Fe and EMPIRE-TENDL evaluations

G. P. A. Nobre *et al.* National Nuclear Data Center Brookhaven National Laboratory *USNDP - Nuclear Data Week, October 31, 2017*

a passion for discovery

CIELO-Iron collaboration

BNL, CNDC, IAEA, IRM, JSI, LANL, ORNL, RPI, IRSN

- Exp. data analysis: CNDC
- Resonance range: ORNL & IRSN & BNL & IAEA
- Fast neutron range: EMPIRE (BNL, IAEA)
- File assembly: IAEA, BNL
- Testing: IAEA, RPI, BNL, LANL, JSI

Herman M.¹), Trkov A.²), Capote R.²), Nobre G.P.A.¹), Brown D.¹), Arcilla R.¹), Leal L.^{3,8}), Plompen A.⁴), Danon Y.⁵), Jing Qian⁶), Zhigang Ge⁶), Tingjin Liu⁶), Hanlin Lu⁷), Xichao Ruan⁷), Carlson B. V.⁹), Sin M.¹⁰)

- 1. BNL, Upton, NY, USA
- 2. IAEA, Vienna, Austria
- 3. ORNL, Oak Ridge, TN, USA
- 4. EC-JRC-IRMM, Geel, Belgium
- 5. RPI, Troy, NY, USA
- 6. CNDC, Beijing, P.R.China
- 7. CIAE, Beijing, P.R.China
- 8. IRSN, Paris, France
- 9. ITA, Sao José dos Campos, Brazil
- 10.Bucharest University, Bucharest-Magurele, Romania

Brookhaven Science Associates

ENDF/B-VIII.0 release: Iron evaluation as part of the CIELO collaboration

- Iron is a common structure material
- Difficult to evaluate: Strong resonances and fluctuations above inelastic threshold
- Deep interference minima: cross section near zero, which makes minor isotopes (and other steel components) relevant
- Validation tests in sync other major evaluations (^{235,238}U, ²³⁹Pu)
- Strong reliance on experimental data including recent Geel, LANL and RPI
- IRDFF data adopted whenever available
- Model calculations adjusted to reproduce IRDFF and exp. data
- Special attention devoted to angular distributions (AD)
 - AD derived from resonance parameters
 - Anisotropic AD compound nucleus inelastic scattering
 - Influence of AD on benchmark results

Resonances in ⁵⁶Fe

- Fluctuations extend high in energy
- Minor correction to previous evaluation (0.01 meV to 850 keV)

Brookhaven Science Associates

Resonances in ⁵⁶Fe

 ⁵⁶Fe(n,γ) background (10eV-100keV): HEU-MET-INT-001 (ZPR-34/9)

Brookhaven Science Associates

Resonances in ⁵⁶Fe against ^{Nat}Fe data

- Effect of added low-energy capture background and increased γ-width
- Shift on energy calibration

Brookhaven Science Associates

Elastic & inelastic for 56Fe

- Fluctuations imposed on inelastic scattering to the first and second excited states taken from experimental data
- Elastic obtained by subtraction of sum of all reactions from total

Fast neutron range

EMPIRE

0.15

 Fitted model parameters to experimental data or IRDFF

Angular distributions

Generally better agreement with Perey and Kinney data

Double-differential spectra

In general, slightly better agreement with data

Uncertainty Quantification

- Covariances for the RRR were generated from uncertainties in the Atlas (through EMPIRE res. module)
- Uncertainty background for (n,γ) needed between 100-840 keV

⁵⁶Fe Reaction Uncertainties

Resonance Region

Incident Neutron Energy (eV)

(n,total)
(n,elas)
(n,γ)

 10^{2}

100

Uncertainty (%)

10

 In fast region, covariances were obtained from Kalman: experimental uncertainties and model constraints

 10^{5}

100

Jncertainty (%)

 10^{6}

10L

Covariances

Validation

Focused on benchmarks sensitive to Iron

Conclusions

Brookhaven Science Associates

- CIELO collaboration led to a new set of evaluations for main iron isotopes
- Recent measurements, state-of-the-art modeling, semiintegral data and integral benchmarks
- Our new results are generally better than ENDF/B-VII.1 (differential and integral testing)
- Experience with current efforts points direction for future improvements:
 - Re-evaluation of res. parameters
 - Reliable measurements of capture for minor isotopes (and other alloying elements)
 - Re-evaluation of ²³⁹Pu, ⁵²Cr, and ⁵⁸Ni may allow reduction of background

14 NATIONAL LABORATORY

New evaluations from EMPIRE & TENDL

- During last mini-CSEWG ~ 50 new evaluations of short/ long-lived isotopes were proposed from TENDL-2015
- We reviewed these evaluations, assessed their quality, and determined whether they should be included into the ENDF/B-VIII.0 release
- Added to the analysis all nuclides with T_{1/2} > 1 day and nuclides that "bridges gaps" between nuclei
- Performed "default" EMPIRE calculations, formatted into ENDF-6 files and generated 800+ plots for main reactions for all > 103 nuclides
- Compared with TENDL files
- Ran checking codes

Conclusions

- TENDL: Problems at low energies for scattering on excited targets
- ENDF-6 format: encoding of "superelastic" is unclear
- EMPIRE vs. TENDL:
 - EMPIRE does proper deformed coupled-channel calculations: better results for rare-earths
 - Codes make different choices of levels to couple
 - Resonance data are normally inexistent: TENDL creates realisticlooking resonances which can be misleading (format does not distinguish between "artificial" and "real" ones
 - Resonances from TENDL are extrapolated: 3-4 orders of magnitude too high
- Incorporated: 28 from TENDL, 74 from EMPIRE

Brookhaven Science Associates