Light Dark Matter Theory & Searches

Gordan Krnjaic **‡Fermilab**

Brookhaven Forum 2017 In Search of New Paradigms

October 12, 2017

Zeroth Order Outstanding Problems

Also Quantum Gravity

- Historical Perspective Thermal DM & WIMPs
- Light DM (<GeV) Models & Milestones
- Accelerator Searches Proton & Electron Beams

- Historical Perspective Thermal DM & WIMPs
- Light DM (<GeV) Models & Milestones
- Accelerator Searches Proton & Electron Beams

Understanding the Electroweak Sector

Discovery of Radioactivity	(1890s)
Fermi Scale Identified	(1930s)
Non-Abelian Gauge Theory	(1950s)
Higgs Mechanism	(1960s)
W/Z Bosons Discovered	(1970s)
Higgs Discovered	(2010s)
Each step required revolutionary the	neoretical/experimental lea
$t \sim 100$ year	S

Understanding the Electroweak Sector **Discovery of Radioactivity** (1890s)**Fermi Scale Identified** $G_F \sim \frac{1}{(100 \, {\rm GeV})^2}$ (1930s) (1950s)**Non-Abelian Gauge Theory** (1960s)**Higgs Mechanism** (1970s)W/Z Bosons Discovered (2010s)**Higgs Discovered** Each step required revolutionary theoretical/experimental leaps

 $t \sim 100$ years

Understanding the Dark Sector?

Discovery of missing mass	(1930s)
Rotation curves	(1970s)
Precision CMB measurements	(1990s)
Relevant scale?	> 2017

No clear target for non-gravitational contact Discovery time frame? t > 80 yrs

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

Good news: most *discoverable* DM candidates are in thermal equilibrium with us in the early universe

Why is this good news?

Thermal Equilibrium Advantage #1: Easily Achieved

If interaction rate exceeds Hubble expansion

$$\mathcal{L}_{\text{eff}} = \frac{g^2}{\Lambda^2} (\bar{\chi}\gamma^{\mu}\chi)(\bar{f}\gamma_{\mu}f)$$

$$H \sim n\sigma v \implies \frac{T^2}{m_{Pl}} \sim \frac{g^2 T^5}{\Lambda^4} \Big|_{T=m_{\chi}}$$

Equilibrium is easily achieved in the early universe if

$$g \gtrsim 10^{-8} \left(\frac{\Lambda}{10 \,\mathrm{GeV}}\right)^2 \left(\frac{\mathrm{GeV}}{m_{\chi}}\right)^{3/2}$$

Trivially satisfied in nearly all *discoverable* models

Thermal Equilibrium Advantage #2: Minimum Annihilation Rate

DM is overproduced, need to annihilate away the excess!

Symmetric Thermal DM Observed density requires

$$\sigma v_{\rm sym} \sim 3 \times 10^{-26} \rm cm^3 s^{-1}$$

Asymmetric Thermal DM: Just need to deplete antiparticles

$$\sigma v_{\rm asym} > 3 \times 10^{-26} \rm cm^3 s^{-1}$$

Rate can be bigger, but not smaller **Either way, there's a target!**

11

Thermal Equilibrium Advantage #3: UV Insensitive

Initial condition known Compatible with nearly all UV scenarios

Mass & couplings set abundance Can learn a lot from a discovery!

Only two known UV insensitive mechanisms

 Freeze out (thermal + annihilation)
 Freeze-in (nonthremal, no annihilation)
 tiny couplings = very hard to test

Luckily the thermal window is in our neighborhood *it didn't have to be this way!*

Classifying WIMP Interactions

Very different at low energy, despite high energy similarities Each \bullet interaction can realize thermal annihilation at $T \sim M$

Classifying WIMP Interactions

Ruled out with first generation direct detection experiments But still a long way to go to fully test others ...

WIMP Milestones

WIMP Mass $[\text{GeV}/c^2]$

Rough targets due to WIMP model dependence

Cushman et al. arXiv:1310.8327

- Historical Perspective Thermal DM & WIMPS
- Light DM (<GeV) Models & Milestones
- Accelerator Searches B-factories & Fixed Targets

Model Building Requirements

LDM must be a SM singlet Otherwise would have been discovered (LEP etc.)

LDM needs new forces

Would be overproduced without light "mediators"

$$\sum_{\chi} \sum_{w, Z} \int_{f} \sigma v \sim \frac{\alpha^2 m_{\chi}^2}{m_Z^4} \sim 10^{-29} \text{cm}^3 \text{s}^{-1} \left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Lee/Weinberg '79

Key point: models must be renormalizable Greatly simplifies range of viable models

Model Building Requirements

LDM annihilation (after freeze out) can distort CMB *S*-wave thermal relic ruled out < 10 GeV

Planck

1303.5076

Viable models need either :

P-wave annihilation $\langle \sigma v \rangle_{\rm CMB} \ll \langle \sigma v \rangle_{\rm Freeze\,Out}$

OR

Different DM population during CMB epoch

e.g. asymmetric DM e.g. pseudo-dirac DM

Hidden vs. Direct Annihilation

Annihilation to Dark Sector DM transfers entropy indirectly

Annihilation to Visible Sector Entropy transfer from annihilation

Predictive!

Relic abundance set by mediator coupling to SM

Hidden Annihilation to Mediator

ω

"Forbidden" DM Annihilation stops after freeze out

$$(m_{\chi} < m_{\phi})$$

Carlson, Machacek, Hall '92 D'Agnolo, Ruderman 1505.07107

Cannibalization: 3-2 annihilation only (DM hot, ruled out) Carlson, Machacek, Hall '92

SIMP: 3-2 freeze out, then SM scattering cools DM Hochberg Kuflik Volansky Wacker 1402.5143

ELDER: SM-DM scattering decouples first, 3-2 freeze out later Kuflik Prelstein Rey-Le Lorier, Tsai 1512.04545

Hidden vs. Direct Annihilation

Annihilation to Dark Sector DM transfers entropy indirectly

OR

Direct Annihilation: Which Mediator?

Light neutral particle coupled to both DM & SM

Fermion-neutrino mixingHLNScalar-Higgs mixing $H^{\dagger}H\phi$

Vector-photon mixing

Vector mediates new force

$$F^{\mu
u}F'_{\mu
u}$$

 $J^{\mu}_{\rm SM}V_{\mu}$

Direct Annihilation: Lepton Portal? HLN

1) If N is the DM, it must be non thermal Dodelson & Widrow '92

Direct Annihilation: Lepton Portal? HLN

If N is the DM, it must be non thermal Dodelson & Widrow '92
 If N is the mediator for direct annihilation

DM must be heavy

Direct Annihilation: Lepton Portal? HLN

If N is the DM, it must be non thermal Dodelson & Widrow '92
 If N is the mediator for direct annihilation

DM must be heavy

3) If DM annihilates to light N (e.g. low scale see-saw)

Morally similar to hidden annihilation Must explain neutrino masses, 2DM stability etc.

Direct Annihilation: Higgs Portal? $H^{\dagger}H\phi$

30

Higgs portal **ruled out** Independently of DM assumption

GK, 1512.04119

Direct Annihilation: Which Mediator?

Light neutral particle coupled to both DM & SM

DM charged under new force: $e_D \sim e$ Allowed small *A'*-photon mixing: $\epsilon \ll 1$ SM acquires small charge under *A'*: $e\epsilon$

Not the only model, but qualitatively similar to all viable choices

Emerging DD Revolution

DM scatter off atomic electrons

Essig Mardon Volansky 1108.5383

Also semiconductor electrons

Essig, Fernandez-Serra, Mardon, Soto.Volansky,Yu 1509.01598

Superconductor Cooper pairs Hochberg, Zhao, Zurek 1504.07237

Cosmic Visions Report 1707.04591

See A. Manasalay's Talk

Classify Viable Models by DD Scattering

Scalar DM

Majorana DM

Pseudo-Dirac DM inelastic

 $A'_{\mu}\chi^*\partial_{\mu}\chi$

 $A'_{\mu}\bar{\chi}_1\gamma^{\mu}\chi_2$

 $\sigma_e \sim 10^{-39} \text{cm}^2 \qquad \sigma_e \sim 10^{-39} v^2 \text{ cm}^2 \qquad \sigma_e \sim 10^{-48} \text{ cm}^2 \\ \sim 10^{-45} \text{ cm}^2 \qquad \Delta \equiv m_2 - m_1$

 $A'_{\mu}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi$

Very different cross sections despite similarity @ high energy Each \bullet interaction can realize, thermal annihilation at $T \sim M$

Natural Variable for Thermal Targets

$$\sigma v \sim 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$$

Define new variable optimized for thermal targets

$$\sigma v \propto \alpha_D \epsilon^2 \frac{m_{\chi}^2}{m_{A'}^4} = \left[\alpha_D \epsilon^2 \left(\frac{m_{\chi}}{m_{A'}} \right)^4 \right] \frac{1}{m_{\chi}^2} \equiv \frac{y}{m_{\chi}^2}$$

Insensitive to ratios of inputs, unique y for given DM mass up to subleading corrections

NB: not every experiment measures y directly Important to be conservative in presenting bounds

36 Izaguirre, GK, Schuster. Toro 1505.00011

< GeV Thermal Relic Mileston

-LDMX

Slide: Tim Nelson

- Historical Perspective Thermal DM & WIMPS
- Light DM (<GeV) Models & Benchmarks
- Accelerator Searches B-factories & Fixed Targets

Signatures (a) B-Factories mono photon + missing energy

Can explore/test Scalar, Majorana, & pseudo-Dirac DM

Izaguirre, GK, Schuster, Toro 1307.6554 Essig, Mardon, Papucci, Volansky Zhong 1309.5084

See David Hitlin's slides!

Signatures @ Proton Beam Dumps 1. (quasi)elastic scattering

LSND, MiniBooNE, SeaQuest, COHERENT NOvA, DUNE, SHiP, SBND

Scalar Majorana pseudo-Dirag DM Tracker

Batell, Pospelov, Ritz 0903.0363 deNiverville, Pospelov, Ritz 1107.4580 Batell, deNiverville, McKeen, Pospelov, Ritz 1405.7049 Coloma, Dob^{Active Target (ECAL/HCAL)} Harnik 1512.03852

Z, p, n, e

Signatures @ Proton Beam Dumps 2. inelastic scattering & decays

LSND, MiniBooNE, SeaQuest, COHERENT NOvA, DUNE, SHiP, SBND

 $\Delta \equiv m_2 - m_1$

Can explore/test pseudo-Dirac DM Morrissey, Spray 1402.4817 Izaguirre, Kahn, GK, Moschella 1703.06881 Berlin, Gori, Schuster, Toro 1703.XXXX Active Target (ECAL/HCAL)

Signatures @ Electron Beam Dumps 1. (quasi) elastic scattering

Signatures @ Electron Beam Dumps 2. inelastic scattering & decay

Can explore/test pseudo-Dirac DM

Morrissey, Spray 1402.4817 Izaguirre, Kahn, GK, Moschella 1703.06881

Small mass splitting

 $\Delta m \ll m_{\chi}$

Conservative where appropriate $\alpha_D = 0.5$, $m_{A'} = 3m_{\chi}$

Mass Splitting ~ 40%

Izaguirre, GK, Shuve 1508.03050

Collider Complementarity

Collider Complementarity

Concluding Remarks

Thermal Equilibrium: Physical Organizing Principle

- Easy to achieve
- Minimum annihilation rate
- •Insensitive to high scales (e.g. inflation)
- Bounds DM mass range

MeV-GeV scale DM can realize thermal below weak scale

- It's in our neighborhood $m_e < m_{\rm DM} < m_p$
- Finite class of DM+mediator combinations
- Testable thermal targets for direct annihilation

Fixed-Target, Neutrino, & B-Factory Experiments

- Broad program of production/scattering/decay searches
- Can test nearly every direct annihilation model

No lose theorem: genuine opportunity to discover/falsify

Towards a mature LDM program

54

Thanks!