A light 0^{++}and other hadronic resonance from
a new strongly interacting sector exhibiting large scale separation

Oliver Witzel

Brookhaven Forum 2017
Upton, NY, October 11, 2017

```
based on
```

R. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, O.W. PRD 93 (2016) 075028
A. Hasenfratz, C. Rebbi, O.W. PLB 773C (2017) 86-90

Motivation

- Mass of the Higgs boson is 125 GeV
- Other states must be much heavier, likely $>1.5 \mathrm{TeV}$
- Standard Model not UV complete
- What is the origin of the electro-weak sector?
\Rightarrow Seek a model exhibiting a large separation of scales
\rightsquigarrow Near-conformal gauge theories / composite Higgs model

Near-conformal gauge theories

- Gauge-fermion system with $N_{c} \geq 2$ colors and N_{f} flavors in some representation
- Using perturbative 2-loop results as guidance

Composite Higgs models

- New, strongly interacting gauge fermion system
- Effective theory describing part of the dynamics
- Coupled to the Standard Model

Higgs-less, massless SM \rightarrow "full" SM

$$
\mathcal{L}_{U V} \rightarrow \mathcal{L}_{S D}+\mathcal{L}_{S M_{0}}+\mathcal{L}_{\text {int }} \rightarrow \mathcal{L}_{S M}+\ldots
$$

Composite Higgs models

- New, strongly interacting gauge fermion system
- Effective theory describing part of the dynamics
- Coupled to the Standard Model

Add new strong dynamics coupled to SM

$$
\begin{aligned}
\mathcal{L}_{U V} \rightarrow \mathcal{L}_{S D}+\mathcal{L}_{S M_{0}}+\mathcal{L}_{\text {int }} \rightarrow & \mathcal{L}_{S M}+\ldots \\
& \text { Full } S M+\text { states from } \mathcal{L}_{S D}
\end{aligned}
$$

This construction gives mass to:

- the SM gauge fields
- the SM fermions fields: 4-fermion interaction or partial compositeness

Composite Higgs models

- New, strongly interacting gauge fermion system
- Effective theory describing part of the dynamics
- Coupled to the Standard Model

$$
\begin{aligned}
\mathcal{L}_{U V} \rightarrow \mathcal{L}_{S D}+\mathcal{L}_{S M_{0}}+\mathcal{L}_{i n t} \rightarrow & \mathcal{L}_{S M}+\ldots \\
& \text { Full } S M+\text { states from } \mathcal{L}_{S D}
\end{aligned}
$$

This construction gives mass to:

- the SM gauge fields
- the SM fermions fields: 4-fermion interaction or partial compositeness

Does not explain mass of $\mathcal{L}_{S D}$ fermions and 4-fermion interactions: $\mathcal{L}_{U V}$

Candidates for $\mathcal{L}_{S D}$

- Promising candidates are chirally broken in the IR but conformal in the UV [Luty and Okui JHEP 09(2006)070], [Dietrich and Sannino PRD75(2007)085018], [Vecchi arXiv:1506.00623], [Ferretti and Karateev JHEP 1403 (2014) 077], . . .
- SU(3) gauge theory with 4 light (massless) and 8 heavy fundamental flavors

UV | conformal | chirally broken | | |
| :--- | :--- | :--- | :--- |
| $\Lambda_{U V}$ | fermion masses | $\Lambda_{I R}$ | Higgs dynamics |

- Add 8 "heavy" fundamental flavors
- $N_{f}=4+8=12$: conformal dynamics
- SU(3) gauge theory with 4 light flavors
- Chirally broken in the IR
$\rightsquigarrow 4,8,12$ are preferred for simulations with unrooted staggered fermions
\rightarrow "Walking" gauge coupling, tunable by changing m_{h}
\rightarrow Anomalous dimensions correspond to the conformal IRFP
\rightarrow Model features both pNGB or dilaton-Higgs scenarios

Two possibilities for a composite Higgs (IR sector)

- Spontaneous breaking of scale symmetry: Higgs is a dilaton
\rightarrow Possibly light 0^{++}scalar
$\rightarrow F_{\pi}=\mathrm{SM}$ vev $\sim 246 \mathrm{GeV}$
\rightarrow ideal 2 massless flavors in the IR
\rightarrow closer to old technicolor ideas
- Spontaneous breaking of flavor symmetry: Higgs is a pNGB
\rightarrow Mass emerges from its interactions
\rightarrow Non-trivial vacuum alignment $F_{\pi}=(\mathrm{SM}$ vev $) / \sin (\chi)>246 \mathrm{GeV}$
\rightarrow ideal 4 massless flavors in the IR
\rightarrow Vecchi: UV-complete models requiring at least two types of fermions in two different gauge group representations [arXiv:1506.00623]
\rightarrow Ferretti: Classification of models with custodial symmetry and partial compositeness [JHEP 1403 (2014) 077] [JHEP 1606 (2016) 107]
\rightarrow Ma and Cacciapaglia: Fundamental composite 2HDM with 4 flavors in $\mathrm{SU}(3)$ gauge [JHEP 03 (2016) 211]

Implementation on the lattice

- Choose N_{f} flavors above the conformal window
- Split the masses: $N_{f}=N_{\ell}+N_{h}$
- N_{ℓ} flavors are massless, extrapolate $m_{\ell} \rightarrow 0 \Rightarrow$ chirally broken
- N_{h} flavors are massive, we will vary $m_{h} \rightarrow$ decouple in the IR
\rightarrow Choose m_{h} to feel the attraction of the IRFP of $N_{f}=12$

- We have 3 parameters:
$\rightarrow g$ irrelevant coupling
$\rightarrow m_{\ell} \rightarrow 0$ (chiral limit)
$\rightarrow m_{h}$: sets the scale

Derivation of hyperscaling from Wilson RG

- Scale change: $\quad \mu \rightarrow \mu^{\prime}=\mu / b$, with $b>1$
\Rightarrow bare masses increase:

$$
\begin{aligned}
& \widehat{m}(\mu) \rightarrow \widehat{m}\left(\mu^{\prime}\right)=b^{y_{m}} \widehat{m}(\mu) \\
& g \rightarrow g^{*} \\
& C_{H}(t ; g, \widehat{m}, \mu) \rightarrow b^{-2 y_{H}} C_{H}\left(t / b ; g_{i}^{*}, b^{y_{m}} \widehat{m}, \mu\right)
\end{aligned}
$$

\Rightarrow bare coupling approaches its fixed point:
\Rightarrow any 2-point correlator:

- Now $C_{H}(t) \propto \exp \left(-M_{H} t\right) \Rightarrow a M_{H} \propto(\widehat{m})^{1 / y_{m}} \quad$ (hyperscaling)
- Likewise amplitudes $\left(F_{\pi}\right)$ show hyperscaling $\Rightarrow M_{H} / F_{\pi}$ are constant
[Del Debbio and Zwicky PRD82 (2010) 014502][PLB 734 (2014) 107]
- Light flavors of mass \widehat{m}_{ℓ} and heavy flavors of mass \widehat{m}_{h} :

$$
\begin{aligned}
C_{H}\left(t ; g, \widehat{m}_{h}, \widehat{m}_{\ell}, \mu\right) & \rightarrow b^{-2 y_{H}} C_{H}\left(t / b ; g^{*}, b^{y_{m}} \widehat{m}_{h}, b^{y_{m}} \widehat{m}_{\ell}, \mu\right) \\
& \equiv b^{-2 y_{H}} C_{H}\left(t / b ; g^{*}, b^{y_{m}} \widehat{m}_{h}, \widehat{m}_{\ell} / \widehat{m}_{h}, \mu\right)
\end{aligned}
$$

$\Rightarrow a M_{H} \propto(\widehat{m})^{1 / y_{m}} f_{H}\left(m_{\ell} / m_{h}\right)$ with $f_{H}\left(m_{\ell} / m_{h}\right)$ a universal function
\Rightarrow ratios depend only on m_{ℓ} / m_{h}

Light-light spectrum: ratios of M_{H} / F_{π}

- Pion, rho, a_{0}, a_{1}, nucleon, and 0^{++}scalar (statistical errors only)
-0^{++}is light $\left(M_{0^{++}}<M_{\varrho}\right)$, it tracks the pion. Chiral limit?
- M_{π} / F_{π} bends down \Rightarrow indicates system is chirally broken
- Dimensionless ratios! No scale setting needed

Hyperscaling at work

- $M_{n} / F_{\pi} \approx 11$
- $M_{\varrho} / F_{\pi} \approx 8$
- $M_{0^{++}} / F_{\pi} \approx 4-5$
(taking the chiral limit is difficult but 0^{++}well separated from the ϱ)
- Statistical errors only
- "Scatter" indicates corrections to scaling
- Gauge coupling is irrelevant

The system is chirally broken

- All data points in a_{\star} units
$a_{\star} F_{\pi}$ is finite

- Linearity in M_{π}^{2} for small m_{ℓ}
- QCD: $m_{d} / m_{s}=4.7 / 96 \approx 0.05$
- $N_{f}=4$ (QCD-like): ratio diverges
- $N_{f}=12$: almost constant ratio [Cheng at al. 2014]

Light-light and heavy-heavy spectrum

- 4+8 heavy-heavy spectrum is not QCD-like; QCD is not hyperscaling
- $M^{h h} / F_{\pi}$ increases but F_{π} is finite in the chiral limit
- $M_{\varrho}^{\text {hh }} \sim 3 M_{\varrho} \Rightarrow$ could be accessible at the LHC
- Data at $\beta=4.0$ and 4.4: gauge coupling is irrelevant

The challenge of computing the 0^{++}

- Same quantum numbers as the vacuum (large background)
- Fermionic states can mix with glueballs
\rightarrow Computing the glueball spectrum is a challenge on its own
- Connected and disconnected (only gluon-lines) contributions
\rightarrow For large t : disconnected part dominates
\rightarrow Stochastic determination of disconnected parts
\rightarrow Mass-split systems: light-light, heavy-light and heavy-heavy 0^{++}can mix
\Rightarrow More expensive but noisier than connected meson spectrum
- Easier to compute in some BSM theories if 0^{++}is "light"
$\rightarrow a M_{0^{++}}<2 a M_{\pi}$ i.e. not as difficult as in QCD
- Caprini, Colangelo, Leutwyler: $M_{\sigma}=441\left({ }_{-8}^{+16}\right) \mathrm{MeV}, \Gamma_{\sigma}=544\left(\begin{array}{c}\left.+{ }_{-25}^{+18}\right) \mathrm{MeV}\end{array}\right.$ (based on Roy equation) [PRL 96 (2006) 132001]
- Garcia-Martin et al. (dispersive analysis) confirms existens of σ and $f_{0}(980)$ [PRL 107 (2011) 072001]
- Hadron spectrum calculation [Briceño et al., PRL 118 (2017) 022002]
$\rightarrow \pi-\pi$ scattering phase shift calculation
\rightarrow Qualitatively different behavior
$\rightsquigarrow M_{\pi}=391 \mathrm{MeV}$: bound state,

$$
M_{\sigma}=758(4) \mathrm{MeV}
$$

$\leadsto M_{\pi}=236 \mathrm{MeV}$: broad resonance

[QCD] $M_{\sigma}=400-550 \mathrm{MeV}$
$>2 M_{\pi}=276 \mathrm{MeV}$
[LatKMI PRD86 (2012) 059903]
[LatKMI PRL 111 (2013) 162001] ${ }_{\beta=3.25}$

$$
\begin{array}{ll}
{[4+8] a M_{0^{++}} \gtrsim a M_{\pi}} & {[12 f] a M_{0^{++}}<a M_{\pi}} \\
\text { Is the } 0^{++} \text {"peeling off"? } & \text { Theory is conformal }
\end{array}
$$

Magic 8

[PDG] [LSD PRD 93 (2016) 114514] [J. Kuti, Argonne 2016]

Concluding remarks

- Our model with four light and eight heavy flavors exhibits
\rightarrow a large separation of scales
\rightarrow walking gauge coupling (appendix)
$\rightarrow M_{\pi} \sim M_{0^{++}}<M_{\varrho}$
\rightarrow hyperscaling: ratios dependend only on m_{ℓ} / m_{h}
\rightarrow predictive: only scale to be set using e.g. F_{π}
\rightarrow main results derived/shown for dimensionless ratios!
- Heavy-heavy (and heavy-light) spectrum accessible but not QCD-like
$\bullet 0^{++}$: challenging to compute, several models exhibit $M_{0^{++}} \sim M_{\pi}$
Outlook: four light and six heavy flavors
\rightarrow closer to boundary of the conformal window; larger anomalous dimension
\rightarrow theoretically clean, but expensive domain-wall fermions \Rightarrow test of fermion universality near IRFP

Resources and Acknowledgments

USQCD: Ds, Bc, and pi0 cluster (Fermilab)
BU: engaging (MGHPCC)
XSEDE: Stampede (TACC) and SuperMic (LSU)

appendix

Fundamental composite 2HDM with 4 flavors [Ma and Cacciapaglia JHEP 03 (2016) 211]

- Global symmetry at low energies:

$$
S U(4) \times S U(4) \text { broken to } S U(4)_{\text {diag }}
$$

- 15 pNGB transform under custodial symmetry

$$
S U(2)_{L} \times S U(2)_{R} \quad \Rightarrow \mathbf{1 5}_{S U(4)_{\mathrm{diag}}}=(2,2)+(2,2)+(3,1)+(1,3)+(1,1)
$$

\rightarrow One doublet plays the role of the Higgs doublet field
\rightarrow Other doublet and triplets are stable; could play role of dark matter

- Vecchi: "choose the right couplings to RH top" [Edinburgh talk]

$$
\Rightarrow(2,2)+(2,22)+(3,1)+(1, \beta)+(1,1) \rightsquigarrow \text { effectively } S U(4) / S p(4)
$$

On the lattice

- Setup
- SU(3) gauge group
- Fundamental adjoint gauge action with $\beta_{a}=-\beta / 4$
[Cheng et al. arXiv:1311.1287][Cheng et al. PRD 90 (2014) 014509]
- nHYP smeared staggered Fermions [Hasenfratz et al. JHEP 05 (2007) 029]
- Most simulations/measurements performed with FUEL [J. Osborn]
- Goals
- Explore near conformal or conformal dynamics
- Compute the iso-singlet 0^{++}
- References
[JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014] [PRD 93 (2016) 075028] [arXiv:1609.01401]
(a longer, detailed paper is in preparation)

QCD: . chirally broken, simulate at finite $\beta=6 / g^{2}$

- correlation functions show (at large distance) exponential behavior
- for $\beta \rightarrow \infty, a F_{\pi} \rightarrow 0$; ratios will approach well defined limits
- β is relevant; take continuum limit by $\beta \rightarrow \infty$

4+8: . four flavors are massless ($m_{\ell}=0$), eigth are massive with mass m_{h}

- correlation functions show (at large distance) exponential behavior
- for m_{h} sufficiently small, β is irrelevant
- m_{h} is relevant; take continuum limit by $m_{h} \rightarrow 0$ for fixed m_{ℓ} / m_{h}
- ratios will be independent of m_{h} and β (hyperscaling)
$N_{f}=12$: • (it appears) theory is conformal and choose $\beta>\beta_{\text {cr }}$
- correlation functions show (at large distance) power law behavior
- rescaling lengths results in the same long range behavior for any two β values
- under RG transformations theory runs to an IRFP
- β is irrelevant, masses or amplitudes show hyperscaling

Performed simulations $(\beta=4.0)$

- Symbols indicate
volumes and colors
finite volume effects
red: squeezed
yellow: marginal
green: OK
$\square: 48^{3} \times 96$
or $36^{3} \times 64$
O: $32^{3} \times 64$
- : $24^{3} \times 48$
- Up to 40k MDTU
running coupling

Running coupling form gradient flow

- Gradient flow defines the renormalized coupling
[Narayanan and Neuberger JHEP 03 (2006) 064], [Lüscher JHEP 08 (2010) 071]

$$
g_{G F}^{2}(\mu=1 / \sqrt{8 t})=t^{2}\langle E(t)\rangle / \mathcal{N}
$$

t : flow time; $E(t)$ energy density
$-g_{G F}^{2}$ is used for scale setting

$$
g_{G F}^{2}\left(t=t_{0}\right)=0.3 / \mathcal{N} \quad\left(\text { "t } t_{0} \text {-scale" }\right)
$$

- Can determine renormalized running coupling on large enough volumes and large enough flow times in the continuum limit

Running coupling form gradient flow: $4+8$ flavors

- Extrapolated to $m_{\ell}=0$
- $N_{f}=4$ shows fast running
- "Shoulder" increases for smaller m_{h}
\Rightarrow walking
- Walking range is tuned as function of m_{h}
- Data with error bars!

The 0^{++}

Calculating the disconnected spectrum (0^{++}scalar)

Numerical measurement on the lattice

- $6 \mathrm{U}(1)$ sources with dilution on each time slice, color and even/odd spatially
- Variance reduced $\langle\bar{\psi} \psi\rangle$

Analysis strategy

- Correlated fit to both parity states (staggered)
- Vacuum subtraction introduces very large uncertainties
- Advantageous to fit additional constant

$$
C(t)=c_{0^{++}} \cosh \left(M_{0^{++}}\left(\frac{N_{T}}{2}-t\right)\right)+c_{\pi_{s c}}(-1)^{t} \cosh \left(M_{\pi_{s c}}\left(\frac{N_{T}}{2}-t\right)\right)+\nu
$$

- Equivalent to fitting the finite difference: $C(t+1)-C(t)$

Comparison of $D_{\ell \ell}$ and $D_{\ell \ell}-C_{\ell \ell}$

- For $t \rightarrow \infty$: $D_{\ell \ell}$ and $D_{\ell \ell}-C_{\ell \ell}$ should agree (up to mixing effects)
- Compare fits with different $t_{\text {min }}$ and $t_{\text {max }}=N_{T} / 2$
- Compare results for two volumes
\Rightarrow Consistent results!

