- LOS ALABORATORY NATIONAL LABORATORY EST. 1943

— EST.1943 ———

Measurements of gas production reactions using LENZ at LANSCE.

Status of ⁵⁶Fe(n, α) and ⁵²Cr(n, α) cross-section measurements

Alexander Long Hye Young Lee Christopher Prokop

CSEWG-US National Nuclear Data Week Brookhaven National Laboratory November 8, 2017

EST.1943 ———

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Radiation Damage to Materials Present in High Neutron Fluence Environments

Los Alamos National Laboratory

a. Knaster *et al.* Nature Physcis Vol. 12 May 2016 c. Knaster *et al.* Annu. Rev. Mater. Res. 2014. 44:241–67 b. Gilbert *et al.* Nucl. Fusion 52 (2012) 083019 (12pp)

11/4/17 | 4

Investigating Material Responses to Neutron Induced Radiation Damage

Los Alamos National Laboratory

a. Gilbert *et al.* Nucl. Fusion 52 (2012) 083019 (12pp) c. Knaster *et al.* Journal of Nuclear Materials 453 (2014) 115–119 b. Knaster *et al.* Nature Physcis Vol. 12 May 2016

Current Evaluations of (n, α) on Iron and Chromium Isotopes

⁵² Fe	⁵³ Fe	⁵⁴ Fe 5.8	⁵⁵ Fe	⁵⁶ Fe 91.7	⁵⁷ Fe 2.2	⁵⁸ Fe 0.28	⁵⁹ Fe
⁵¹ Mn	⁵² Mn	⁵³ Mn	⁵⁴ Mn	⁵⁵ Mn 100	⁵⁶ Mn	⁵⁷ Mn	⁵⁸ Mn
⁵⁰ Cr 4.3	⁵¹ Cr	⁵² Cr 83.8	⁵³ Cr 9.5	⁵⁴ Cr 2.4	⁵⁵ Cr	⁵⁶ Cr	⁵⁷ Cr

ENDF/B-VII.1 Evaluations on Cr 0.10 CR-50(N,A)TI-47 CR-52(N,A)TI-49 CR-53(N,A)TI-50 0.08 CR-54(N,A)TI-51 Cross-section [b] 0.06 0.04 0.02 0.00 8 16 18 2 6 10 12 14 Neutron Bombarding Energy [MeV]

Taking abundances into account most important individual isotopes to focus on are ⁵⁶Fe and ⁵²Cr.

Campaign of LENZ Measurements at the WNR

Reaction	Target	Beam Time	Comments on setup.
56 Fe(n, α)	1.1 mg/cm ²	Oct 2017	 Used four DSSD's in a two telescope setup. One up stream and one down stream. Thickness were chosen such that most alpha's up to 30 MeV stop in the first detector while most protons (E > 6 MeV) punch through. This allows for clean veto signals.
⁵² Cr(n,α)	975 µg/cm² *	Nov 2017 **	 Plan to four DSSD's in a two telescope setup. Both would be down stream. Thickness were chosen such that most alpha's up to 30 MeV stop in the first detector while most protons (E > 6 MeV) punch through. This allows for clean veto signals.

Cartoon Setup from ⁵⁶Fe(n, $x\alpha$) Measurement

 * Target was fabricated by evaporation onto a $6\mu m$ gold foil.

** Target fabrication at CINT has been delayed significantly.

Current Progress on (n, α) Measurements

Time-Of-Flight calibration using gamma flash Maximum Peak Height of Trace [ADC units] slice_py_of_RawTOFvCh ash Entries Mean RMS 12.53 ш Integral 7.514e+04 amma of Entries Junction side (「) Number Ohmic side lphas from ²²⁹Th calibration C Clock Ticks [2 ns] 400 500 600 300. Charge Integral of Trace [arb. units] Preliminary Event Building 10⁵ **Multiplicity 2** Energy calibration with ²²⁹Th source. 10⁴ 10⁴ 10³ Energy [keV] 10³ 10² 10² ō Hit Pattern Channel ID

Pulse Shape Discrimination

A <u>Very General Overview of My To-Do List</u>:

- 1. Get a ⁵²Cr target from CINT @ LANL
- 2. Perform ${}^{52}Cr(n,\alpha)$ experiment at WNR
- 3. Finalize our MIDAS unpacker and event builder.
 - Optimize PSD gates (also generate dE-E plots to benchmark PSD capabilities)
 - Optimize coincidence time windows
 - Determine incoming neutron flux
 - ... (Things that I'm forgetting)
- 4. Extract (n, α) yields as a function of angle.
- 5. ... (More things that I'm forgetting.)
- 6. Finally, Use a forward analysis techniques with extracted (n,α) yields to determine a (n,α) cross-section with respective uncertainties.

Thank you for your time

NAS Team @ LANSCE: Aaron Couture Hye Young Lee Alexander Long Shea Mosby Chris Prokop

Any questions or comments?

Previous Works with Current Evaluations.

⁵⁶Fe

Los Alamos National Laboratory

Backup Slide

⁵⁶Fe(n, α) and ⁵²Cr(n, α) Measurements with LENZ

Got ~ 21 days of beam time to get statistical uncertainties \le 5% for each 150 keV energy bin between E_n ~ 8 - 15 MeV

Main Reactions Contributing to α -Production

Used Talys 1.8: Level Density Model = Constant temperature + Fermi gas model Alpha OMP = McFadden and Satchler

