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Technicolor

• QCD like dynamics can trigger the Electroweak symmetry breaking


• Techni pion act as NG mode of Higgs


• give mass to W and Z bosons


• SM fermion masses are given through ETC


• Tension:


• FCNC must be suppressed


• sizable mf needs to be generated
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Through a series of systematic studies for Nf of LatKMI, 
Nf=8 QCD appeared to be a good candidate 

of near conformal but chiral symmetry breaking theory



Contents of this talk  on the Nf=8 QCD

• basic composite mass spectrum


• scaling expected for (near) conformal theory


• investigation of chiral symmetry breaking


• techni rho meson


• flavor singlet scalar


• does this have “light mass” to be able to replace Higgs ?


• flavor singlet pseudoscalar   (preliminary)


• S parameter                          (preliminary)



scaling study results 

 [LatKMI PRD96, 014508 (2017)]



a crude study using ratios and  
universal hyperscaling       [LatKMI PRD96, 014508 (2017)]

• conformal scenario:


• MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)   for small mf ;  γm*: mass anomalous dim


★  Fπ/Mπ → const.                          for small mf


★  Mρ/Mπ → const.                         for small mf


• chiral symmetry breaking scenario:


• Mπ2 ∝ mf,  ;   Fπ = F + c’ Mπ2      for small mf


★  Fπ/Mπ → ∞                                 for   mf → 0


• finite size scaling in a L4 box (DeGrand; Zwicky; Del Debbio et al)


• scaling variable: 
x = Lm

1
1+�⇤

f

L ·MH = fH(x)
L · F⇡ = fF (x)
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FIG. 35. The FSHS test for Nf = 12 spectra with β = 4.0; the normalized mass spectra LFπ

(upper left), LMπ (upper right), LMρ (lower left), and LMN (lower right) are plotted as a function

of the scaling variable X = Lm1/(1+γ)
f for selected γ. The spectral data are found in Appendix G.
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selected γ.

uncertainty owing to the larger number of degrees of freedom. It is also important that the

pion massMπ does not respect the FSHS, as indicated by the considerably large χ2/dof ∼ 18.
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• Fπ/Mπ  →  constant  (mf→0)


• expected for conformal theory

• finite size hyperscaling intact
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uncertainty owing to the larger number of degrees of freedom. It is also important that the

pion massMπ does not respect the FSHS, as indicated by the considerably large χ2/dof ∼ 18.
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• Fπ/Mπ  →  tends to diverge  (mf→0)


• expected for chiral symm.br. theory

• no scaling for γ’s allowed range 
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FIG. 15. Fπ/Mπ (top) and Mρ/Mπ (bottom).
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FIG. 34. The FSHS test for Nf = 8: the normalized mass spectra LFπ (upper left), LMπ (upper

right), LMρ (lower left), and LMN (lower right) are plotted as a function of the scaling variable

X = Lm1/(1+γ)
f for selected γ.

that the fit results (γ,χ2/dof) in the FSHS test are free from finite volume effects. We have

confirmed that the FSHS-Large Volume Data Set meets this requirement by comparing the

(γ,χ2/dof) resulting from various cuts for LMπ. See Appendix F 2 for details.

The FSHS-Large Volume Data Set does not necessarily exclude the spectra with small mf

as long as any finite volume effects are negligible. This is in contrast to the previous work [13]

where the spectrum data with mf < 0.05 was excluded in the FSHS analysis. As will be

shown later, the update of the data selection scheme leads to only a minor modification to

the results.

In Fig. 37, we show the value for γ obtained by the FSHS fit for various quantities.

(See Table XIII for numerical details.) The results are similar to those obtained in the

naive hyperscaling fits. The observable dependences of γ remain even in the FSHS with

finite volume effects being considered, and rather become manifest with smaller statistical

62

• Fπ/Mπ  →  tends to diverge  (mf→0)


• expected for chiral symm.br. theory

• finite size hyperscaling intact


• γ varies by quantity


• approximate conformality
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• Fπ/Mπ  →  tends to diverge  (mf→0)


• expected for chiral symm.br. theory

• finite size hyperscaling intact


• γ varies by quantity


• approximate conformality

Consistent with chiral symmetry breaking 
and approximate conformality 

→ candidate of WTC
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These are rough sketches of our analysis. 
Details: LatKMI PRD96 (2017)

• Fπ/Mπ  →  tends to diverge  (mf→0)


• expected for chiral symm.br. theory

• finite size hyperscaling intact


• γ varies by quantity


• approximate conformality

Consistent with chiral symmetry breaking 
and approximate conformality 

→ candidate of WTC



spectrum analysis of Nf=8 for chiral symmetry br. 

 [LatKMI PRD96, 014508 (2017) 
and some updates (preliminary)]



techni pion decay constant

new point

on top of Phys.Rev.D96(2017)

F⇡p
2
=

246p
Nd

GeV

• lattice scale setting @ mf→0


• determines a-1 


• typical models


• Nd=  1   for one EW doublet


• Nd=  4   for one-family model

M2
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techni rho meson mass

• at the chiral limit


• including Fπ chiral log sys. error


• Mρ = 1 - 1.9 TeV  for one family model


• Mρ = 2 - 3.7 TeV  for a Nd=1 model


• other hadrons, see→ LatKMI 2017

dependence of Σ expected from the fit results for Fπ
and Mπ .
Although the extrapolation of Σ has the above difficul-

ties, we observe the consistency among the chiral limits of
hψ̄ψi, BF2=2, and Σ0. Our central value of the chiral
condensate is determined from the chiral extrapolation of
hψ̄ψi presented in Table VI, whose value is

hψ̄ψijmf→0 ¼ 0.000221ð43Þ; ð27Þ

where the error is only statistical. A systematic error of the
chiral condensate coming from the logarithmic correction
will be discussed in Sec. IV D. The positive value of the
chiral condensate is consistent with the property expected
in the chirally broken phase. For future work, it is important
to confirm that the chiral limit of Σ becomes consistent with
the other results by adding more data points in the smallmf
region.

C. Other hadron masses

We extrapolate the masses of other hadrons, such as ρ
and N, to the chiral limit. Since the data for the hadrons

have a larger error than the ones for Fπ and Mπ , linear fits
work in the smallmf region, 0.012 ≤ mf ≤ 0.03, where the
quadratic fits for Fπ and M2

π=mf give reasonable χ2=dof.
The fit results are summarized in Table VIII and plotted in
Figs. 28–30.
WhileMρ andMa0 at each mf are different, the linear fit

results coincide within the error as shown in Fig. 28. The

TABLE VII. The polynomial fit results of ΣðmfÞ ¼
F2
πM2

π=4mf and Σ0ðmfÞ ¼ FFπM2
π=4mf . The C0 corresponds

to the chiral limit values of them: Σ or Σ0 ¼ C0 þ C1mf þ C2m2
f.

The results with (without) an asterisk ( %) denote linear (quadratic)
fits.

Σ0 Σ
Fit range (mf) C0 χ2=dof C0 χ2=dof dof

0.012–0.02* 0.000212(15) 0.06 −0.000257ð37Þ 4.12 1
0.012–0.03* 0.000233(14) 3.28 −0.000378ð18Þ 9.29 2
0.012–0.03 0.000183(24) 0.54 −0.000039ð84Þ 1.38 1
0.012–0.04 0.000189(15) 0.34 −0.000108ð45Þ 1.17 2
0.012–0.05 0.000186(13) 0.31 −0.000175ð38Þ 3.04 3
0.012–0.06 0.000206(13) 3.29 −0.000159ð27Þ 2.37 4
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FIG. 27. Σ ¼ F2
πM2

π=4mf as a function of mf . The solid and
dashed curves are a quadratic fit result and expected result,
respectively, from each fit of Fπ and Mπ .

TABLE VIII. Chiral fit result of hadron mass MH with
MH ¼ C0 þ C1mf using fit range 0.012 ≤ mf ≤ 0.03 for
H ¼ ρ; a0; a1; b1; N, and N%

1.

H C0 χ2=dof dof

ρ 0.1520(30) 0.36 2
a0 0.162(14) 0.12 2
a1 0.217(22) 1.81 2
b1 0.200(29) 0.52 2
N 0.2148(35) 0.40 2
N%

1 0.272(18) 0.03 2
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FIG. 28. Mρ and Ma0 as a function of mf, together with Mπ .
Solid and dashed lines express the linear fit results for Mρ and
Ma0 , respectively.
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correction in NLO ChPT. For the chiral condensate, the
lower systematic error is estimated from the difference
between the central value and BF2=2 with the logarithmic
correction.
It would be useful to estimate physical quantities in units

of F, because in technicolor models F is related to the weak
scale,

ffiffiffiffiffiffiffi
ND

p
F=

ffiffiffi
2

p
¼ 246 GeV; ð33Þ

where ND is the number of the fermion weak doublets as
1 ≤ ND ≤ Nf=2. The ratios for all the hadron masses,
tabulated in Table VIII, to F in the chiral limit are
summarized in Table X, where the systematic error comes
from the one in F. From our result, the ratio Mρ=F in the
chiral limit is given as

Mρ

F=
ffiffiffi
2

p ¼ 10.1ð0.6Þ
"
þ5.0
−1.9

#
: ð34Þ

If one chooses the one-family model with four weak
doublets, i.e., ND ¼ 4 in Eq. (33), Mρ corresponds to
1.0–1.9 TeV.

E. Discussion

The chiral limit extrapolation of the spectrum of our data
in Table VIII indicates nonzero masses MH≠π ≠ 0 with
characteristic ratios:

M2
a1=M

2
ρ≃ð1.43Þ2≃2; M2

ρ=M2
a0 ≃ð0.94Þ2≃1: ð35Þ

The first relation is a clear signal of the spontaneously
broken NG phase, since it is nothing but the famous
Weinberg mass relation [68] in ordinary QCD. It follows

critically from the inequality of the vector and axial vector
current correlators, typically the Weinberg spectral function
sum rules (SRs)

F2
ρ ¼ ðFπ=

ffiffiffi
2

p
Þ2 þ F2

a1 ; ðSR1Þ

F2
ρM2

ρ ¼ F2
a1M

2
a1 ; ðSR2Þ

combined with the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation F2

ρ ¼ 2ðFπ=
ffiffiffi
2

p
Þ2. If the

chiral symmetry were not spontaneously broken, there
would be no π pole contribution to the axial vector current
and hence ðFπ=

ffiffiffi
2

p
Þ2 term would be missing in SR1; this

would imply F2
ρ ¼ F2

a1. SR2 would then conclude
M2

ρ ¼ M2
a1—i.e., the Wigner phase, as would be expected

in a linear sigma model, with degenerate massive parity
doubling; this sharply contrasts with our result
M2

a1 ≃ 2M2
ρ.
15

The second relation in Eq. (35) is a novel result also
consistent with the broken phase. The unbroken chiral
symmetry would be consistent with a linear sigma model
for Nf > 2 case, particularly when Nf ≫ Nc as is the case
in our study. The chiral partner should be the parity-
doubling flavor-nonsingletN2

f − 1 pairs ðπ; a0Þ—instead of
ðπ; σÞ in the Nf ¼ 2 case—which are only half of the
singlet and nonsinglet 2N2

f qq̄ bound states, excluding the
other half ða0; ηÞ. Then the unbroken chiral symmetry
created by the parity doubling would imply the degeneracy
M2

π ¼ M2
a0 , in sharp contrast to our result M2

π ≪
M2

a0ð≃M2
ρÞ.

To further understand the second relation M2
a0 ≃M2

ρ

together with the first one in Eq. (35), we recall the once-
fashionable “representation mixing” [69,70], in which
resonance saturation of the Adler-Weisberger sum rule
(which is obtained for the spontaneously broken chiral
algebra in the infinite momentum frame) occurs. A modern
formulation of this method is called “mended symmetry”
[71], which targets ordinary QCD (and its simple scaled-up
version of technicolor, but not walking technicolor). In
contrast to our study of large Nfð≫NcÞ QCD as a walking
theory, the analysis in [71] is crucially based on the large
Ncð≫Nf ¼ 2Þ limit, with singlet-nonsinglet degeneracy
(the “nonet scheme”), and the Nf ¼ 2 peculiarity of

TABLE IX. Chiral fit result of mass ratio of parity
partners Ma1=Mρ with Ma1=Mρ ¼ C0 þ C1mf using fit range
0.012 ≤ mf ≤ 0.03.

C0 χ2=dof dof

1.405(64) 1.66 2

TABLE X. Ratios of
ffiffiffi
2

p
MH=F with H ¼ ρ; a0; a1; b1; N, and

N%
1. The first and second errors are statistical and systematic

errors.

ρ 10.1 (0.6) (þ5.0
−1.9)

a0 10.8 (1.1) (þ5.4
−2.0)

a1 14.4 (1.7) (þ7.2
−2.7)

b1 13.3 (2.1) (þ6.6
−2.5)

N 14.3 (0.9) (þ7.1
−2.7)

N%
1 18.1 (1.6) (þ9.0

−3.4)

15In a walking theory there actually is no reason for SR2
to be valid, since γm ≃ 1 yields a slower damping UV behavior
∼ðhq̄qiðRÞÞ2 · q2γm=q6 ∼ 1=q4 of the difference between the
vector and axial vector current correlators, instead of 1=q6 in
the QCD (where γm ≃ 0). The KSRF relation may also change in
walking theories, as shown in the hidden local symmetry
framework [66]. Nevertheless Eq. (35)—the same as the
Weinberg mass relation—can also follow in walking theories
in the NG phase, without recourse to Weinberg’s SR2 and the
KSRF relation, as will be described below.

LIGHT FLAVOR-SINGLET SCALARS AND WALKING … PHYSICAL REVIEW D 96, 014508 (2017)
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techni rho meson decay constants [preliminary]

• ratio Fρ/Fπ ~ √2


• consistent with LSD collab. 
[PDD93, 114514 (2016)] 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• ratio Fρ/Fπ ~ √2


• consistent with LSD collab. 
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techni rho meson property (through KSRF relation)

• KSRF (Kawarabayashi-Suzuki-
Riazuddin–Fayyazuddin) relations


•  


• gρππ (LatLMI) is also ~ 6


• decay width of techni rho


•   


•  Γ (LatKMI) is also ≳ 450 GeV   
for Nd=1: rather broad
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IV. THE VECTOR MESON

We now study more properties of the vector resonance
to further relate our numerical work to phenomenologi-
cal models of new strong dynamics. The production rate
of the vector meson at colliders is determined by its
couplings to standard model fermions, which are in turn
related to the decay constant Fρ. On the other hand,
the resonance’s decay rate is dominated by its coupling
to the longitudinal components of the electroweak gauge
bosons, assuming that the N2

f − 4 ¼ 60 uneaten pseudo-
Nambu–Goldstone bosons are heavy enough that their
effect is negligible. A possibility we bear in mind in the
following would consider the eight flavors to be mass-
split into two light and six heavy ones. The resulting
decay width Γρ of the vector resonance therefore
depends on the ρ → ππ coupling gρππ of the new strong
dynamics.
We estimate gρππ invoking the Kawarabayashi–Suzuki–

Riazuddin–Fayyazuddin (KSRF) relations [45,46]

Fρ ¼
ffiffiffi
2

p
Fπ gρππ ¼

Mρffiffiffi
2

p
Fπ

; ð1Þ

in a manner similar to what has been done in lattice QCD
studies such as Ref. [47]. These relations result from fairly
simple assumptions (principally current algebra and some
form of vector meson dominance [48]), and arise rather
generically in models of hidden local symmetries [49] and
in chiral effective theories for spin-1 mesons [50]. We
assess their applicability through our direct measurements
of Fρ and Fπ in the Nf ¼ 8 theory.

In the upper panel of Fig. 6 we plot our lattice results for
Fρ=Fπ , finding agreement with the first KSRF relation in
Eq. (1) to within 8% throughout the range of masses we
investigate. This provides justification for using the second
KSRF relation to estimate gρππ ≈ Mρ=ð

ffiffiffi
2

p
FπÞ. When we

plot this quantity in the lower panel of Fig. 6, we observe
that it is within 10% of the QCD value gρππ ≈ 6. Since we
have already seen that the 8-flavorMρ=Fπ ≈ 8 is similar to
the QCD value and rather independent of the fermion mass,
this behavior is not too surprising.
The physical decay width of the vector resonance to the

longitudinal parts of the Wand Z gauge bosons (denoted as
πL) can now be estimated as

Γρ→πLπL ≡ Γρ ≈
g2ρππMρ

48π
≈

M3
ρ

96πF2
π
: ð2Þ

Here we neglect the small electroweak gauge boson
masses compared to the vector resonance mass. With
Mρ ≃ 2 TeV, this expression leads to Γρ ≃ 450 GeV. The
corresponding Γρ=Mρ ≃ 0.22 for Nf ¼ 8 is also similar to
the QCD value, 0.19 [27]. This relatively broad width may
make such a vector resonance challenging to discover at
the LHC [51].
It is significant that we are able to measure Fρ and

estimate gρππ and Γρ using lattice calculations and the
KSRF relations. These quantities are needed for phenom-
enological predictions of vector meson production and
decay rates at colliders in models of new strong dynamics
such as those considered by Refs. [52,53]. In particular,
Ref. [52] needs to treat Fρ and gρππ as tunable parameters.
Our new nonperturbative results for these quantities may be

FIG. 5. Comparing our 8-flavorM0þþ andMρ results with those
of the LatKMI Collaboration [4,15,43], using the same reference
scale

ffiffiffiffiffiffi
8t0

p
. We plot these quantities vs.Mπ and include a dashed

line to highlight degeneracy with the pseudoscalar meson. A
consistent trend is clearly visible, with the light singlet scalar
0þþ state following the pseudoscalar to the smallest masses
studied so far.

FIG. 6. Upper: Testing the first KSRF relation in Eq. (1)
for Nf ¼ 8 through lattice measurements of Fρ=Fπ . Lower:
The second KSRF relation then provides an estimate for
gρππ ≈ Mρ=ð

ffiffiffi
2

p
FπÞ, which is within 10% of the physical

QCD value gρππ ≈ 6 throughout the range of masses we
investigate.
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Nf=8   spectrum  — σ: flavor singlet scalar

• σ is a candidate of Higgs in a successful walking technicolor theory


• observed hierarchy of spectrum  (parametrically)


• mπ ≃ mσ < mρ   (Nf=8) 

• unlikely due to “heavy quark”


• also in other (near) conformal th.


• Nf=12, Nf=2 sextet, SU(2) 2 adj..


• contrast to QCD (physical point)


• mπ ≪ mσ < mρ  (~Nf=2+1) 

• eventually mπ < mσ  should be seen


• but, far from our simulation points


• this continues to even lighter points: see LSD 2016

updated from  Phys.Rev.D96(2017)
mf=0.009 (lightest) is new
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flavor singlet pseudoscalar  

 [LatKMI E. Rinaldi talk at Lattice 2017]



η’ mass for Nf=4, 8, 12   
[LatKMI Rinaldi Lattice 2017]

Preliminary

Compare using a 
common 

reference scale
Pseudoscalar flavor-singlet becomes heavier with 

increasing number of flavors

~2x

~3x

preliminary



η’ mass     [preliminary]

• provide access to chiral anomaly and Nf dependence


• challenging for lattice computation due to noise


• reasonable signal obtained by


• high statistics and Wilson flow


• use of 4d convolution with gluonic operator


• results: 


• consistent with an enhancement of chiral anomaly effect


• “anti-Venetiano limit”     ~ (Nf/Nc)      [Matsuzaki-Yamawaki JHEP(2015)053]


• other ratio needs to be investigated

Preliminary

Compare using a 
common 

reference scale
Pseudoscalar flavor-singlet becomes heavier with 

increasing number of flavors

~2x

~3x



S parameter for Nf=8 QCD 

 [LatKMI Lattice 2015 and updates(preliminary)]



Peskin - Takeuchi  S parameter

• S parameter provides important constraint on composite models


• Ciucini et al JHEP1308 106 (MH=126GeV)
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Large-mt expansion Using ref. [16, 83]

Parameter STU fit ST fit with U = 0 ST fit with U = 0

S 0.04± 0.10 0.06± 0.09 0.08± 0.10

T 0.05± 0.12 0.08± 0.07 0.10± 0.08

U 0.03± 0.09 — —

Table 4. Fit results for the oblique parameters with floating U or fixing U = 0, using the large-mt

expansion or with the results of ref. [16, 83] for the two-loop fermionic EW corrections to ⇢fZ . In
the latter case, we do not consider constraints from �Z , �0

h and R0

` .

S

-0.5 0 0.5

T

-0.5

0

0.5

Figure 4. Left: two-dimensional probability distribution for the oblique parameters S and T
obtained from the fit with S, T , U and the SM parameters, with the large-mt expansion for the
two-loop fermionic EW corrections to ⇢fZ . Center: two-dimensional probability distribution for the
oblique parameters S and T obtained from the fit with S, T and the SM parameters with U = 0,
with the large-mt expansion for the two-loop fermionic EW corrections to ⇢fZ . The individual
constraints from MW , the asymmetry parameters sin2 ✓lept

e↵

, P pol

⌧ , Af and A0,f
FB

with f = `, c, b, and
�Z are also presented, corresponding to the combinations of parameters A, B and C in eq. (3.5).
Right: same as center, but using the results of ref. [16, 83]. In this case, the constraint from �Z

cannot be used.

and ✏
3

[6, 7]:

✏
1

= �⇢0, (3.6)

✏
2

= c2
0

�⇢0 +
s2
0

c2
0

� s2
0

�rW � 2s2
0

�0, (3.7)

✏
3

= c2
0

�⇢0 + (c2
0

� s2
0

)�0, (3.8)

where �rW , �⇢0 and �0 are defined through the relations

s2W c2W =
⇡↵(M2

Z)p
2GµM2

Z(1��rW )
, (3.9)

p
Re ⇢eZ = 1 +

�⇢0

2
, (3.10)

sin2 ✓e
e↵

= (1 +�0) s2
0

(3.11)

– 14 –

roughly,  |S| ≲ 0.2  should be satisfied



S parameter of QCD with Nf fundamental fermions 
[LSD, PRL 2011 & PRD 2014]

• Only one “published” result


• one doublet has EW charge →


• Nf=6


• decreases as mf enters chiral regime


• turns up after chiral log sets in


• low value of S possible for unabsorbed 
massive pions → promising 

• note: ETC effect may decrease the size


• Nf=8


• similar trend as Nf=6, but not conclusive

13

dominance approximation
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2
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
(flavor-singlet scalar) Higgs mass in our lattice studies,
we take

�SSM =
1

4

Z 1

4M2
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ds

s
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◆
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].

Computing S for fixed m from Eqs. 18 and 21, employ-
ing the thermalization cuts and jackknife blocks listed in
Table I, produces the 8-flavor results shown in Figure 11.
This figure also includes the Nf = 2 and 6 results pre-
viously published in Ref. [13], which we update to use
MH = 125 GeV rather than MH ⇠ 1000 GeV. As in pre-
vious sections, we plot S vs. M2

P /M
2
V 0 in order to provide

a more direct comparison between the three di↵erent the-
ories.

The S parameter is only well defined in the chiral limit
M

2
P /M

2
V 0 ! 0. However, chiral symmetry breaking with

Nf light but massive flavors produces N2
f �1 PNGBs. To

obtain the phenomenological S parameter, we must con-
sider a chiral limit in which only three of these PNGBs
become exactly massless NGBs to be identified with the
longitudinal components of the W and Z. The other
N

2
f � 4 PNGBs must remain massive enough to have

evaded experimental observation. (These PNGBs are
all pseudoscalars, not to be identified with the 125 GeV
Higgs, which comes from the flavor-singlet scalar spec-
trum that we have not yet investigated.)

For Nf = 2 this requirement simply reduces to the
linear M

2
P /M

2
V 0 ! 0 extrapolation shown in Figure 11,

which produces the non-perturbative result S = 0.42(2),
in agreement with the scaled-up QCD value S ⇡ 0.43
for MH = 125 GeV. When Nf > 2, keeping all the
fermion masses degenerate in the chiral limit would give
rise to additional massless NGBs that make a loga-
rithmically divergent contribution to S, proportional to
log

�
M

2
V 0/M

2
P

�
. The blue band in Figure 11 fits the three

Nf = 6 data points with the smallest M

2
P /M

2
V 0 . 1 to

the corresponding chiral form [55]. In a realistic con-
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FIG. 11. Electroweak S parameter with MH = 125 GeV, for
Nf = 2, 6 and 8 with ND = 1 fermion doublet assigned chiral
electroweak couplings in Eq. (18). Our results for Nf = 2 and
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model and other interactions, which break this degener-
acy.
For Nf = 8, we cannot access M2

P /M
2
V 0 < 1 on 323⇥64

lattice volumes, making this sort of chiral fit unreason-
able. Even so, in Figure 11 we can observe the beginning
of a similar reduction in our 8-flavor results for S. The
Edinburgh-style plot in Figure 5 suggests that these re-
sults should be safe from finite-volume distortions. (The
lightest Nf = 2 and Nf = 6 points in Figure 11 use
mf = 0.005 and are omitted from Figure 5; finite-volume
e↵ects may be significant for this 6-flavor point.) Because
Nf = 8 is closer to the conformal window, we would ex-
pect this reduction to end up more significant than that
for Nf = 6 at smaller M

2
P /M

2
V 0, but this cannot be de-

termined from our current lattice results.

B. Vector and axial-vector parity doubling

The expected decrease in the S parameter for systems
near the conformal window is related to the onset of par-
ity doubling between the vector and axial-vector chan-
nels. This can be seen in Eq. (20), which follows from
the dispersion relation
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2

12⇡

Z 1
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upon approximating each spectral function R(s) by a sin-
gle pole,
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F

2
V �(s�M

2
V )

RA(s) ⇡ 12⇡2
F

2
A�(s�M

2
A).

(23)

Parity doubling in this context amounts to the statement
that RV (s) ⇡ RA(s), so that ⇧0

V�A(0) ⇡ 0.



S parameter of QCD with Nf fundamental fermions 
[LSD, PRL 2011 & PRD 2014]

• Only one “published” result


• one doublet has EW charge →


• Nf=6


• decreases as mf enters chiral regime


• turns up after chiral log sets in


• low value of S possible for unabsorbed 
massive pions → promising 

• note: ETC effect may decrease the size


• Nf=8


• similar trend as Nf=6, but not conclusive
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Eq. (19) is the same fitting function we used in Ref. [13];
subsequent studies [58, 59] have since provided more sys-
tematic support for using such rational functions to fit
the Q

2-dependence of vacuum polarization functions.
Finally, the subtraction of �SSM in Eq. (18) removes

from the spectrum the three NGBs eaten by the W and
Z, and sets S = 0 for the standard model with Higgs
mass MH = 125 GeV. Since we have not yet carried
out the computationally demanding calculation of the
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The first term in Eq. (21) would be appropriate if MH

were comparable to the TeV-scale vector meson mass
MV 0; the second term corrects this for the physical
MH = 125 GeV [66].
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caveat: only one volume is used here



LatKMI 
S(mf): TC contribution per EW doublet (preliminary)

• finite size effect, somehow large, observed


• 8%↓ @ mf=0.015; L=42→36             c.f. pion mass: 0.04%↓ (zero consistent)
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LatKMI 
S(mf): TC contribution per EW doublet (preliminary)

• consistent behavior observed with yet another lattice definition of S


• through 4d Fourier transformation 


• time moment method through zero-spatial momentum projection
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S(mπL): TC contribution per EW doublet (preliminary)

• finite volume effect tends to reduce S


• mπL ≲ 7 finite volume effect begin to develop:    < 10%


• mπL ≲ 6  likely affected by finite volume effect:   > 10%
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S(mπL): TC contribution per EW doublet (preliminary)

• finite volume effect tends to reduce S


• mπL ≲ 7 finite volume effect begin to develop:    < 10%


• mπL ≲ 6  likely affected by finite volume effect:   > 10%
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spectrum in vector and axialvector channel

• measured with local operators (spin-taste: PV)


• indicating finite volume effect tends to push towards parity doubling


• decrease of S for lighter mass observed by LSD might just be finite size effect
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spectrum in vector and axialvector channel

• measured with local operators (spin-taste: PV)


• indicating finite volume effect tends to push towards parity doubling


• decrease of S for lighter mass observed by LSD might just be finite size effect
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Summary

• Nf=8 QCD investigated with focus on composite spectrum


• candidate of Walking Technicolor Theory


• light flavor singlet scalar (Higgs) exists


• techni rho mass > 1 TeV  (minimum; depending on the model)


• S parameter, suppression due to parity doubling may not be realized


➡ if true, different mechanism for reduction needed, eg, in ETC


• flavor singlet scalar


• has novel property: strong dependence on Nf 


• investigation further continues…



Thank you very much for your attention !



enhancement of Mη’ for larger Nf

• Discussion:


• Usual large Nc argument


• fix: Nf and nc→∞


• Witten-Venetiano: Mη’2 ~ (Nf/nc) * Λ2→0  for nc→∞


• checked by lattice (χt @ Quench: Del Debbio, Giusti, Pica 2005)


• Walking regime: need to keep (Nf/nc) non-vanishing


• “Anti-Venetiano-limit”:  keep (Nf/nc)>1 fixed & nc→∞


• Matsuzaki-Yamawaki: Mη’2 ~ (Nf/nc)2 * Λ2 

        [JHEP 2015]


• this could be responsible for the observed ratio 1:2:3 for Mη’

JHEP12(2015)053

Figure 5. The loop diagrams contributing to the correlation function of αGµνG̃µν coming from
the gluon loop (left panel) and fermion loop (right panel). The large NC and NF scalings have also
been specified.

parametrically vanishing mass Mη′/Fπ = O(
√
NF /NC) < Mη′/ΛQCD = O(

√
NF /NC) → 0

in the large NC limit with NF /NC fixed (≪ 1) in the ordinary QCD (original Veneziano

limit), a la Witten-Veneziano. In fact the anomalous chiral WT identity for A0
µ(x) =∑NF

i=1 q̄i(x)γµγ5qi(x) reads:
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In the Veneziano limit NF /NC ≪ 1 the gluon loop dominates the fermion loop, and hence

we have
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Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.

What about the η′ in the anti-Veneziano limit, then? (No TD exists in the Veneziano

limit, since it is not a walking theory.) From eq. (4.2) and figure 5, we see the fermion loop

dominates the gluon loop, contrary to the Veneziano limit. Then we infer

M2
η′ ∼ N3

CNF α2m2
F ∼ NF

NC
mF ≫ mF , (4.14)

where we have again subtracted the perturbative contribution to the U(1)A anomaly. This

could be tested on the lattice simulation [110]. In the anti-Veneziano limit the η′ mass does

not go to zero and hence has no NG boson nature in contrast to the TD. In the walking

case with NC/NF ≫ 1 and mF ≪ ΛTC, a simple scaling suggests that M2
φ = O(m2

F ) and
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For the phenomenological studies, the PCDC in eq. (4.1) together with the Pagels-

Stokar formula in eq. (4.9) yields a more concrete result:
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. (4.15)

which is in accord with [69] based on the improved ladder result (with the two-loop cou-

pling as the input coupling). It was first pointed out in ref. [35] that this ladder PCDC
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a method for flavor singlets

• statistical technique for these noisy correlation functions


• use purely gluonic operators and sample exact all to all  with Gradient Flow


• zero momentum projection is not very efficient


 


• average to all direction will help


 


• Successful applications


• 0+- glueball @ Nf=0      by Chowdhury, Harindranath, Maiti, PRD 2015  

• η’  meson @ Nf=2+1     by JLQCD (Fukaya et al) PRD 2015


• no pion “contamination” due to no use of fermion correlators

X

x,y,z

G(x, y, z, t) ! G(t)

r:fixedX

x,y,z,t

G(x, y, z, t) ! G(r); r

2 = x

2 + y

2 + z

2 + t

2



staggered flavor (taste) symmetry for Nf=8 HISQ

• comparing masses with different staggered operators for π  for β=3.8


• excellent staggered flavor symmetry, thanks to HISQ
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