composite	Higgs	models
00000		

4+8	model
000	0000

0⁺⁺

A light 0^{++} and other hadronic resonance from a new strongly interacting sector exhibiting large scale separation

Oliver Witzel

Brookhaven Forum 2017 Upton, NY, October 11, 2017

based on

R. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, O.W. PRD 93 (2016) 075028
A. Hasenfratz, C. Rebbi, O.W. PLB 773C (2017) 86-90

composite Higgs models	4+8 model	0++	summary
00000	000000	000	00

Motivation

- ▶ Mass of the Higgs boson is 125 GeV
- \blacktriangleright Other states must be much heavier, likely $> 1.5~{\rm TeV}$
- ▶ Standard Model not UV complete
- ▶ What is the origin of the electro-weak sector?
- ⇒ Seek a model exhibiting a large separation of scales
- --- Near-conformal gauge theories / composite Higgs model

composite Higgs models	4+8 model
0000	000000

0⁺⁺

Near-conformal gauge theories

▶ Gauge-fermion system with $N_c \ge 2$ colors and N_f flavors in some representation

composite	Higgs	models
00000		

0⁺⁺

summary

Composite Higgs models

- ▶ New, strongly interacting gauge fermion system
- ▶ Effective theory describing part of the dynamics
- Coupled to the Standard Model

Higgs-less, massless SM \rightarrow "full" SM

 $\mathcal{L}_{UV} \rightarrow \mathcal{L}_{SD} + \mathcal{L}_{SM_0} + \mathcal{L}_{int} \rightarrow \mathcal{L}_{SM} + \dots$

composite	Higgs	models
00000		

0⁺⁺

Composite Higgs models

- ▶ New, strongly interacting gauge fermion system
- ▶ Effective theory describing part of the dynamics
- ► Coupled to the Standard Model

Add new strong dynamics coupled to SM

$$\mathcal{L}_{UV} \to \mathcal{L}_{SD} + \mathcal{L}_{SM_0} + \mathcal{L}_{int} \to \mathcal{L}_{SM} + \dots$$

Full SM + states from \mathcal{L}_{SD}

This construction gives mass to:

- ▶ the SM gauge fields
- ▶ the SM fermions fields: 4-fermion interaction or partial compositeness

composite	Higgs	models
00000		

0⁺⁺

Composite Higgs models

- ▶ New, strongly interacting gauge fermion system
- ▶ Effective theory describing part of the dynamics
- ► Coupled to the Standard Model

$$\mathcal{L}_{UV} \to \mathcal{L}_{SD} + \mathcal{L}_{SM_0} + \mathcal{L}_{int} \to \mathcal{L}_{SM} + \dots$$

$$\uparrow$$
Full SM + states from \mathcal{L}_{SD}

This construction gives mass to:

- ▶ the SM gauge fields
- ▶ the SM fermions fields: 4-fermion interaction or partial compositeness

Does not explain mass of \mathcal{L}_{SD} fermions and 4-fermion interactions: \mathcal{L}_{UV}

composite Higgs models	4+8 model	0++	summary
00000	000000	000	00

Candidates for \mathcal{L}_{SD}

- Promising candidates are chirally broken in the IR but conformal in the UV [Luty and Okui JHEP 09(2006)070]. [Dietrich and Sannino PRD75(2007)085018]. [Vecchi arXiv:1506.00623], [Ferretti and Karateev JHEP 1403 (2014) 077], ...
- ▶ SU(3) gauge theory with 4 light (massless) and 8 heavy fundamental flavors

- Add 8 "heavy" fundamental flavors
 - \triangleright N_f = 4 + 8 = 12: conformal dynamics \triangleright Chirally broken in the IR
- ▶ SU(3) gauge theory with 4 light flavors
- \sim 4, 8, 12 are preferred for simulations with unrooted staggered fermions
- \rightarrow "Walking" gauge coupling, tunable by changing m_h
- \rightarrow Anomalous dimensions correspond to the conformal IRFP
- \rightarrow Model features both pNGB or dilaton-Higgs scenarios

composite Higgs models	
00000	

Two possibilities for a composite Higgs (IR sector)

- Spontaneous breaking of scale symmetry: Higgs is a dilaton
 - \rightarrow Possibly light 0⁺⁺ scalar
 - ightarrow $F_{\pi}=$ SM vev \sim 246 GeV
 - \rightarrow ideal 2 massless flavors in the IR
 - \rightarrow closer to old technicolor ideas
- ► Spontaneous breaking of flavor symmetry: Higgs is a pNGB
 - \rightarrow Mass emerges from its interactions
 - ightarrow Non-trivial vacuum alignment $F_{\pi} = (\mathsf{SM} \ \mathsf{vev}) / \sin(\chi) > 246 \ \mathsf{GeV}$
 - \rightarrow ideal 4 massless flavors in the IR
 - \rightarrow Vecchi: UV-complete models requiring at least two types of fermions in two different gauge group representations ${}_{[arXiv:1506.00623]}$
 - \rightarrow Ferretti: Classification of models with custodial symmetry and partial compositeness [JHEP 1403 (2014) 077] [JHEP 1606 (2016) 107]
 - \rightarrow Ma and Cacciapaglia: Fundamental composite 2HDM with 4 flavors in SU(3) gauge [JHEP 03 (2016) 211]

composite	Higgs	models	
00000			

0⁺⁺

Implementation on the lattice

- Choose N_f flavors above the conformal window
- Split the masses: $N_f = N_\ell + N_h$
 - ▶ N_ℓ flavors are massless, extrapolate $m_\ell \rightarrow 0 \Rightarrow$ chirally broken
 - ▶ N_h flavors are massive, we will vary $m_h \rightarrow$ decouple in the IR
 - \rightarrow Choose m_h to feel the attraction of the IRFP of $N_f=12$

omposite Higgs models	4+8 model	0++	summar
00000	00000	000	00

Derivation of hyperscaling from Wilson RG

- \blacktriangleright Scale change: $\mu
 ightarrow \mu' = \mu/b$, with b>1
 - ⇒ bare masses increase:
 - ⇒ bare coupling approaches its fixed point:
 - ⇒ any 2-point correlator:

$$\begin{split} \widehat{m}(\mu) &\to \widehat{m}(\mu') = b^{y_m} \widehat{m}(\mu) \\ g &\to g^* \\ C_H(t; g, \widehat{m}, \mu) &\to b^{-2y_H} C_H(t/b; g_i^*, \frac{b^{y_m} \widehat{m}, \mu}{h}) \end{split}$$

- ► Now $C_H(t) \propto exp(-M_H t) \Rightarrow aM_H \propto (\widehat{m})^{1/y_m}$ (hyperscaling)
- ► Likewise amplitudes (F_{π}) show hyperscaling $\Rightarrow M_H/F_{\pi}$ are constant

[Del Debbio and Zwicky PRD82 (2010) 014502][PLB 734 (2014) 107]

Light flavors of mass \widehat{m}_{ℓ} and heavy flavors of mass \widehat{m}_{h} :

$$C_{H}(t;g,\widehat{m}_{h},\widehat{m}_{\ell},\mu) \rightarrow b^{-2y_{H}}C_{H}(t/b;g^{*},b^{y_{m}}\widehat{m}_{h},b^{y_{m}}\widehat{m}_{\ell},\mu)$$
$$\equiv b^{-2y_{H}}C_{H}(t/b;g^{*},b^{y_{m}}\widehat{m}_{h},\widehat{m}_{\ell}/\widehat{m}_{h},\mu)$$

 $\Rightarrow aM_H \propto (\hat{m})^{1/y_m} f_H(m_\ell/m_h) \text{ with } f_H(m_\ell/m_h) \text{ a universal function}$ $\Rightarrow \text{ ratios depend only on } m_\ell/m_h$ composite Higgs models

4+8 model 00●000 0⁺⁺

summary

Light-light spectrum: ratios of M_H/F_{π}

- ▶ Pion, rho, a_0 , a_1 , nucleon, and 0^{++} scalar (statistical errors only)
- ▶ 0⁺⁺ is light $(M_{0^{++}} < M_{\varrho})$, it tracks the pion. Chiral limit?
- ▶ M_{π}/F_{π} bends down ⇒ indicates system is chirally broken
- Dimensionless ratios! No scale setting needed

composite Higgs models

4+8 model 000●00 0⁺⁺

summary

Hyperscaling at work

► $M_n/F_\pi \approx 11$ ► $M_\varrho/F_\pi \approx 8$ ► $M_{0^{++}}/F_\pi \approx 4 - 5$ (taking the chiral limit is difficult but 0⁺⁺ well separated from the ϱ)

- Statistical errors only
- "Scatter" indicates corrections to scaling

[▶] Gauge coupling is irrelevant

composite Higgs models	4+8 model	0++	summary
00000	000000	000	00

The system is chirally broken

- All data points in a_★ units
 a_★ F_π is finite
- ► Linearity in M_{π}^2 for small m_{ℓ} ► $N_f = 4$ (QCD-like): ratio diverges ► QCD: $m_d/m_s = 4.7/96 \approx 0.05$ ► $N_f = 12$: almost constant ratio [Cheng at al. 2014]

composite Higgs models

0⁺⁺

summary 00

Light-light and heavy-heavy spectrum

- \blacktriangleright 4+8 heavy-heavy spectrum is not QCD-like; QCD is not hyperscaling
- M^{hh}/F_{π} increases but F_{π} is finite in the chiral limit
- ▶ $M_{\rho}^{hh} \sim 3M_{\varrho} \Rightarrow$ could be accessible at the LHC
- \blacktriangleright Data at $\beta =$ 4.0 and 4.4: gauge coupling is irrelevant

0⁺⁺ ●00

The challenge of computing the 0^{++}

- Same quantum numbers as the vacuum (large background)
- ▶ Fermionic states can mix with glueballs
 - \rightarrow Computing the glueball spectrum is a challenge on its own
- ▶ Connected and disconnected (only gluon-lines) contributions
 - \rightarrow For large *t*: disconnected part dominates
 - \rightarrow Stochastic determination of disconnected parts
 - \rightarrow Mass-split systems: light-light, heavy-light and heavy-heavy 0^{++} can mix
 - \Rightarrow More expensive but noisier than connected meson spectrum
- ▶ Easier to compute in some BSM theories if 0^{++} is "light"
 - $\rightarrow a M_{0^{++}} < 2 a M_{\pi}$ i.e. not as difficult as in QCD

composite	Higgs	models	
00000			

0++ 000

σ or $f_0(500)$ in QCD

- ► Caprini, Colangelo, Leutwyler: $M_{\sigma} = 441 \begin{pmatrix} +16 \\ -8 \end{pmatrix}$ MeV, $\Gamma_{\sigma} = 544 \begin{pmatrix} +18 \\ -25 \end{pmatrix}$ MeV (based on Roy equation) [PRL 96 (2006) 132001]
- ▶ Garcia-Martin et al. (dispersive analysis) confirms existens of σ and $f_0(980)$ [PRL 107 (2011) 072001]

 p^2 / GeV^2

composite	Higgs	models	
00000			

0⁺⁺

Concluding remarks

- ▶ Our model with four light and eight heavy flavors exhibits
 - \rightarrow a large separation of scales
 - \rightarrow walking gauge coupling (appendix)
 - $ightarrow M_{\pi} \sim M_{0^{++}} < M_{arrho}$
 - \rightarrow hyperscaling: ratios dependend only on m_ℓ/m_h
 - \rightarrow predictive: only scale to be set using e.g. ${\it F}_{\pi}$
 - \rightarrow main results derived/shown for dimensionless ratios!
- ▶ Heavy-heavy (and heavy-light) spectrum accessible but not QCD-like
- \blacktriangleright 0^{++}: challenging to compute, several models exhibit $\mathit{M}_{0^{++}} \sim \mathit{M}_{\pi}$

Outlook: four light and six heavy flavors

- \rightarrow closer to boundary of the conformal window; larger anomalous dimension
- \rightarrow theoretically clean, but expensive domain-wall fermions \Rightarrow test of fermion universality near IRFP

composite	Higgs	models
00000		

0⁺⁺

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab) BU: engaging (MGHPCC) XSEDE: Stampede (TACC) and SuperMic (LSU)

Fundamental composite 2HDM with 4 flavors [Ma and Cacciapaglia JHEP 03 (2016) 211]

▶ Global symmetry at low energies:

 $SU(4) \times SU(4)$ broken to $SU(4)_{diag}$

▶ 15 pNGB transform under custodial symmetry

 $SU(2)_L \times SU(2)_R \implies \mathbf{15}_{SU(4)_{\text{diag}}} = (2,2) + (2,2) + (3,1) + (1,3) + (1,1)$

 \rightarrow One doublet plays the role of the Higgs doublet field

 \rightarrow Other doublet and triplets are stable; could play role of dark matter

▶ Vecchi: "choose the right couplings to RH top" [Edinburgh talk]

$$\Rightarrow (2,2) + (2,2) + (3,1) + (1,3) + (1,1) \rightarrow \text{effectively SU(4)/Sp(4)}$$

On the lattice

Setup

- ▶ SU(3) gauge group
- ► Fundamental adjoint gauge action with β_a = −β/4 [Cheng et al. arXiv:1311.1287][Cheng et al. PRD 90 (2014) 014509]
- ▶ nHYP smeared staggered Fermions [Hasenfratz et al. JHEP 05 (2007) 029]
- ▶ Most simulations/measurements performed with FUEL [J. Osborn]

▶ Goals

- Explore near conformal or conformal dynamics
- Compute the iso-singlet 0^{++}

References

[JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014] [PRD 93 (2016) 075028] [arXiv:1609.01401] (a longer, detailed paper is in preparation)

QCD:

4 + 8:

- \bullet chirally broken, simulate at finite $\beta=6/g^2$
- correlation functions show (at large distance) exponential behavior
- for $\beta \to \infty$, $aF_{\pi} \to 0$; ratios will approach well defined limits
- β is relevant; take continuum limit by $\beta \rightarrow \infty$
- four flavors are massless (m_ℓ = 0), eigth are massive with mass m_h
 correlation functions show (at large distance) exponential behavior
 for m_h sufficiently small, β is irrelevant
 - m_h is relevant; take continuum limit by $m_h
 ightarrow 0$ for fixed m_ℓ/m_h
 - ratios will be independent of m_h and β (hyperscaling)
- $N_f = 12$: (it appears) theory is conformal and choose $\beta > \beta_{cr}$
 - correlation functions show (at large distance) power law behavior
 - \bullet rescaling lengths results in the same long range behavior for any two β values
 - under RG transformations theory runs to an IRFP
 - β is irrelevant, masses or amplitudes show hyperscaling

Performed simulations ($\beta = 4.0$)

 Symbols indicate volumes and colors finite volume effects

red: squeezed yellow: marginal green: OK □: 48³ × 96 or 36³ × 64 ○: 32³ × 64 •: 24³ × 48 ► Up to 40k MDTU running coupling

Running coupling form gradient flow

▶ Gradient flow defines the renormalized coupling

[Narayanan and Neuberger JHEP 03 (2006) 064], [Lüscher JHEP 08 (2010) 071]

 $g^2_{GF}(\mu=1/\sqrt{8t})=t^2\langle E(t)
angle/\mathcal{N}$

t: flow time; E(t) energy density $rac{}{} g^2_{GF}$ is used for scale setting

 $g_{GF}^2(t = t_0) = 0.3/\mathcal{N}$ ("t₀-scale")

Can determine renormalized running coupling on large enough volumes and large enough flow times in the continuum limit

Running coupling form gradient flow: 4+8 flavors

The 0⁺⁺

Calculating the disconnected spectrum (0^{++} scalar)

Numerical measurement on the lattice

▶ 6 U(1) sources with dilution on each time slice, color and even/odd spatially

 \blacktriangleright Variance reduced $\langle \overline{\psi}\psi\rangle$

Analysis strategy

- Correlated fit to both parity states (staggered)
- ► Vacuum subtraction introduces very large uncertainties
- Advantageous to fit additional constant

$$C(t) = c_{0^{++}} \cosh\left(M_{0^{++}}\left(\frac{N_T}{2} - t\right)\right) + c_{\pi_{sc}}(-1)^t \cosh\left(M_{\pi_{sc}}\left(\frac{N_T}{2} - t\right)\right) + \nu$$

• Equivalent to fitting the finite difference: C(t+1) - C(t)

Comparison of $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$

- For $t \to \infty$: $D_{\ell\ell}$ and $D_{\ell\ell} C_{\ell\ell}$ should agree (up to mixing effects)
- ► Compare fits with different t_{min} and t_{max} = N_T/2
- Compare results for two volumes