Top Quark Physics and QCD

BNL Forum 2017, Oct 12, 2017

Olaf Behnke, DESY, on behalf of ATLAS and CMS

→ study bare quarks

D

 $\alpha_{s}(m_{z})$

Mass Mass Difference, Width, Charge

> **W-Helicity Fractions Branching Ratios**, V_{tb}, Rare Decays, FCNC

Decay channels $\mathbf{W}^+\mathbf{W}^- \to \mathbf{l}\nu\mathbf{l}\nu$ Dileptonic $W^+W^- \rightarrow l\nu jj$ -jets $\mathbf{W}^+\mathbf{W}^-
ightarrow \mathbf{jjjj}$ All – hadronic

Decay channels

use only $\rightarrow \mathbf{l}\nu$

Top Quark Mass

Most precise: template fits in I+jet channel

Pole mass from cross sections $\sigma_{t\bar{t}} \rightarrow$ most precise results: 173.2 ± 1.6 GeV ATLAS: CONF-2017-044 173.8 ± 1.8 GeV CMS: JHEP 08 (2016) 029

178

Instability

Inclusive tt cross section ott

Inclusive tt cross section $\sigma_{t\bar{t}}$

 $7.26 \pm 0.13_{stat} \pm 0.57_{syst} \, pb$

"boosted": 1 (top-tagged) jet k_T=1.0

arXiv:1708.00727

I+ jets

Resolved Stat. unc. Stat.+Syst. unc. Boosted Stat. unc. Stat.+Syst. unc.

1200

1400

 $p_{\tau}^{t,had}$ [GeV]

➡ NLO calculations: too hard p_T(top) spectrum ➡ Similar effect seen at 8 TeV, cured with NNLO

Many new precise differential cross sections:

ATLAS: CONF-2017-044, CONF-2016-100, arXiv:1612.05220, arXiv:1607.07281 CMS: PAS-TOP-17-002, arXiv:1708.07638, arXiv:1610.04191, PAS-TOP-16-018, PAS-TOP-16-013

Charge Asymmetry Ac

- NLO: gq diagrams interfere
- Diluted @LHC due to large gg fract $\overline{\mathcal{A}} = \overline{\mathcal{A}} = \overline{\mathcal{A}}$

 $q\bar{q}$ tree-level and box diagrams: positive asymmetry

ISR/FSR: negative asymmetry

Measurements consistent with SM and zero

QCD at LHC

Parton distribution functions PDFs Representing structure of proton, extracted using experimental data and QCD properties

Focus in the following on two new studies with high p_T jets

Hard scatter parton cross section Higher order pQCD correction; accompanying radiation, jets, ...

 $\rightarrow X = jets, W, Z, top, Higgs, SUSY, ...$

Underlying event

 $Q^2 = M_X^2$

Triple differential dijets PDF fit

Fit proton PDFs to HERA DIS and 122 CMS dijet points

Highly improved gluon density in x range [0.1-0.7]

Fit in addition α_s $\alpha_{s}(M_{Z}) = 0.1199 \pm 0.015 (exp)^{+0.0031} - 0.0020$ (theo)

 \rightarrow One of the most precise α_s determinations from LHC

Inclusive jets and NLO

Tensions between data and theory - also seen for 8 TeV jet data JHEP09 (2017) 020

ATLAS-CONF-2017-048

Inclusive jets and NNLO ATLAS-CONF-2017-048

New: full NNLO calculation available

\rightarrow NNLO seems to improve perturbative stability only towards highest jet p_T

Summary TOP

- LHC top quark factory \approx 40M top events collected until 2016
 - \rightarrow thorough top quark examination, today glimpses shown:
 - Precision measurements: Mass, cross sections & spectra
 - tt +Z,W and t+W ,t+Z, accessing rare processes SM 😀
- Collect until end of 2018 another 60M top events \rightarrow more precise & extended measurements + accessing rarer channels (e.g. tttt)

Jet data & NNLO turn LHC into a QCD precision lab \rightarrow constrain SM parameters: PDFs, α_s , \Rightarrow also helpful to improve searches

17