Left-Right Symmetry: At the Edges of Phase Space and Beyond ¹

Brookhaven National Lab Forum 2017

Richard Ruiz

Institute for Particle Physics Phenomenology, University of Durham

¹Based on several works: See slides for Refs. (*) = IPPP student. (=) (=)

R. Ruiz - IPPF

LRSM: Edges of Phase Space - BNL Forum 2017

In general, the LHC has not yet ruled out edges and corners of BSM parameter space \implies edges and corners of phase space

Question: How does collider pheno for neutrino mass models (Seesaws) qualitatively change for these regions of parameter and phase space?

... At the Edges of Phase Space and Beyond:

- Left-Right Symmetric Model Primer
- 2 LRSM at the Edges of Phase Space
- Summer State St
- Redux I: Edges
- 8 Redux II: Beyond

< ロ > < 同 > < 回 > < 回 > < 回 > <

Left-Right Symmetry at Hadron Colliders

▶ < ∃ >

Left-Right Symmetric Models (**LRSM**) postulate that the SM's V - A structure originates from the spontaneous breakdown of parity:

 $\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \underbrace{\mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}}_{B-L}$

After scalar Δ_R acquires a vev $v_R \gg v_{SM}$: $\hookrightarrow U(1)_Y$

・ロット 御り とうりょうり しつ

Left-Right Symmetric Models (**LRSM**) postulate that the SM's V - A structure originates from the spontaneous breakdown of parity:

 $\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$

After scalar Δ_R acquires a vev $v_R \gg v_{SM}$: $\hookrightarrow U(1)_Y$

Higgs field Φ then breaks down the EW group $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y \to \mathrm{U}(1)_{EM}$

With N_R , all SM fermions can be grouped in $SU(2)_L$ and $SU(2)_R$ doublets. Dirac masses generated in (mostly) usual way with Φ , i.e., $\Delta \mathcal{L} \ni \overline{Q}_L \Phi Q_R$

Neutrinos obtain LH (RH) Majorana masses from triplet scalar Δ_L (Δ_R):

$$m_{\rm light}^{\nu} = \underbrace{y_L \langle \Delta_L \rangle}_{\rm Type \ II} - \underbrace{\left(y_D y_R^{-1} y_D^{\mathsf{T}}\right) \langle \Phi \rangle^2 \langle \Delta_R \rangle^{-1}}_{\rm Type \ I \ a \ la \ Type \ II} \sim \mathcal{O}(0) + \text{symm.-breaking}$$

Major pheno: heavy N, W'/Z' ($\approx W_R/Z_R$), and $H_i^{\pm\pm}$, H_j^{\pm} , H_k^0

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

8 TeV LHC Exclusion with $\mathcal{L}\approx 20~\text{fb}^{-1}$

LHC expts have performed remarkably!

Plotted: excluded (m_{N_R}, M_{W_R}) from searches for resonant W_R , N

Similar sensitivity to searches for $pp o Z_R o NN o e^\pm e^\pm + nj + X$

 \implies For both W_R and Z_R , loss of sensitivity when $m_N \ll M_V$

(Lets see what is going on.)

R. Ruiz - IPPP

Failure of Electron ID in $pp \rightarrow W_R \rightarrow \ell^{\pm} N(\rightarrow e^{\pm} q \overline{q'})$

For a $1 \rightarrow 2$ process, $m_{ij}^2 = (p_i + p_j)^2 \approx 2E_iE_j(1 - \cos\theta_{ij}) \approx E_iE_j\theta_{ij}^2$

$$\Rightarrow \Delta R_{ij} \sim \frac{m_N}{\sqrt{E_i E_j}} \sim \frac{4m_N}{M_{W_R}} \Rightarrow \text{For } \left(\frac{m_N}{M_{W_R}}\right) < 0.1, \text{ vs } \Delta R_{\ell X}^{\min} = 0.4$$

Standard isolation criteria for electrons is failing in boosted configurations

Question: Is it necessary to identify the second lepton or jet multiplicity?

ĸ	RIII7 - 1	יאו	ЧΡ

Neutrino Jets² (n):

(i) hadronically decaying, high- p_T heavy neutrinos;

(ii) a fat jet originating from a heavy neutrino

²A. Ferrari, et, al, PRD ('00); Mitra, **RR**, Scott*, Spannowsky, PRD ('16) [1607.03504]; Mattelaer, Mitra, **RR** [1610.08985]

<u> </u>	\neg
	ບເ
() z = 1	

LRSM: Edges of Phase Space - BNL Forum 2017

Neutrino Jets in LRSM

Change the scale of our problem: treat ℓ_2^{\pm} like any other poorly isolated parton bathed in QCD radiation and cluster via a sequential jet algorithm³

Changing scales simplifies the problem, a lot:

For $m_N \ll M_{W_R}$, one has a different collider topology:

 $pp \rightarrow W_R \rightarrow e^{\pm} N \rightarrow e^{\pm} j_{\text{Fat}}$ (+ no MET!)

³Sequential jet algorithm \approx definition of collimated, clusters of partons that is meaningful at all orders of perturbation theory, i.e., Infrared_Collinear (IRC)-safe $\geq -9 \propto c^{-1}$

Discovery Potential at the Edge of Phase Space

For $m_N/M_{W_R} \le 0.1$, the region where ATLAS/CMS searches breakdown, neutrino jet searches recovers lost sensitivity

Signature: $\rho p \to \ell^{\pm} + j_{\text{Fat}} + X$ [MET< 100 GeV, $p_T^{\ell,j} \gtrsim 1$ TeV, $M_{\ell j}$ Cut]

• 13 TeV: $M_{W_R} \approx 3$ (4) [5] TeV discovery after 10 (100) [2000] fb⁻¹ • 100 TeV: $M_{W_R} \approx 15$ (30) TeV discovery after 100 fb⁻¹ (10 ab⁻¹)

R. Ruiz - IPPP

Left-Right Symmetry Beyond the Edge of Phase Space:

A pathological but plausible scenario.

э

Ignoring UV completions, limits⁴ on neutral flavor changing transitions require Δ_R sector to be $\langle \Delta_R \rangle \gtrsim \mathcal{O}(10)$ TeV

What if LR gauge and Yukawa couplings have similar values as in the SM?

• What if $M_{W_R} \sim g_L \langle \Delta_R \rangle \sim 6.5$ TeV and $m_N \sim y_{\rm SM}^{\tau} \langle \Delta_R \rangle \sim 100$ GeV?

⁴Bertonlini, et al [1403.7112, + others]; Zhang, et al. [0704.1662; + others] 🚊 🗠 🔍

Ignoring UV completions, limits⁴ on neutral flavor changing transitions require Δ_R sector to be $\langle \Delta_R \rangle \gtrsim \mathcal{O}(10)$ TeV

What if LR gauge and Yukawa couplings have similar values as in the SM? • What if $M_{W_R} \sim g_L \langle \Delta_R \rangle \sim 6.5$ TeV and $m_N \sim y_{\rm SM}^{\tau} \langle \Delta_R \rangle \sim 100$ GeV?

Searches follow Keung & Senjanovic ('83), and assume resonant W_R , N

- No sensitivity to $M_{W_R} > 6-7$ TeV due to finite data set
- Naive Question: is an on-shell W_R necessary for discovery of N?

⁴Bertonlini, et al [1403.7112, + others]; Zhang, et al. [0704.1662; + others] 💿 🔊 <

L Violation from Beyond the Edges of Phase Space⁵

Of course $pp \rightarrow W_R^* \rightarrow N\ell + X$ can occur via an off-shell mediator.

• LR analog of Fermi interaction $\mathcal{L} = G_F[\overline{\mathcal{N}}\gamma^{\mu}\mathcal{P}][\overline{\nu}\gamma_{\mu}\ell]$

"Type I" searches and projected sensitivities for can be reinterpreted for LRSM in the limit that $M_{W_R} \sim \sqrt{s} \gg \sqrt{\hat{s}}$

<u>At 14 (100)</u> TeV with $\mathcal{L} = 1$ (10) ab⁻¹, $M_{W_R} \lesssim 9$ (40) TeV can be probed ⁵First concrete example of Seesaw mimicry! **RR**, EPJC ((17) [1703.04669]

R. Ruiz - IPPI

LRSM: Edges of Phase Space - BNL Forum 2017

Redux I: Back to Edges of the LHC Phase Space

Can you see $M_{W_R} \gtrsim 5$ TeV?

ヘロト 不得 トイヨト 不良ト

3

Recall: W_R production is analogous to $W_{\rm SM}$, except $M_{W_R}\gtrsim 3-5$ TeV

Away from phase space boundaries, QCD corrections are 20-30%.

Near boundaries, i.e., for $M_{W_R} \lesssim \sqrt{s}$, the case is different:

- Initial-state gluon radiation is soft by momentum conservation
- Soft or threshold logs must be resummed to keep track of gluons

For Drell-Yan⁶, threshold resummation is important for $M_{W_R}/\sqrt{s} \gtrsim 0.3$ • For gluon fusion, always important for SM and BSM⁷ ⁶See, e.g., Appell, Sterman, Mackenzie ('88); Forte and Ridolffi ('03) ⁷E.g., heavy neutrino production, **RR**, Spannowsky, Waite*, PRD ('17) [1706.02298], R. Ruiz - IPPP LRSM: Edges of Phase Space - BNL Forum 2017 14 / 19

W_R Numerology at the Edge of Collider Phase Space⁸

At 13 TeV, corrections to production rate > +100% for $M_{W_R} \gtrsim 4.5$ TeV • $\sigma^{LO}(M_{W_R} = 5 \text{ TeV}) \sim 0.7 \text{ fb} \implies \sigma \times (1 \text{ ab}^{-1}) = 700 \text{ events}$ • $\sigma^{NLO+NNLL} \sim 1.7 \text{ fb} \implies \sigma \times (1 \text{ ab}^{-1}) = 1.7 \text{ k events}$ Assuming BR $\times \varepsilon \times A = 2\% \implies N \approx 34$ events ($\sim 6\sigma \text{ vs} \sim 4\sigma$) ⁸Mitra, **RR**, Scott*, Spannowsky, PRD ('16) [1607.03504] • $\sigma \gg 4 \text{ constants} = 2\%$

Redux II: LRSM at the LHC and Beyond

(日)

2

- Discovery at Run II or elsewhere?
- Need: more pheno analyses for "PS boundary" LRSM parameter space and also other models
- Need: "What is the dominant production mode for a sub-TeV N_R?"
- Standardization of pheno tools: adoption of robust, public software

< ロ > < 同 > < 回 > < 回 > < 回 > <

State-of-Art Event Generators

NLO+PS automated in MadGraph5aMC@NLO, Herwig, Sherpa

All one needs NLO-accurate FeynRules input model file

Explosion past two years: [feynrules.irmp.ucl.ac.be/wiki/NLOModels]
Most neutrino mass models available (just "import" and cite!)

Description	Contact	Reference	FeynRules model files	UFO libraries	Validation material
Dark matter simplified models (more details)	K. Mawatari	⇔arXiv:1508.00564 , ⇔arXiv: 1508.05327 , ⇔ arXiv: 1509.05785	-	DMsimp_UF0.2.zip	-
Effective LR symmetric model (more details)	R. Ruiz	⊕arXiv:1610.08985	effLRSM.fr	EffLRSM UFO As of 2	7 March,
GM (more details)	A. Peterson	⇔arXiv:1512.01243	-	GM_NLO UFO	
Heavy Neutrino (more details)	R. Ruiz	⇔arXiv:1602.06957	heavyN.fr	HeavyN NLO UFO UPO UPO UPO UPO UPO UPO UPO UPO UPO UP	a regularly
Higgs characterisation (more details)	K. Mawatari	⇔arXiv:1311.1829,⇔arXiv:1407.5089,⇔ arXiv: 1504.00611	-	HC_NLO_X0_UFO.zip	-
Inclusive sgluon pair production	B. Fuks	⇔arXiv:1412.5589	sgluons.fr	sgluons_ufo.tgz	sgluons_validation.pdf; sgluons_validation_root.tgz
Spin-2 (more details)	C. Degrande	⇔http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO	-
Stop pair -> t tbar + missing energy	B. Fuks	© arXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz	<pre>stop_ttmet_validation.pdf ; stop_ttmet_validation_root.tgz</pre>
SUSY-QCD	B. Fuks	⇔arXiv:1510.00391	-	susyqcd_ufo.tgz	All figures available from the arxiv
Two-Higgs-Doublet Model (more details)	C. Degrande	⊕arXiv:1406.3030	-	2HDM_NLO	-
Top FCNC Model (more details)	C. Zhang	⇔arXiv:1412.5594	TopEFTFCNC.fr	TopFCNC UFO	-
Vector like quarks	B. Fuks	🖙 arXiv: 1610.04622	VLQ_v3.fr	UFO in the SFNS, UFO in the 4FNS, event generation scripts	All figures available from the arxiv
W'/Z' model (more details)	R. Ruiz, B. Fuks	G+arXiv:1701.05263	vPrimeNLO.fr	vPrimeNLO UFO	-

Modern general purpose MC packages are *very* sophisticated "With great power there must also come - great responsibility"- S. Lee ('62)

R. Ruiz - IPPP

LRSM: Edges of Phase Space - BNL Forum 2017

Summary: An Emerging Picture of New Physics

While no confirmed $\ensuremath{\mathsf{BSM}}$ discoveries at colliders, certainly still possible

 \bullet Remaining model space is hierarchical \Rightarrow extrema of phase space

• Pheno for ν mass models is being *systematically rewritten*

Sensitivity "at the edge" is pretty good; likely true for other BSM, too

R. Ruiz - IPPI