Spectral properties and S parameter of N_f=8 QCD

for the LatKMI collaboration

- @ Brookhaven Forum 2017 -

October 11, 2017

LatKMI collaboration

• KMI / Nagoya Univ.

T.Maskawa, K.Nagai, K.Yamawaki

• KEK, Kyoto, Swansea, Keio, CPT Marseille, Nara, RBEC, Tsukuba

Y. A, T.Aoyama, E.Bennett, M.Kurachi, K.Miura, H.Ohki, E.Rinaldi, A.Shibata, T.Yamazaki

Thanks to...

- Kobayashi-Maskawa Institute, Nagoya University
- Computer Use
 - KMI arphi
 - HPCI (High Performance Computing Infrastructure in Japan)
 - # hp160153, hp150157, hp140152
 - JLDG (Japan Lattice Data Grid)
 - Kyshu University CX400, Nagoya University CX400
- YA is / was supported by
 - JSPS Grants (C) No. 16K05320, (S) No. 22224003.

Technicolor

- QCD like dynamics can trigger the Electroweak symmetry breaking
- Techni pion act as NG mode of Higgs
 - give mass to W and Z bosons
- SM fermion masses are given through ETC
- Tension:
 - FCNC must be suppressed
 - sizable m_f needs to be generated

Technicolor

- QCD like dynamics can trigger the Electroweak symmetry breaking
- Techni pion act as NG mode of Higgs

 give mass to W and Z bosons

 SM fermion masses are given through ETC
 Tension:

 FCNC must be suppressed
 sizable m_f needs to be generated

so far we are dealing with this only

 Λ_{ETC}

Λ_{TC}

 Λ_{QCD}

TC

conformal window and walking gauge coupling - non-Abelian gauge theory with N_f massless fermions -

conformal window and walking gauge coupling - non-Abelian gauge theory with Nf massless fermions -

• Walking Techinicolor could be realized just below the conformal window

- crucial information: N_f^{crit} and...
- mass anomalous dimension γ & the composite mass spectrum around $N_{f}{}^{crit}$

conformal window and walking gauge coupling - non-Abelian gauge theory with $N_{\rm f}$ massless fermions -

Through a series of systematic studies for N_f of LatKMI, N_f=8 QCD appeared to be a good candidate of near conformal but chiral symmetry breaking theory

- Walking Techinicolor could be realized just below the conformal window
- crucial information: N_f^{crit} and...
- mass anomalous dimension γ & the composite mass spectrum around $N_{f}{}^{crit}$

Contents of this talk on the $N_f=8$ QCD

- basic composite mass spectrum
 - scaling expected for (near) conformal theory
 - investigation of chiral symmetry breaking
 - techni rho meson
- flavor singlet scalar
 - does this have "light mass" to be able to replace Higgs ?
- flavor singlet pseudoscalar (preliminary)
- S parameter (preliminary)

scaling study results

[LatKMI PRD96, 014508 (2017)]

a crude study using ratios and universal hyperscaling [LatKMI PRD96, 014508 (2017)]

- conformal scenario:
 - $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ for small m_f ; γ_m^* : mass anomalous dim
 - ★ F_{π}/M_{π} → const. for small m_{f}
 - ★ M_{ρ}/M_{π} → const. for small m_{f}
- chiral symmetry breaking scenario:
 - $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c' M_{\pi^2}$ for small m_f
 - ★ $F_{\pi}/M_{\pi} \rightarrow \infty$ for $m_f \rightarrow 0$
- finite size scaling in a L⁴ box (DeGrand; Zwicky; Del Debbio et al)
 - scaling variable: $x = Lm_f^{\frac{1}{1+\gamma^*}}$

$$L \cdot M_H = f_H(x)$$
 $L \cdot F_\pi = f_F(x)$

$N_f=12$

• $F_{\pi}/M_{\pi} \rightarrow \text{constant} (m_f \rightarrow 0)$

expected for conformal theory

finite size hyperscaling intact

$N_f=4$

• $F_{\pi}/M_{\pi} \rightarrow \text{tends to diverge } (m_f \rightarrow 0)$

• no scaling for γ 's allowed range

• expected for chiral symm.br. theory

• $F_{\pi}/M_{\pi} \rightarrow \text{tends to diverge } (m_f \rightarrow 0)$

- expected for chiral symm.br. theory
- finite size hyperscaling intact
 - γ varies by quantity
 - approximate conformality

• $F_{\pi}/M_{\pi} \rightarrow \text{tends to diverge } (m_f \rightarrow 0)$

- expected for chiral symm.br. theory
- finite size hyperscaling intact
 - γ varies by quantity
 - approximate conformality

• $F_{\pi}/M_{\pi} \rightarrow \text{tends to diverge } (m_f \rightarrow 0)$

- expected for chiral symm.br. theory
- finite size hyperscaling intact
 - γ varies by quantity
 - approximate conformality

spectrum analysis of $N_f=8$ for chiral symmetry br.

[LatKMI PRD96, 014508 (2017) and some updates (preliminary)]

techni pion decay constant

• lattice scale setting @ $m_f \rightarrow 0$

$$\frac{F_{\pi}}{\sqrt{2}} = \frac{246}{\sqrt{N_d}} \text{ GeV}$$

- determines *a*-1
- typical models
 - N_d = 1 for one EW doublet
 - N_d= 4 for one-family model

techni rho meson mass

• at the chiral limit

$$\frac{M_{\rho}}{F/\sqrt{2}} = 10.1(0.6) \binom{+5.0}{-1.9}.$$

• including F_{π} chiral log sys. error

- $M_{\rho} = 1 1.9$ TeV for one family model
- $M_{\rho} = 2 3.7 \text{ TeV}$ for a $N_d=1$ model

• other hadrons, see→ LatKMI 2017

techni rho meson decay constants [preliminary]

- ratio $F_{\rho}/F_{\pi} \sim \sqrt{2}$
- consistent with LSD collab.
 [PDD93, 114514 (2016)]

techni rho meson decay constants [preliminary]

- ratio $F_{\rho}/F_{\pi} \sim \sqrt{2}$
- consistent with LSD collab.
 [PDD93, 114514 (2016)]

techni rho meson property (through KSRF relation)

• KSRF (Kawarabayashi-Suzuki-Riazuddin–Fayyazuddin) relations

•
$$F_{\rho} = \sqrt{2}F_{\pi}$$
 $g_{\rho\pi\pi} = \frac{M_{\rho}}{\sqrt{2}F_{\pi}}$

- $g_{\rho\pi\pi}$ (LatLMI) is also ~ 6
- decay width of techni rho

$$\Gamma_{\rho \to \pi_L \pi_L} \equiv \Gamma_{\rho} \approx \frac{g_{\rho \pi \pi}^2 M_{\rho}}{48\pi} \approx \frac{M_{\rho}^3}{96\pi F_{\pi}^2}.$$

 Γ (LatKMI) is also ≥ 450 GeV for N_d=1: rather broad

$N_f=8$ spectrum – σ : flavor singlet scalar

- σ is a candidate of Higgs in a successful walking technicolor theory
- observed hierarchy of spectrum (parametrically)
 - $m_{\pi} \simeq m_{\sigma} < m_{\rho}$ (N_f=8)
 - unlikely due to "heavy quark"
 - also in other (near) conformal th.
 - N_f=12, N_f=2 sextet, SU(2) 2 adj..
- contrast to QCD (physical point)
 - $m_{\pi} \ll m_{\sigma} < m_{\rho}$ (~N_f=2+1)
- eventually $m_\pi < m_\sigma$ should be seen
 - but, far from our simulation points
 - this continues to even lighter points: see LSD 2016

flavor singlet pseudoscalar

[LatKMI E. Rinaldi talk at Lattice 2017]

η' mass for Nf=4, 8, 12 [LatKMI Rinaldi Lattice 2017]

η' mass [preliminary]

- provide access to chiral anomaly and Nf dependence
- challenging for lattice computation due to noise
- reasonable signal obtained by
 - high statistics and Wilson flow
 - use of 4d convolution with gluonic operator
- results:
 - consistent with an enhancement of chiral anomaly effect
 - "anti-Venetiano limit" ~ (N_f/N_c) [Matsuzaki-Yamawaki JHEP(2015)053]

other ratio needs to be investigated

S parameter for $N_f=8$ QCD

[LatKMI Lattice 2015 and updates(preliminary)]

Peskin - Takeuchi S parameter

- S parameter provides important constraint on composite models
- Ciucini et al JHEP1308 106 (M_H=126GeV)

Figure 4. Left: two-dimensional probability distribution for the oblique parameters S and T obtained from the fit with S, T, U and the SM parameters, with the large- m_t expansion for the two-loop fermionic EW corrections to ρ_Z^f . Center: two-dimensional probability distribution for the oblique parameters S and T obtained from the fit with S, T and the SM parameters with U = 0, with the large- m_t expansion for the two-loop fermionic EW corrections to ρ_Z^f . The individual constraints from M_W , the asymmetry parameters $\sin^2 \theta_{\text{eff}}^{\text{lept}}$, P_{τ}^{pol} , A_f and $A_{\text{FB}}^{0,f}$ with $f = \ell, c, b$, and Γ_Z are also presented, corresponding to the combinations of parameters A, B and C in eq. (3.5). Right: same as center, but using the results of ref. [16, 83]. In this case, the constraint from Γ_Z cannot be used.

S parameter of QCD with N_f fundamental fermions [LSD, PRL 2011 & PRD 2014]

- Only one "published" result
- one doublet has EW charge \rightarrow
- N_f=6
 - decreases as m_f enters chiral regime
 - turns up after chiral log sets in
 - low value of S possible for unabsorbed massive pions → promising
 - note: ETC effect may decrease the size
- N_f=8
 - similar trend as Nf=6, but not conclusive

S parameter of QCD with N_f fundamental fermions [LSD, PRL 2011 & PRD 2014]

- note: ETC effect may decrease the size
- N_f=8
 - similar trend as Nf=6, but not conclusive

LatKMI S(m_f): TC contribution per EW doublet (preliminary)

- finite size effect, somehow large, observed
- 8%↓ @ m_f=0.015; L=42→36 c.f. pion mass: 0.04%↓ (zero consistent)

LatKMI S(m_f): TC contribution per EW doublet (preliminary)

consistent behavior observed with yet another lattice definition of S

- through 4d Fourier transformation
- time moment method through zero-spatial momentum projection

$S(m_{\pi}L)$: TC contribution per EW doublet (preliminary)

- finite volume effect tends to reduce S
- $m_{\pi}L \approx 7$ finite volume effect begin to develop: < 10%
- $m_{\pi}L \lesssim 6$ likely affected by finite volume effect: > 10%

$S(m_{\pi}L)$: TC contribution per EW doublet (preliminary)

- finite volume effect tends to reduce S
- $m_{\pi}L \approx 7$ finite volume effect begin to develop: < 10%
- $m_{\pi}L \lesssim 6$ likely affected by finite volume effect: > 10%

spectrum in vector and axialvector channel

measured with local operators (spin-taste: PV)

- indicating finite volume effect tends to push towards parity doubling
- · decrease of S for lighter mass observed by LSD might just be finite size effect

spectrum in vector and axialvector channel

- measured with local operators (spin-taste: PV)
- indicating finite volume effect tends to push towards parity doubling
- decrease of S for lighter mass observed by LSD might just be finite size effect

Summary

- $N_f=8$ QCD investigated with focus on composite spectrum
 - candidate of Walking Technicolor Theory
 - light flavor singlet scalar (Higgs) exists
 - techni rho mass > 1 TeV (minimum; depending on the model)
 - S parameter, suppression due to parity doubling may not be realized
 - ➡ if true, different mechanism for reduction needed, eg, in ETC
- flavor singlet scalar
 - has novel property: strong dependence on N_f
- investigation further continues...

Thank you very much for your attention !

enhancement of $M_{\eta^{\prime}}$ for larger N_{f}

- Discussion:
- Usual large Nc argument
 - fix: N_f and $n_c \rightarrow \infty$
 - Witten-Venetiano: $M_{\eta'}^2 \sim (N_f/n_c) * \Lambda^2 \rightarrow 0$ for $n_c \rightarrow \infty$

- checked by lattice (χt @ Quench: Del Debbio, Giusti, Pica 2005)
- Walking regime: need to keep (N_f/n_c) non-vanishing
 - "Anti-Venetiano-limit": keep (N_f/n_c)>1 fixed & $n_c \rightarrow \infty$
 - Matsuzaki-Yamawaki: M_η² ~ (N_f/n_c)² * Λ²
 [JHEP 2015]

- this could be responsible for the observed ratio 1:2:3 for $M_{\eta'}$

a method for flavor singlets

- statistical technique for these noisy correlation functions
- use purely gluonic operators and sample exact all to all with Gradient Flow
- zero momentum projection is not very efficient

$$\sum_{x,y,z} G(x,y,z,t) \to G(t)$$

• average to all direction will help

$$\sum_{x,y,z,t} G(x,y,z,t) \to G(r); \ r^2 = x^2 + y^2 + z^2 + t^2$$

- Successful applications
 - 0+- glueball @ N_f=0 by Chowdhury, Harindranath, Maiti, PRD 2015
 - η ' meson @ N_f=2+1 by JLQCD (Fukaya et al) PRD 2015
 - no pion "contamination" due to no use of fermion correlators

staggered flavor (taste) symmetry for $N_f=8$ HISQ

• comparing masses with different staggered operators for π for β =3.8

excellent staggered flavor symmetry, thanks to HISQ

