

Latest Results on the Beyond the Standard Model Higgs Searches from ATLAS and CMS

Gaetano Αθανάσιος Barone Brandeis University On behalf the of the ATLAS and CMS collaborations

In Search of New Paradigms BNL, October 2017

Introduction

- Theory hypothesises several extensions of the Standard Model (SM).
- In the Higgs sector, hypothesised additional Higgs bosons
 - Minimal super symmetric Standard Model (MSSM)
 - **\bullet** Ex: CP even neutral doublet (*h*,*H*) and CP odd pseudo scalar *A* and two scalars *H*[±]
 - Two Higgs doublet model (2HDM)
 - motivated also by dark matter axion models

- Outline:
 - I. $A/H \rightarrow t\overline{t}, A/H \rightarrow \tau\overline{\tau} \text{ and } HH \rightarrow b\overline{b} \tau\overline{\tau}$
 - 2. Heavy ZZ resonances in the 4 ℓ and $\ell \overline{\ell} \nu \overline{\nu}$ final states
 - 3. Exotic Higgs boson decays

$A/H \rightarrow t\overline{t}$

- In 2HDM decays of A/H to $t\overline{t}$ enhanced for $tan\beta < 3$ and $m_{A/H} > 500$ GeV.
 - Parameter region not probed by previous searches.

- Significant interference between $gg{
 ightarrow} t\overline{t}\,$ production and $A/H{
 ightarrow} t\overline{t}\,$
 - for $m_{A/H}$ above $t\overline{t}$ threshold, for LHC $t\overline{t}$ main production
 - Resonant shape distorted to a peak-dip structure.
- Considering only resolved kinematics
 - Most efficient strategy for $m_{A/H} < 800 \text{ GeV}$
- Event classification into six categories
 - Kinematic χ^2 for jet association to W

$A/H \rightarrow t\overline{t}$

arXiv:1707.06025

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = \sqrt{\mu} \cdot (S + I) + (\mu - \sqrt{\mu}) \cdot S + B$$

• CLs limits taking into account signal (S), background (B) and interference (I)

▶ $tan\beta < 0.7$ for m_A =550 GeV and $tan\beta < 0.72$ for m_H =550 GeV

• First and strictest limits in this parameter region

$A/H \rightarrow \tau \overline{\tau} \text{ and } HH \rightarrow b \overline{b} \tau \overline{\tau}$

$(A/H \rightarrow \tau \overline{\tau})$

- For large tan β , A/H couplings to leptons and down quarks enhanced.
 - Particular for hMSSM models.
 - Increased branching fractions to τ -leptons
- Dominant production modes: S
 - gluon gluon fusion for low $\tan\beta\beta$
 - *b*-associated production for high $tan\beta$

QQQQQQqqrXiv: 1709.07242

good good

Events are split into two categories:
b-tag veto category: no b-jets in production.
N(b-jets) >0 associated b-jet production.
G. Barone

G. Barone

8 8 8 TTTT

arXiv: 1709.07242

- Results from profile likelihood fit on transverse mass m_T^{tot}
- Model independent limits on $\sigma \times BR$ (H/A) production
 - Separately for ggF production and b-associated production.
 - Limits from 200 GeV to > 2.0 TeV on m_{ϕ}
 - \blacktriangleright Narrow-width assumption of φ

$A/H \rightarrow \tau \overline{\tau}$

- Results interpreted as limits on MSSM models
 - $tan\beta > 1.0$ for $m_A=0.25$ TeV and $tan\beta > 45$ for $m_A=1$ TeV excluded.
 - For $m_h^{\text{mod+}} \tan\beta > 5.3$ for $m_A = 0.25$ TeV and $\tan\beta > 54$ for $m_A = 1$ TeV excluded
 - + Presence of low mass neutralinos decrease $A/H \rightarrow \tau \tau$ branching fraction

$HH \rightarrow b\bar{b} \ \tau \overline{\tau}$

- Model independent limits as a function of resonance mass
 - Narrow width hypothesis.
- \bullet Limits interpreted in the hMSSM model in the tan β plane
 - ▶ with the resonance interpreted as A and h(SM Higgs at 125 GeV).
 - limits from $m_A = 270 \text{ GeV}$ to 370 GeV.

arXiv:1707.02909

Heavy ZZ resonances in the 4 ℓ and $\ell \overline{\ell} \sqrt{\nu} \overline{\nu}$ final states

$ZZ \rightarrow 4\ell$ and $\ell \overline{\ell} v \overline{v}$

- Searches for spin-0 and spin-2 resonances in the $ZZ \rightarrow 4\ell$ and $\ell \overline{\ell} v \overline{v}$ final states.
 - Upper limits for Type-I and II two-Higgs double models (spin-0) and for RS models (spin-2)
 - Separate sensitivity for ggF and VBF productions (both ATLAS and CMS)
 - Typical VBF selection: at least two jets with $p_T(j) > 30 \text{ GeV}, \Delta \eta > 3.3 \text{ and } m_{jj} > 400 \text{ GeV}$
- Resonances searched in $m_{4\ell}$ and m_T
 - Analytical parametrisation of signal.
 - h-H interference taken into account in the large width approximation

$Z \rightarrow 4\ell$ and $\ell \overline{\ell} v \overline{v}$

- Searches for spin-0 and spin-2 resonances in the $ZZ \rightarrow 4\ell$ and $\ell \overline{\ell} \nu \overline{\nu}$ final states.
 - Upper limits for Type-I and II two-Higgs double models (spin-0) and for RS models (spin-2)
 - Separate sensitivity for ggF and VBF productions
 - ★ At least two jets with $p_T(j) > 30 \text{ GeV}, \Delta \eta > 3.3$ (4.4) and $m_{jj} > 400$ (550) GeV

$Z \rightarrow 4\ell$ and $\ell \overline{\ell} \nu \overline{\nu}$

- Spin-0 resonance limits
 - Narrow width: 0.68 pb at m_H = 242 GeV to 11 fb at m_H = 1.2 TeV
 - Large width as a function of 1%, 5% and 10% of m_H

- Interpretation in context of 2HDM
 - No direct coupling of Higgs to leptons, only Type II and II considered.
 - Relative ggF to VBF rates fixed to 2HDM predictions for т_н= 200 GeV.
 - NWA valid across wide range and maximal experimental sensitivity

G. Barone

$ZZ \rightarrow 4\ell$ and $\ell \overline{\ell} v \overline{v}$

- Separates searches in each final state.
- $ZZ \rightarrow 4\ell$, search as function of Γ (with $\Gamma < m_X$) on $m_4\ell$
 - Separate ggF / VBF categorisation
 - Parametrisation based on MCFM within MELA, incorporation of interference effects
- ZZ $\rightarrow \ell \overline{\ell} \nu \overline{\nu}$

Exotic Higgs boson decays

$H \rightarrow ZZ_d and Z_dZ_d$

- Search for BSM dark vector or pseudoscalar bosons in 4ℓ final states
 - Probe ε and m_{Zd} (of the $U(I)_d$) independently of mixing with SM Higgs
 - ← Signal is indistinguishable from $H \rightarrow ZZ^*$, must emerge above SM Higgs production
 - > 2HDM+S allows for a light pseudoscalar mass eigenstate (a)
 - Yukawa-like couplings to fermions, though smaller BR to lepton pairs

Н

ATLAS-CONF-2017-04

$H \rightarrow ZZ_d and Z_dZ_d$

- Generic limits on $H \rightarrow XX \rightarrow 4\ell$
 - model independent within fiducial phase-space
 - σ_H fixed to expectation at $m_H = 125$ GeV
 - Signal modelled by Gaussian pdf
- Interpreted as limits Z_dZ_d and 2HDM+S
 - on $BR(H \rightarrow Z_d Z_d)$ and $BR(H \rightarrow aa)$
 - factor two improvement w.r.t previous result
- Limits on ZZ_d

G. Barone

ate technique

Enhances s Signal emulated with qq and gg H invisible process

• Extraction from yield analysis in the ET^{miss} spectrum

10⁻²

- 2.1 Bkg.

2

 $\mathcal{L}\overline{\mathcal{L}} + E_{T}$ miss

Classification

- Dark matter: limits on vector and axial-vector with $g_{\rm DM}=1$, $g_{\rm q}=0.25$ and $g_{\rm q}=1$
- Extra dimensions: limits on the number of dimensions and graviton masses
- Invisible decays: limits on $\sigma_{ZH} \times BR(H \rightarrow inv.)$

CMS PAS EXO-16-052

Conclusions

Conclusion

- ATLAS and CMS have good sensitivity to standard models extensions
 - In particular BSM physics in the Higgs sector
- Searches for new phenomena a involving heavy neutral scalar production
 - Decaying into quarks, leptons and bosons (Z)
- Carried novel experimental techniques to constrain the background.

- Only a selection shown here, more results and details:
 - <u>CMS results</u>
 - ATLAS results

Additional material

arXiv:1707.06025

 $m_{t\bar{t}}^{reco}$ [GeV]

- Analysis in the lepton (ℓ) plus jets (j) final state
 - One lepton (e or μ) with $p_T(\ell) > 25$ GeV.

 $A/H \rightarrow tt$

- At least four anti-k_T(4) jets with p_T(j) > 25 GeV.
- $E_T^{\text{miss}} > 20 \text{ GeV and } E_T^{\text{miss}} + m_T^{\text{W}} >$ 60 GeV.
- W+ jets and Multijet contributions Considering only resolved kinematics estimated from data. • Most efficient strategy for $m_{A/H} < 800 \text{ GeV}$
- Event classification into six categories
 - Kinematic χ^2 for jet association to W

Events / 40 GeV 10⁵ ATLAS Data 2012 √s = 8 TeV, 20.3 fb⁻¹ SM tt 10⁴ Lepton+jets SM W+jets Il signal regions Other SM 10³ Uncertainty 10² 10 Data / Bkg $m_{\Delta/H} = 500 \text{ GeV}, \tan\beta = 0.68$ 1.1 A→tt(S+I)×4 ···· H→tt(S+I)×4 Pre-fit background 800 1200 400 1000 600 1400 1600

- Leading uncertainties
 - ▶ Jet modelling ~6% on B and ~9% on S+1
 - tt modelling ~7% (m_t and pdf)

 $A/H \rightarrow \tau \overline{ au}$

- T reconstruction and event selection
- Two τ decay modes are considered:
 - + All hadronic final state $(\tau_{had}\tau_{had})$.
 - Semileptonic final state $(\tau_{lep}\tau_{had})$.

T _{lep} T _{had}	$ au_{had} au_{had}$
One τ_{had} with $p_T > 25$ GeV $ \Delta \varphi(\ell, \tau_{had}) > 2.4$ rad $m_T(\ell, E_T^{miss}) < 40$ GeV	At least two $ au_{had}$ with $p_T > 65$ GeV $ \Delta \varphi(\tau_{had}, \tau_{had}) > 2.7$ rad

- Dominant backgrounds estimated from data
 - Estimate rates of jets faking taus by inverting identification criteria

$$f(\mathbf{x}) \equiv \frac{N_{\text{data}}^{\text{pass}}(\mathbf{x}) - N_{\text{bkg}}^{\text{pass}}(\mathbf{x})}{N_{\text{data}}^{\text{fail}}(\mathbf{x}) - N_{\text{bkg}}^{\text{fail}}(\mathbf{x})}$$

• from regions in data enhancing the Mulitjet background, $t \bar{t}$ and W+jets

G. Barone

$ZZ \rightarrow 4\ell$ and $\ell \overline{\ell} v \overline{v}$

ATLAS-CONF-2017-058

• Local p_0 scan.

• Largest excess at 2.2 σ

• T reconstruction and event selection

 $A/H \rightarrow \tau \overline{\tau}$

$ au_{lep} au_{had}$	ThadThad
One τ_{had} with $p_T > 25$ GeV	At least two τ_{had} with $p_T > 65$ GeV
$ \Delta arphi(oldsymbol{\ell}, au_{ ext{had}}) > 2.4$ rad	$ \Delta arphi(au_{ ext{had}}, au_{ ext{had}}) > 2.7$ rad
$m_{\mathrm{T}}(\boldsymbol{\ell}, E_{\mathrm{T}^{\mathrm{miss}}}) < 40 \mathrm{GeV}$	

- Hadronic T decays: one or more charged particles, a neutrino and $\pi^{_0}$
- Visible decay products identification based on multivariate technique
- ► 50% to 60% identification efficiencies measured on $Z \rightarrow \tau \tau$

$H/A \rightarrow \tau \overline{\tau}$

- \bullet Hadronic tau decays: one or more charged particles, a neutrino and $\pi^{\scriptscriptstyle 0}$
- Visible decay products ID based on multivariate technique
 - Rejection of jets faking a tau lepton.

<u>அ</u>2000

Data (8 TeV 5.0 fb^{-1})

ATLAS

- Shower shapes and track multiplicities.
- 50% to 60% identification efficiencies measured on $Z \rightarrow \tau \tau$

30

• In T leptonic decays $E_{T^{miss}}$ stringent requirements

Data (8 ToV 5.0 fb^{-1})

arXiv: 1709.07242

• Results from profile likelihood fit on transverse mass m_{T}^{tot}

31

 $A/H \rightarrow \tau \overline{\tau}$

• Combined run I limit on $h \rightarrow BSM$

