0 (Hale 1999)
 - (p,el), (p,n₀), (p,d₀) [0-12 MeV]
- ENDF/B-VIII.1 (Navratil et al., 2009)
 - (p,el) from ECPL
 - (p,n_0) from ECPL (ENDF newer fit with more recent data)
 - (p,d₀) from ENDF/B-VII.0
 - An extension to 20 MeV is given for the T(p,n) reaction, based on the inverse of the 3He(n,p) reaction given in the ENDF/B file.
 - (p,g) fit to 5 new data sets from PRC
 - [3] Phys. Rev. C 65: 044008 (2002).
 - [4] McBroom et al., Phys. Rev. C 25, 1644 (1982) [in EXFOR]
 - [5] Phys. Rev. 99, 1368 (1955).
 - [6] Calarco et al., Phys. Rev. C 28, 483 (1983) [EXFOR problem].
 - [7] Phys. Rev. C 51, 1624 (1995).

p+Li6 evaluation

- ENDF/B-VIII.0 (Hale 2001)
 - R-matrix analysis of reactions in the A=7 system, which included data for the 6Li(p,p) and 6Li(p,3He) reactions at energies up to about 2.5 MeV.
 - (p,el), (p,He3)
- ENDF/B-VIII.1 (Navratil et al. 2010)
 - (p,el) from ECPL and ENDF
 - (p,He3) cross section from Hale, NACRE and Gould
 - 0 0.9 MeV average of NACRE [2] and Hale S-factors
 - 0.9 2 MeV, Hale S-factor
 - 2 7.5 MeV, NACRE S-factor
 - 8 MeV 12 MeV, S-factor data from [3]
 - 12 MeV 30 MeV, extrapolation
 - Angular distributions: From ECPL.
- NACRE
 - [2] C. Angulo et al., Nucl. Phys. A656 (1999)3-187.
- [3] C. R. Gould, R. O. Nelson, J. R. Williams, J. R. Boyce, "Cross-Section Requirements for Charged-Particle Fusion Reactors: The 6Li(p,3He)alpha Reaction." Nucl. Sci. Eng. 55 (1974) 267

d+t evaluation

- ENDF/B-VIII.0 (Hale 1995)
 - (d,el), (d,n₀), (d,n₁)
- ENDF/B-VIII.1 (Navratil 2009)
 - (d,el) from ECPL
 - H3(d,n₀) _
 - Cross-section:
 - Low energy Descouvemont [3]
 - High energy ECPL
 - Peak at 105 keV of 4.85 b
 - TUNL evaluation peak 4.88 b at 105 keV
 - ECPL 4.99 b at 107 keV
 - ENDE 5.01b at 108 MeV
 - Angular distributions: Taken from ECPL _
 - H3(d,n₁)He4* -> p+t ____
 - ENDF evaluation extended up to 30 MeV
- Decouvemont 2004

LLNL-PRES-740950

- [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

d+t evaluation

- ENDF/B-VIII.0 (Hale 1995)
 - (d,el), (d,n₀), (d,n₁)
- ENDF/B-VIII.1 (Navratil 2009)
 - d+t->g+5He*->g+n+4He
 - Cross-section
 - The t(d,g) evaluation is based on Ref. [4]. Several experiments agree that the crosssection ratio is constant at resonance. At higher energies, the ratio appears to rise. In particular, there is a Caltech measurement going up to 9 MeV. Therefore, we did the following:
 - Below 0.4 MeV, we took the ratio 1.2 x 10-4 from the above Ref. [4]
 - From 0.4 to 9 MeV we assumed a linear increase up to 7 x 10-4 according the Caltech data referenced in the above Ref. [4]
 - At higher energies, there is no information. Therefore, we kept the 9 MeV ratio also beyond
 - Note that the EXFOR files with the PRL 53, 767 (84) data appear to be incorrect
 - Angular distributions: Taken from ECPL

Extensions to higher projectile energies

- d+d evaluation
- d+He3 evaluation d+h

d+d evaluation

- ENDF/B-VIII.0 (Hale 2001)
 - (d,el), (d,n), (d,p)
- ENDF/B-VIII.1 (Navratil 2009)
 - (d,el) from ECPL
 - H2(d,n) and H2(d,p)
 - Cross-section:
 - < 1.96 MeV Descouvemont [3] S-factor R-matrix
 - 1.96 5 MeV spline to Ref [4]
 - > 5MeV ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between the t & 3He were ignored in the creation of the angular distributions in ECPL
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

d+d evaluation

- ENDF/B-VIII.0 (Hale 2001)
 - (d,el), (d,n), (d,p)
- ENDF/B-VIII.1 (Navratil 2009)
 - (d,el) from ECPL
 - H2(d,n) and H2(d,p)
 - Cross-section:
 - < 1.96 MeV Descouvemont [3] S-factor R-matrix
 - 1.96 5 MeV spline to Ref [4]
 - > 5MeV ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between the t & 3He were ignored in the creation of the angular distributions in ECPL
- Decouvemont 2004
 - [3] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam Atomic Data and Nuclear Data Tables 88, 203 (2004)
- [4] Nucl. Phys. A 192 (1972) 609

d+He3 evaluation

- ENDF/B-VIII.0 (Hale 2001)
 - (d,el), (d,p₀)
- ENDF/B-VIII.1 (Navratil 2009)
 - (d,el) from ECPL
 - He3(d,p)
 - Cross-section:
 - low energy coming from Descouvemont 2004
 - matched at higher energies with ECPL
 - Angular distributions: From ECPL
 - Note: The slight mass differences between the p & n and between t & 3He were ignored in the creation of the angular distributions in ECPL

Remaining Issues: Development required

- Gamma decay of ⁶Li(3⁺) resonance, after h + ⁷Li reaction

 Translate to ENDF MT=801, and convert γ-distribution to lab frame
- Gamma decay of ⁵He* resonance, during d + t reaction
 - Translate to ENDF MT=91 (inclusive n*), with lab distributions for n,He4, γ
- Three-body breakup of deuteron after d+ α reaction
 - 2-steps via p + { 5 He = α + n resonance}
 - Translate to ENDF MT=600, with LRP=1 for n and He4
 - 2-steps via n + {⁵Li = α + p resonance}
 - Translate to ENDF MT=50, with LRP=1 for p and He4
 - Direct 3-body decay to α + n + p (no resonances)
 - Translate to ENDF MT=28, MF=3 and 6

Future Evaluations

Use full R-matrix evaluations!!

- If possible, publish R-matrix evaluations from LANL
 - Include all R-matrix parameters
 - Include all fitted data normalization factors
- Convert from EDA format (also AZURE, RAC, FRESCO, SAMMY, HYRMA) to GNDS and then ENDF
 - Using my code Ferdinand.py
 - This is being developed with USNDP funding.
- Then can encourage, monitor and verify new R_matrix fits to data
 - Determine how to fit data above 3-body thresholds
 - Supplement with Hauser-Feschbach models above resonance region
- International effort through IAEA to verify and validate the above Rmatrix codes.
 - Marco Pigni explained this in his earlier talk, and showed examples.

