TENDL+EMPIRE Project

G. P. A. Nobre *et al.* National Nuclear Data Center Brookhaven National Laboratory *CSEWG - Nuclear Data Weeks, November 6, 2017*

a passion for discovery

Office of Science

New evaluations from EMPIRE & TENDL

- During last mini-CSEWG ~ 50 new evaluations of short/ long-lived isotopes were proposed from TENDL-2015
- Stable:

- $-t_{1/2}$ > 10⁵ years:
- -10^{5} t_{1/2} > 10³ years:
- -10^{3} t_{1/2} > 100 years:
- $-100 > t_{1/2} > 10$ years:
- $-10>t_{1/2}>1$ year:
- $-1 y > t_{1/2} > 1 d:$

^{20,21,22}Ne

^{26m}Al, ³⁶Cl, ⁴¹Ar, ⁸¹Kr, ⁹⁸Tc, ^{186m}Re, ²⁰⁵Pb, ^{210m}Bi

⁹³Mo

```
<sup>32</sup>Si, <sup>118m</sup>Ag, <sup>158</sup>Tb, <sup>209</sup>Po
```

- ³⁵S, ⁶³Ni, ^{121m}Sn, ¹⁴⁵Pm, ¹⁹³Pt
- ⁵⁵Fe, ¹⁰⁹Cd, ^{144,146}Pm, ¹⁷¹Tm, ²⁰⁴Tl, ²⁰⁸Po
- ³⁷Ar, ^{45,47}Ca, ⁴⁹V, ⁵¹Cr, ⁵⁴Mn, ⁷¹Ge, ⁷⁵Se, ⁹⁷Ru, ¹⁰³Pd, ¹⁴³Pm ¹⁴⁵Sm, ¹⁶¹Tb, ¹⁶⁹Er, ¹⁷⁵Yb, ¹⁸¹W, ^{185,191}Os, ^{192,194}mlr, ²⁰³Hg, ²¹⁰Po

Fusion, spallation Medical, radiotracer Spent nuclear fuel management Gamma/beta/x-ray source

Brookhaven Science Associates

New evaluations from EMPIRE & TENDL

During last mini-CSEWG ~ 50 new evaluations of short/ long-lived isotopes were proposed from TENDL-2015

^{20,21,22}Ne

- Stable:
- $-t_{1/2}$ > 10⁵ years:
- -10^{5} t_{1/2} > 10³ years:
- -10^{3} t_{1/2} > 100 years:
- $-100 > t_{1/2} > 10$ years:
- $-10>t_{1/2}>1$ year:
- $-1 y > t_{1/2} > 1 d$:

Fusion, spallation

^{26m}Al, ³Cl, ⁴¹Ar, ⁸¹Kr, ⁹⁸Tc, ^{186m}Re, ²⁰⁵Pb, ^{210m}Bi ⁹Mo **(**, ^{118m}Ag,)⁵⁸Tb, ²⁰⁹Po ⁵S, ⁶³Ni, ^{121m}Sn, ¹⁴⁵Pm, ¹⁹³Pt ⁵Fe, ¹⁹Cd, ^{144,146}Pm, ¹⁷¹Tm, ²⁰⁴Tl, ²⁰⁸Po ⁷Ar, ⁴¹⁴⁷Ca, ⁴⁹V, ⁵¹Cr, ⁵⁴Mn, ⁷¹Ge, ⁷⁵Se, ⁹⁷Ru, ¹⁰³Pd, ¹⁴³Pm ¹⁴Sm, ⁶¹Tb, ¹⁶⁹Er, ¹⁷⁵Yb, ¹⁸¹W, ^{185,191}Os, ^{192,194m}Ir, ²⁰³Hg, ²¹⁰Po $T_{1/2} = 2.0(2)$ seconds Medical, radiotracer $T_{1/2} = 6.3460(8)$ seconds Spent nuclear fuel management Gamma/beta/x-ray source

Brookhaven Science Associates

New evaluations from EMPIRE & TENDL

- We were tasked of reviewing these evaluations, assessing their quality, and determining whether they should be included into the ENDF/B-VIII.0 release
- Added to the analysis all nuclides with T_{1/2} > 1 day and nuclides that "bridges gaps" between nuclei
- Performed "default" EMPIRE calculations, formatted into ENDF-6 files and generated 800+ plots for main reactions for all > 103 nuclides
- Compared with TENDL files
- Ran checking codes

20, 21, 22Ne, 26mAl, 31, 32Si, 35S, 36Cl, 37, 39, 41Ar, 41, 45, 47Ca, 49V, 51Cr, 54Mn, 55Fe, 63Ni, 64Cu, 69Zn, 70Ga, 71, 75Ge, 75, 81Se, 80Br, 79, 81Kr, 85Sr, 93Mo, 98Tc, 97Ru, 104Rh, 103, 109Pd, 108, 112, 113, 114, 115, 116, 117, 118mAg, 107, 109Cd, 114In, 121mSn, 122Sb, 121, 121m, 131, 131mTe, 128, 132, 132m, 133, 134I, 125, 127Xe, 131, 139Ba, 137, 137mCe, 149Nd, 143, 144, 145, 146,150Pm, 145, 146Sm, 159Gd, 158, 161Tb, 155, 157Dy, 163, 165, 169Er, 171Tm, 169, 175Yb, 175Hf, 181, 185W, 186mRe, 185, 191Os, 192, 194mIr, 193Pt, 197, 197m, 203Hg, 204TI, 205Pb, 210mBi, 208, 209, 210Po, 245Pu, 247Cf

Brookhaven Science Associates

20, 21, 22Ne, 26mAl, 31, 32Si, 35S, 36Cl, 37, 39, 41Ar, 41, 45, 47Ca, 49V, 51Cr, 54Mn, 55Fe, 63Ni, 64Cu, 69Zn, 70Ga, 71, 75Ge, 75, 81Se, 80Br, 79, 81Kr, 85Sr, 93Mo, 98Tc, 97Ru, 104Rh, 103, 109Pd, 108, 112, 113, 114, 115, 116, 117, 118mAg, 107, 109Cd, 114In, 121mSn, 122Sb, 121, 121m, 131, 131mTe, 128, 132, 132m, 133, 134I, 125, 127Xe, 131, 139Ba, 137, 137mCe, 149Nd, 143, 144, 145, 146,150Pm, 145, 146Sm, 159Gd, 158, 161Tb, 155, 157Dy, 163, 165, 169Er, 171Tm, 169, 175Yb, 175Hf, 181, 185W, 186mRe, 185, 191Os, 192, 194mIr, 193Pt, 197, 197m, 203Hg, 204TI, 205Pb, 210mBi, 208, 209, 210Po, 245Pu, 247Cf

No TENDL, EMPIRE only

Brookhaven Science Associates

20, 21, 22Ne, 26mAl, 31, 32Si, 35S, 36Cl, 37, 39, 41Ar, 41, 45, 47Ca, 49V, 51Cr, 54Mn, 55Fe, 63Ni, 64Cu, 69Zn, 70Ga, 71, 75Ge, 75, 81Se, 80Br, 79, 81Kr, 85Sr, 93Mo, 98Tc, 97Ru, 104Rh, 103, 109Pd, 108, 112, 113, 114, 115, 116, 117, 118mAg, 107, 109Cd, 114In, 121mSn, 122Sb, 121, 121m, 131, 131mTe, 128, 132, 132m, 133, 134I, 125, 127Xe, 131, 139Ba, 137, 137mCe, 149Nd, 143, 144, 145, 146,150Pm, 145, 146Sm, 159Gd, 158, 161Tb, 155, 157Dy, 163, 165, 169Er, 171Tm, 169, 175Yb, 175Hf, 181, 185W, 186mRe, 185, 191Os, 192, 194mIr, 193Pt, 197, 197m, 203Hg, 204TI, 205Pb, 210mBi, 208, 209, 210Po, 245Pu, 247Cf

Adopted TENDL

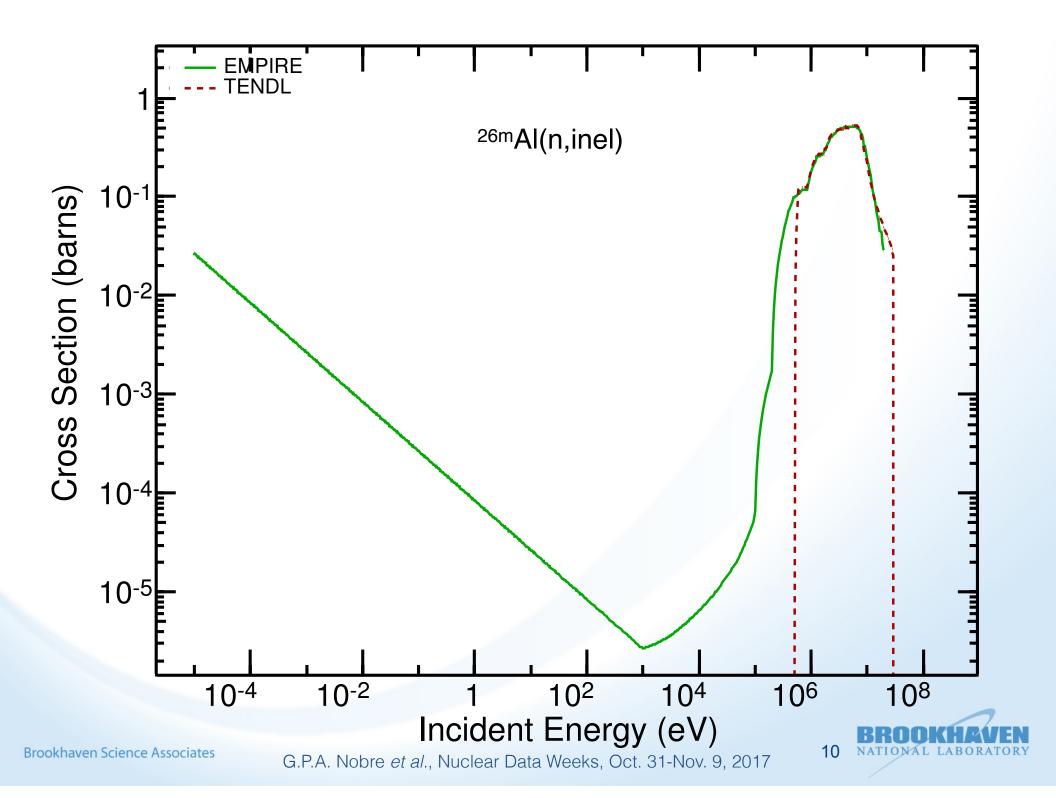
No TENDL, EMPIRE only

Brookhaven Science Associates

20, 21, 22Ne, 26mAl, 31, 32Si, 35S, 36Cl, 37, 39, 41Ar, 41, 45, 47Ca, 49V, 51Cr, 54Mn, 55Fe, 63Ni, 64Cu, 69Zn, 70Ga, 71, 75Ge, 75, 81Se, 80Br, 79, 81Kr, 85Sr, 93Mo, 98Tc, 97Ru, 104Rh, 103, 109Pd, 108, 112, 113, 114, 115, 116, 117, 118mAg, 107, 109Cd, 114In, 121mSn, 122Sb, 121, 121m, 131, 131mTe, 128, 132, 132m, 133, 134I, 125, 127Xe, 131, 139Ba, 137, 137mCe, 149Nd, 143, 144, 145, 146,150Pm, 145, 146Sm, 159Gd, 158, 161Tb, 155, 157Dy, 163, 165, 169Er, 171Tm, 169, 175Yb, 175Hf, 181, 185W, 186mRe, 185, 191Os, 192, 194mIr, 193Pt, 197, 197m, 203Hg, 204TI, 205Pb, 210mBj, 208, 209, 210Po, 245Pu, 247Cf

Adopted TENDL

No TENDL, EMPIRE only


Adopted EMPIRE

8

- TENDL: Problems at low energies for scattering on excited targets
- ENDF-6 format: documentation of "superelastic" Q-value is unclear
- EMPIRE vs. TENDL:
 - EMPIRE does proper deformed coupled-channel calculations: better results for rare-earths
 - Codes make different choices of levels to couple
 - If there are no experimental resonances TENDL creates more realistic-looking resonances but these can be misleading (format does not distinguish between "artificial" and "real" ones)
 - In some cases generated resonances in TENDL seem to be orders of magnitude too high.
- Incorporated: 28 from TENDL, 75 from EMPIRE

Brookhaven Science Associates

- TENDL: Problems at low energies for scattering on excited targets
- ENDF-6 format: documentation of "superelastic" Q-value is unclear
- EMPIRE vs. TENDL:
 - EMPIRE does proper deformed coupled-channel calculations: better results for rare-earths
 - Codes make different choices of levels to couple
 - If there are no experimental resonances TENDL creates more realistic-looking resonances but these can be misleading (format does not distinguish between "artificial" and "real" ones)
 - In some cases generated resonances in TENDL seem to be orders of magnitude too high.

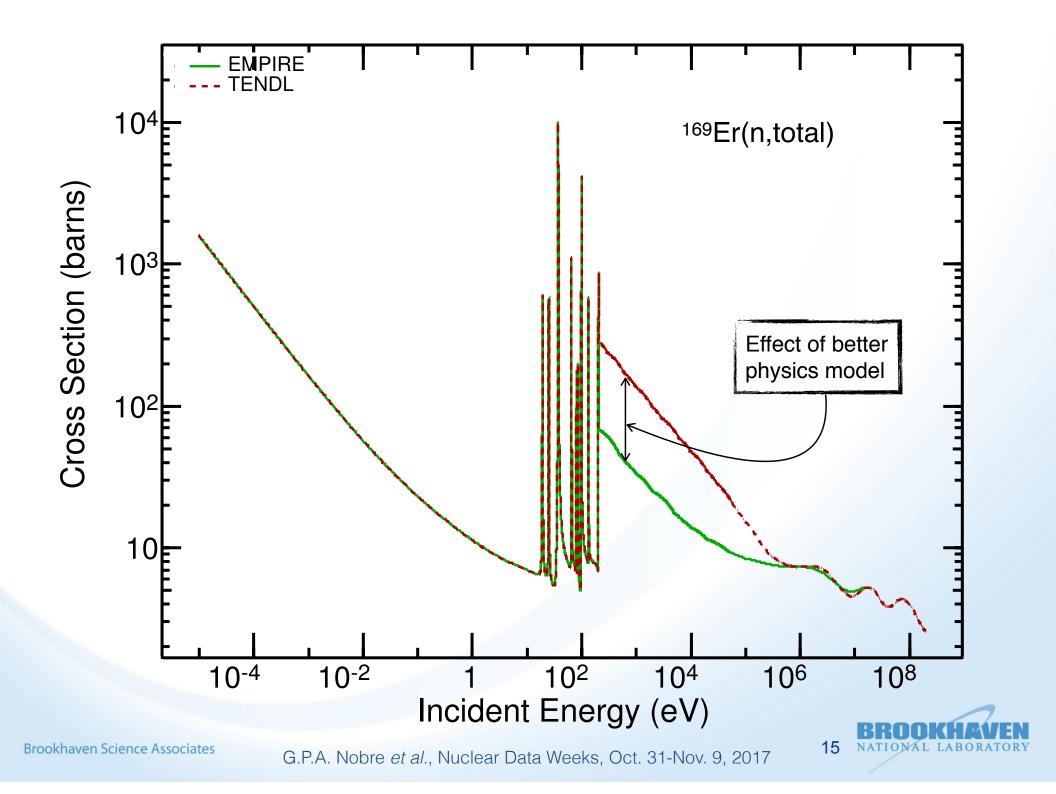
Incorporated: 28 from TENDL, 75 from EMPIRE

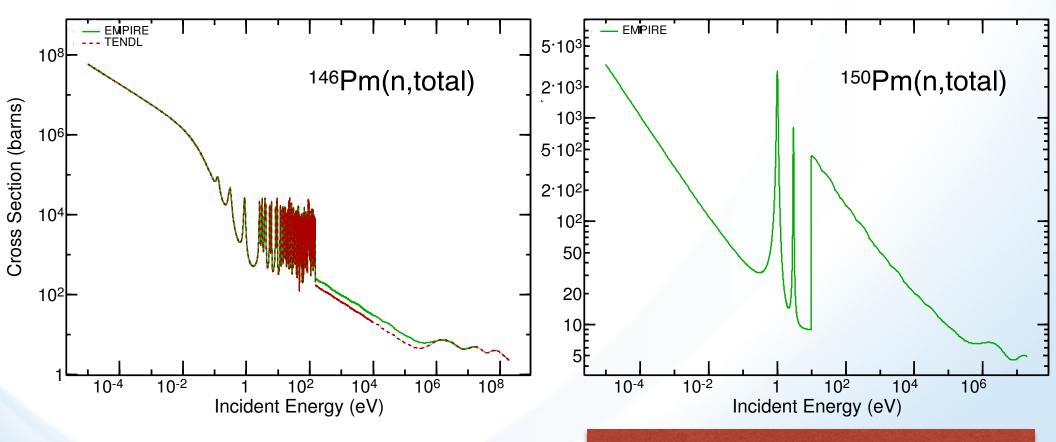
1.920000+8 5.5	54420-1 1.9	40000+8 5	.527130-1	1.960000+8	5.502130-11323	3	1	130
1.980000+8 5.4	77411-1 2.0	00000+8 5	.454910-1		1323	3	1	131
					1323	3	099	999
1.302600+4 2.5	76365+1	Θ	Θ	Θ	01323	3	2	1
0.000000+0 0.0	00000+0	Θ	Θ	1	2851323	3	2	2
285	2				1323	3	2	3
1.000000-5 0.0	00000+0 5.1	28063+5 0	.000000+0	5.128063+5	2.874505+01323	3	2	4
5.500000+5 2.8	75390+0 5.9	13100+5 2	.875320+0	6.000000+5	2.875170+01323	3	2	5
6.500000+5 2.8	66840+0 6.6	00490+5 2	.864950+0	7.000000+5	2.856660+01323	3	2	6
7 50000015 2 8	N1360TU 8 U	0000015 3	82414010	8 20000012	J 800800T01535	2	2	7

1 400000.7	1 750100.0	1 500000.7	1 700700.0	1 600000.7	1 770440.01020	2	-		
1.400000+/	1./59190+0	1.500000+/	1./68/30+0	1.600000+/	1.779440+01323	3	1	15	
1.700000+7	1.790670+0	1.800000+7	1.802170+0	1.900000+7	1.813790+01323	3	1	16	
2.000000+7	1.825360+0				1323	3	1	17	
0.000000+0	0.00000+0	Θ	Θ	Θ	01323	3	099	999	
1.302600+4	2.576365+1	Θ	Θ	Θ	0 <mark>1</mark> 323	3	2	1	
2.283050+5	2.283050+5	Θ	Θ	1	401323	3	2	2	
40	2				1323	3	2	3	
1.000000-5	0.000000+0	5.128063+5	0.000000+0	5.128063+5	2.826658+01323	3	2	4	
7.000000+5	2.809670+0	8.500000+5	2.759390+0	1.000000+6	2.673640+01323	3	2	5	
1.300000+6	2.495860+0	1.500000+6	2.383110+0	1.800000+6	2.213020+01323	3	2	6	
2.000000+6	2.100420+0	2.250000+6	1.970280+0	2.500000+6	1.854050+01323	3	2	7	
2 750000+6	1 746150+0	3 000000+6	1 610230+0	3 200000+6	1 540750+01323	3	2	8	

12 BROCKHAVEN NATIONAL LABORATORY

Brookhaven Science Associates


	1.920000+8	5.554420-1	1	.940000+8	5.527130-1	1.960000+8	5.502130-11323	3	1	130
	1.980000+8	5.477411-1	2	.000000+8	5.454910-1		1323	3	1	131
							1323	3	09	9999
	1.302600+4	2.576365+1		Θ	Θ	Θ	01323	3	2	1
	0.000000+0	0.000000+0	\supset	Θ	Θ	1	2851323	3	2	2
	285	2			_	_	1323	3	2	3
	1.000000-5	0.000000+0	5	128063+5	0.00000+0	5,128063+5	2.874505+01323	3	2	4
			_				2.875170+01323	_	2	5
							2.856660+01323	_	2	6
							2.00000+01020		2	7
		/ 2/11					/	-		
	1.10000017	1.75021010	.	20000017	1.73077010	1.30000017	1.132220101323	-	+	A 7
							1.779440+01323	-	1	15
	1.700000+7	1.790670+0	1.	800000+7	1.802170+0	1.900000+7	1.813790+01323	3	1	16
	2.000000+7	1.825360+0					1323	3	1	17
	0.00000+0	0.00000+0		Θ	Θ	Θ	01323	3	099	9999
	1,30 2600+4	2.576365+1		Θ	Θ	Θ	0 <mark>1</mark> 323	3	2	1
C	2.283050+5	2.283050+5		Θ	Θ	1	401323	3	2	2
	40	1					1323	3	2	3
	1.000000-5	0,000000+0	5.	128063+5	0.00000+0	5,128063+5	2.826658+01323	3	2	4
							2.673640+01323	-	2	5
							2.213020+01323	_	2	6
							1.854050+01323	-	2	7
							1.004000+01020	-	2	8
	/ / helelel+h	1 /4n1504+0	-	elenenene+n	1 N 107 K0+0	s /mmmmm+n	1 340730+01373	1		×


- TENDL: Problems at low energies for scattering on excited targets
- ENDF-6 format: documentation of "superelastic" Q-value is unclear
- EMPIRE vs. TENDL:
 - EMPIRE does proper deformed coupled-channel calculations: better results for rare-earths
 - Codes make different choices of levels to couple
 - If there are no experimental resonances TENDL creates more realistic-looking resonances but these can be misleading (format does not distinguish between "artificial" and "real" ones)
 - In some cases generated resonances in TENDL seem to be orders of magnitude too high.
- Incorporated: 28 from TENDL, 75 from EMPIRE

Brookhaven Science Associates

Better-looking...

... but does not contain more experimental info.

Brookhaven Science Associates

G.P.A. Nobre et al., Nuclear Data Weeks, Oct. 31-Nov. 9, 2017

16 NATIONAL LABORATORY

- TENDL: Problems at low energies for scattering on excited targets
- ENDF-6 format: documentation of "superelastic" Q-value is unclear
- EMPIRE vs. TENDL:
 - EMPIRE does proper deformed coupled-channel calculations: better results for rare-earths
 - Codes make different choices of levels to couple
 - If there are no experimental resonances TENDL creates more realistic-looking resonances but these can be misleading (format does not distinguish between "artificial" and "real" ones)
 - In some cases generated resonances in TENDL seem to be orders of magnitude too high.
- Incorporated: 28 from TENDL, 75 from EMPIRE

