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The big questions

e Are neutrinos Majorana?
* dcp

e Mass hierarchy

¢ (923 — T / 47

* Resolution of LSND and the other short-baseline
anomalies

* New physics (on top of neutrino mass)?
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Status quo

A common framework for all the neutrino data’ is
oscillation of three active neutrinos

e Am3, ~8-10%eV*and Oy ~ 1/2
e Am2, ~2-1073eV” and Oy3 ~ /4
¢ (913 ~ (.16

This implies a lower bound on the mass of the
heaviest neutrino

V2-10-36V2 ~ 0.04 6V

I apart from short-baseline anomalies
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Mixing matrices

Quarks
1 0.2 0.005
Ucxkml=1 02 1 0.04
0.005 0.04 1
Neutrinos
0.8 0.5 0.15
U,)=1 04 06 0.7

0.4 0.6 0.7
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Neutrinos are massive — so what?

Neutrinos in the Standard Model (SM) are strictly
massless, therefore the discovery of neutrino
oscillation, which implies non-zero neutrino masses
requires the addition of new degrees of freedom.
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ﬂﬁa The Nobel Prize in Physics 2015

3 Takaaki Kajita, Arthur B McDonald

Share this:

The Nobel Prize in Physics
2015

Takaaki Kajita  ArthurB.
Prize share: 1/2 Mq:DonaId
F'ri?_e share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki
Kajita and Arthur B. McDonald "for the discovery of neutrino
oscillations, which shows that neutrinos have mass”
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We always knew they are...

The SM, likely, 1s an effective field theory, i.e. at some
high scale A new degrees of freedom will appear

1 1
,CSM—I-K,C5—|—E

The first operators sensitive to new physics have
dimension 5. It turns out there 1s only one dimension

Lo+ ...

S operator
1 |
L5 = < (LH)(LH) > £(L{H))(L(H)) = m, v

Weinberg
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Effective theories

The problem 1n effective theories 1s, that there are a
priori unknown pre-factors for each operator

i i
L — L5+ -—=Ls+ ...
SM Tt A Lo + A2~ +
Typically, one has # = O(1), but there may be

reasons for this being wrong.

Therefore, we do not know the scale of new physics
responsible for neutrino masses — anywhere from keV
to the Planck scale 1s possible.
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Neutrino masses are different

The crucial difference between neutrinos and other
fermions 1s the possibility of a Majorana mass term

Mm% + mrYry?

on top of the usual Dirac mass term

mpYrYr
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Neutrino mass determination

Finding the scale A of neutrino mass generation rests
crucially on knowing

e Dirac vs Majorana mass

» Absolute size of mass

All direct experimental techniques for mass
determination rely on v., which 1s mostly made up of
(115] and M.
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Mass hierarchy

Literature survey arXiv:1307.5487
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Cosmology

Many experiments are expected to have a result at or
above 3 o within a decade from now.

P. Huber — VI-CNP —p. 11



First hints for non-maximal 055

NUFIT 3.0 (2016)
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sin'6,, sin'6,, |Amatm| [10 " eV']
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CP violation

There are only very few parameters 1in the v SM which
can violate CP

 CKM phase — measured to be v ~ 70°
* 0 of the QCD vacuum — measured to be < 10~

* Dirac phase of neutrino mixing
* Possibly: 2 Majorana phases of neutrinos
At the same time we know that the CKM phase 1s not

responsible for the Baryon Asymmetry of the
Universe. . .
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First hints for CP violation?

NUFIT 3.0 (2016)
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Unitarity triangles

We currently have no way to directly measure any of
sides containing v..
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What did we learn from that?

Our expectations where to find BSM physics are
driven by models — but we should not confuse the
number of models with the likelihood for discovery.

® (CKM describes all flavor effects
®* SM baryogenesis difficult

® New Physics at a TeV
® does not exist or
® has a special flavor structure

and a vast number of parameter and model space
excluded.
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Non-standard interactions

NSI are the workhorse tfor BSM physics 1n the

neutrino sector. They can be parameterized by terms
like this

Lns1 = _ZﬂGfeég(pavpyﬁ)(prPf) .

where f can be any fermion and P is the projection
onto right and left-handed components. Wolfenstein.,
1978
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Impact on three flavors

GLoBES 2016 oeMe=m, |e[=0.3 W SM
d=—m/2
$=0
¢=n/2
d=n

|
I
PH, D. Vanegas, 2016
In this example, CP conserving new physics fakes CP

violation 1n oscillation!
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Flavor models

Simplest un-model — anarchy Murayama, Naba, DeGouvea
2 4 2
predicts flat distribution in 0¢p

Simplest model — Tri-bimaximal mixing Harrison,
Perkins, Scott

5
o
Sl o

.
\ % v v/
to still fit data, obviously corrections are needed —
predlCtIVIty () P. Huber — VT-CNP — p. 19



Sum rules

012,=35°+6,3C0S0
01,=32°+6,3C0S0

053=45°-1/4/ 2 68,3C0SO

current errors\

M

currer
for 015
Fogli ¢

t best fit values and errors
, 613 and 0,3 taken from
ot al. 2012

3% on sin®263
0.7% on sin2012

50

100

predicted value of d¢cp [©]

150

3 o resolution of 15° distance requires 5° error. NB — smaller error on

612 requires dedicated experiment like JUNO
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How low can you go?

CKM 2011 -

LBNF (2E7s p.a.)
T2HK (1E7s p.a.)
NuMAX (1E7s p.a.)
NuMAX+ (1E7s p.a)
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PH, Bross, Palmer, 2014.
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What can we learn from that?

— If we retute three flavor oscillation with
significance, we have found new physics, but this
requires great precision.

— If we confirm three flavor oscillation with great
precision, we need the context of specific models to
learn anything about BSM physics.

Corollary: Only if we do this we really will
learn something!
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The way forward

Exps. Running 50% in neutrino mode

T2K(I)+NOVA
DUNE

sin?0,,=0.304
sin?(20,4)=0.085
sin2923:0.452
Scp=-T12
Am3,=7.5x10" eV?
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Am3,=2.457x10°3 eV?

GLOBES 2016
| | |

2021 2026

2036

stat. error
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Neutrino cross sections

T2HK CPV at 3c

Using current  Cross
section uncertainties and
a perfect near detector.

Differences between v,
and v,, are significant be-
low 1GeYV, see e.g. Day,
McFarland, 2012

PH, Mezzetto, Schwetz, 2007
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Nuclear effects — example

Perfect Rec., Cal.

------- 80% Emiss  x*/dof=0.4/52

—— 50% Eniss  x°/dof=2.6/52

------ 20% Epmiss  x°/dof=7.5/52

10 contours (2 d.o.f.)

Wide Band, L=1300 km

Ankowski et al., 2015

In elastic scattering
a certain number of
neutrons 1s made

Neutrons will be
largely 1nvisible even
in a liquid argon TPC

= MIsSIng energy
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Theory and cross sections

Theory 1s cheap, but multi-nucleon systems and their
dynamic response are a hard problem and there 1s not
a huge number of people working on this. ..

Any result will be based on
assumptions and not on con-
trolled approximation.

L
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Light sterile neutrinos

Evidence 1n favor
* LSND 7y, — v,
* MiniBooNE v, — 7, and v, — v,
e T2K v, — 1,

e Galllum v, — v,

e Reactors v, — v,
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LSND and MiniBooNE

Beam Excess

0.025
0.020
Beam Excess 0.015
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P(v, = v,) >~ 0.003
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Fermilab SBN

ICARUS-T600, 600m - v,
Signal: ( Am*=1.6eV ? sin®26,,=0.0014) EEK" - v,
Statistical Uncertainty Only =K% L v,
Nominal, 6.6e20 POT = NC Single vy

— v, CC
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Figure courtesy D. Schmitz and C. Adams
Signal to noise not so difterent from LSND. .. will a
near detector of completely different design help?
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Disappearance and appearance

v, — V. requires that the sterile neutrino mixes with
both v, and v,

= there must be effects in both v, — v. and v, — v,

Up to factors of 2, the energy averaged probabilities
obey

P/wg(l_Pﬂu)(l_Pee)
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Gallium anomaly

GALLEX
k Gl G2 S1 S2
source Sicr Sicr Loy 37T Ar

0.953 £ 0.11 0.812+10 0.95 £ 0.12 0.791 + *)082

0.13 0.12 0.14 0.10
0.8470 13 0.71%011 0.84713 0.70 £ T 00

radius [m] 1.9

height [m] 5.0
source height [m]

25% deficit of v, from radioactive sources at short
distances

* effect depends on nuclear matrix element

o calibration measurment
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Nuclear matrix elements

51Cr (27.7 days)

427 keV v (9.0%)
432 keV v (0.9%)

37Ar
747 keV v (81.6%) Ar (35.04 days)

752 keV v (8.5%)

813 keV v (9.8%)

. 811 keV v (90.2%)
37C] (stable)

3/27 0.500 MeV

5/27 0.175 MeV
1/0-

Tl
LT

10.233 MeV
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The reactor anomaly

Daya Bay
R=0.947 + 0.022

—e— Previous data
—s=— Daya Bay
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—— World Average

Previous average [C] 1-6 Exp. Unc.
R = 0.943 +- 0.008 (exp.) 7] 1-oFlux Unc.

10°
Distance (m)

Daya Bay, 2014

Mueller et al., 2011, 2012 — where are all the
neutrinos gone?
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Contributors to the anomaly

6% deficit of v, from nuclear reactors at short
distances

3% 1ncrease 1n reactor neutrino fluxes

* decrease 1n neutron lifetime (see submitted
position paper)

* 1nclusion of long-lived 1sotopes (non-equilibrium
correction)

The effects 1s therefore only partially due to the fluxes,
but the error budget 1s clearly dominated by the fluxes.
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Forbidden decays

E,=10MeV e, final state can form

A=140

a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission ([ = 0)

Forbidden:
p-wave emission ([ = 1)
or/ > 1

Significant dependence on nuclear structure in
forbidden decays— large uncertainties!
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Look at past data

@ Epentiment fo3s  fiss  foz9  fiun Ry oar %l og"[%]  Lam
1 Bugey-4 0.538 0.078 0.328 0.056 0.932 1.4 1.4 15

2 Rovno91 0.606 0.074 0.277 0.043 0.930 2.8 1.8 18

3 Rovno88-11 0.607 0.074 0.277 0.042 0.907 6.4 3.8 18

4 Rovno88-21 0.603 0.076 0.276 0.045 0.938 6.4 3.8 18

5 Rovno88-1S 0.606 0.074 0.277 0.043 0.962 7.3 3.8 18

6 Rovno88-2S 0.557 0.076 0.313 0.054 0.949 7.3 3.8 25

7 Rovno88-3S 0.606 0.074 0.274 0.046 0.928 6.8 3.8 18

8 Bugey-3-15 0.538 0.078 0.328 0.056 0.936 4.2 4.1 15

9 Bugey-3-40 0.538 0.078 0.328 0.056 0.942 4.3 4.1 40
10 Bugey-3-95 0.538 0.078 0.328 0.056 0.867 15.2 4.1 95
11 Gosgen-38 0.619 0.067 0.272 0.042 0.955 54 3.8 37.9
12 Gosgen-46 0.584 0.068 0.298 0.050 0.981 54 3.8 45.9
13 Gosgen-65 0.543 0.070 0.329 0.058 0.915 6.7 3.8 64.7
14 ILL 1 0 0 0 0.792 9.1 8.0 8.76
15 Krasnoyarsk87-33 1 0 0 0 0.925 5.0 4.8 32.8
16 Krasnoyarsk87-92 1 0 0 0 0.942 20.4 4.8 92.3
17 Krasnoyarsk94-57 1 0 0 0 0.936 4.2 2.5 57
18 Krasnoyarsk99-34 1 0 0 0 0.946 3.0 2.5 34
19 SRP-18 1 0 0 0 0.941 2.8 0.0 18.2
20 SRP-24 1 0 0 0 1.006 29 0.0 23.8
21 Nucifer 0.926 0.061 0.008 0.005 1.014 10.7 0.0 7.2
22 Chooz 0.496 0.087 0.351 0.066 0.996 3.2 0.0 ~ 1000
23 Palo Verde 0.600 0.070 0.270 0.060 0.997 54 0.0 ~ 800
24 Daya Bay 0.561 0.076 0.307 0.056 0.946 2.0 0.0 ~ 550
25 RENO 0.569 0.073 0.301 0.056 0.946 2.1 0.0 ~ 410
26 Double Chooz 0.511 0.087 0.340 0.062 0.935 1.4 0.0 ~ 415

Giunti, 2016
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What does this tell us?
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0
0
0

Giunti, 2016
Is U235 odd?
Are the error bars for U235 just smaller?
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Latest result of Daya Bay

A Daya Bay
—e— Huber model w/ 68% C.L.
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= (6.04 £0.60) x 10~%

56 6.0 64 6.8 7.2
o935 [10743 cm? / fission]

Daya Bay, 2017

Only an 1ssue 1if

the  prediction

of Pu239 in the
Huber+Mueller

model 1s correct.
Hayes et al., 2017
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The SMeV bump
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Seen by all three reactor experiments
Tracks reactor power

Seems independent of burn-up
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NEOS vs Daya Bay

Huber, 2017

There 1s more U235 in NEOS, since core 1s fresh =
3 — 4 0 evidence against Pu as sole source of bump,
but equal bump size 1s still allowed at better than 2 .
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NEOS and sterile neutrinos

RAA allowed
90% CL
95% CL

9% L. . NEOS reports a limit,
but their best fit oc-
Bcuded | curs at sin” 20 = 0.05
—— Bugey:3 90% CL. and Am? = 1.73eV?
with a y? value

6.5

the no-oscillation hy-

pothesis.

adapted from NEOS, 2016
DANSS has a similar result.
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DANSS and NEOS

NEQOS data DANSS data —=—

Ratio Down/Up
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4 5 6 7 ' 3 4 5
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Dentler et al. 2017
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Reactor fit

Nf""\
>
2
=
<

flux fixed (2 dof)
: loc CL. s
26 C.L.
3¢ C.L.
i flux free (2 dof)
: le C.L.
26 C.L.
3¢ C.L.

Dentler et al. 2017
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Global fit

PrGlo17 PrGlo17 ] I PrGlo17
— G — G 1 r — G
26 26 1 r 26

36 3o 1 3 36

Gariazzo et al., 2017
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Finding a sterile neutrino

All pieces of evidence have in common that they are
less than 5 o effects and they may be all due to the
extraordinary difficulty of performing neutrino
experiments, 1f not:

» N sterile neutrinos are the simplest explanation

e Tension with null results in disappearance
remains

Due to their special nature as SM gauge singlets
sterile neutrinos are strong candidates for being a
portal to a hidden sector — significant experimental
activity.
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MiniBooNE reloaded?
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... and that assumes all 1s going according to plantrew ;.




Summary

Neutrino oscillation 1s solid evidence for new physics

e Current data allows large corrections to three
flavor. framework

* Precision measurements have the best potential to
uncover even “‘newer’ physics — either by finding
discrepancies or correlations among results.

» Can existing neutrino production techniques
provide sufficiently low systematics?
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Summary

Sterile neutrinos - aka anomalies

Tension in global fits
 Maybe more complicated than sterile neutrino
* And/or not all data 1s right
* Lots of nuclear physics uncertainties

Still, one of the best evidence we currently have for
New Physics, anywhere!
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NuFact 2018

We 1nvite you to NuFact 2018, August 2018, at
Virginia Tech, Blacksburg, VA.
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The Department of Physics at Virginia Tech invites
applications for a tenure-track faculty position in
Particle Physics Phenomenology with a focus on
neutrinos and dark matter.

Email: pheno_search@phys.vt.edu
Phone: +1 (540) 231 8727

URL: http://listings.jobs.vt.edu/postings/79786
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