Progress Report of Precision Internal Electron Conversion Coefficient Measurement with transition in ^{103m}Rh

TEXAS A&M PROGRAM TO MEASURE ICC N. NICA

Internal Conversion Coefficients (ICC):

- **Big impact on quality of nuclear science**
- Central for USNDP and other nuclear data programs
- Intensely studied by theory and experiment
- Important result: hole calculation now standard
- Is the series of measurements complete?
- Are there other critical cases to measure?

2002RA45 survey ICC's theories and measurements

Theory: RHFS and RDF comparison

 Evolution interaction Einite size of evolution

Exchange interaction, Finite size of nucleus, Hole treatment

• Experiment:

100 E2, M3, E3, M4, E5 ICC values, 0.5%-6% precision, very few <1% precision!

Conclusions, Δ(exp:theory)%:No hole:+0.19(26)% BEST!(bound and continuum states - SCF of neutral atom)Hole-SCF:-0.94(24)%(continuum - SCF of ion + hole (full relaxation of ion orbitals))Hole-FO:-1.18(24)%(continuum - ion field from bound wave functions ofneutral atom

orbitals))

PHYSICALARGUMENTK-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} \, s \gg \sim 10^{-18} \, s$

2002Ra45:100 $\alpha_{\rm K}(\exp)$ cases compared with **'hole FO' calculations**

58.6

39.8

Texas A&M precision ICC measurements:

• KX to γ rays ratio method

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

• N_K , N_γ measured from only one K-shell converted transition • ω_K from 1999SCZX (compilation and fit)

- Very precise detection efficiency for ORTEC γ-X 280-cm³ coaxial HPGe at standard distance of 151 mm:
 - 0.2%, 50-1400 keV (2002HA61, 2003HE28)
 - 0.4%, 1.4-3.5 MeV (2004HE34)
 - 1%, 10-50 keV (KX rays domain)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

KX to γ rays ratio method

- \circ Sources for n_{th} activation
 - Small selfabsorption (< 0.1%)</p>
 - Dead time (< 5%)</p>
 - Statistics (> 10⁶ for γ or x
 - High spectrum purity
 - Minimize activation time (0.5 h)
- **o Impurity analysis** *essentially based on ENSDF*
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-ray region

• Voigt-shape (Lorentzian) correction for X-rays

Done by simulation spectra, analyzed as the real spectra

• Coincidence summing correction

^{103m}Rh 39.748 keV, E3 transition α(K)exp = 138 5 (1970NiZV), %unc=3.6 α(K)exp = 127 6 (1975Cz03), %unc=4.7 α(K)_{hole FO} = 135.2(19), α(K)_{no_hole} = 127.4(18)

¹⁰³Pd ε Decay

¹⁰³Pd **ε** Decay (16.991 d)

103 Ru β^- Decay

¹⁰³Ruβ-Decay (39.247 d)

Decay Scheme

^{103m}Pd -> ^{103m}Rh 39.748 keV, E3 transition

- 25 mm \times 25 mm \times 4 μm ^{nat}Pd foil
 - $-\Phi = 7.5 \text{ x } 10^{12} \text{ n/(cm^2s)}$
 - $\alpha_{th} = 3.4(3) b$
 - Sample activated 10 h, then cooled down for 15 days
 - Measured for several weeks

^{103m}Ru -> ^{103m}Rh 39.748 keV, E3 transition

- 1.Sample I: 1.06(5) mg of Ru_2O , 0.66(3) μ m thick, on 25 μ m thick Al backing
 - Activated for 20 h at 7.5 \times 10^{12} n/(cm^2s) at NSC reactor (TAMU)
 - $\sigma_{th}(^{102}Ru) = 1.21(7) b$
 - Measured after 30 days

2.Sample II: 0.7 mg of Ru metal, 0.9 \mum thick

- Activated for 20 h at 7.5 \times 10¹² n/(cm²s) at NSC reactor (TAMU)
- To be measured after 30 days

Results for ^{103m}Rh 39.748 keV, E3 transition *Very preliminary!!!*

^{103m}Ruβ⁻ decay

Experimental: Vacancy FO :

No Vacancy :

 $\alpha_{K} = 135(3)$ $\alpha_{K} = 135.2(19)$ $\alpha_{K} = 127.4(18)$

^{103m}Pd ε decay *Experimental: Vacancy FO*: *No Vacancy*:

 $\alpha_T = 1432(44)$ $\alpha_T = 1404(20)$ $\alpha_T = 1389(20)$