Lattice QCD and Neutrino Physics

Aaron S. Meyer (ameyer@quark.phy.bnl.gov)

Brookhaven National Laboratory

October 12, 2017

In Search of New Paradigms - BNL Forum

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= のへの

Key People

Faculty:

- Richard Hill (U.Kentucky)
- Andreas Kronfeld (FNAL)
- James Simone (FNAL)
- Alexei Strelchenko (FNAL)

Postdocs:

- Ciaran Hughes (FNAL)
- Aaron Meyer (BNL)

Grad Students:

Yin Lin (U.Chicago)

On behalf of the Fermilab Lattice & MILC Collaborations

Outline

- Motivation
- Axial Form Factor in Neutrino Physics
- ► Lattice QCD Spectrum + Axial Charge

Lattice is well suited to compute matrix elements:

 $\mathcal{M}(q^2) \sim \langle \chi' | \Gamma_{\chi} | \chi \rangle \langle N' | \Gamma_N(q^2) | N
angle$

Lattice is well suited to compute matrix elements:

 $\mathcal{M}(q^2) \sim \langle \chi' | \, \Gamma_{\chi} \, | \chi
angle \langle N' | \, \Gamma_N(q^2) \, | N
angle$

Lattice is well suited to compute matrix elements:

 $\mathcal{M}(q^2) \sim \langle \chi' | \Gamma_{\chi} | \chi \rangle \langle N' | \Gamma_N(q^2) | N \rangle$

Lattice is well suited to compute matrix elements:

 $\mathcal{M}(q^2) \sim \langle \chi' | \, \Gamma_\chi \, | \chi
angle \langle N' | \, \Gamma_N(q^2) \, | N
angle$

Lattice is well suited to compute matrix elements:

 $\mathcal{M}(\boldsymbol{q}^2) \sim \langle \chi' | \, \Gamma_{\chi} \, | \chi
angle \langle N' | \, \Gamma_{N}(\boldsymbol{q}^2) \, | N
angle$

Quasielastic scattering

Current Monte Carlo nuclear models assume gas of weakly bound nucleons \implies free nucleon amplitudes useful for determining nuclear matrix elements

QE matrix element involves many-body interactions

 \implies parametrized by form factors

Axial form factor F_A is important, not well-known

Ideally, lots of redundancy and checks between elements of analysis

Ideally, lots of redundancy and checks between elements of analysis

 F_A not well determined by experiment,

 \implies nucleon amplitudes constrained by/used to constrain nuclear models

Ideally, lots of redundancy and checks between elements of analysis

 F_A not well determined by experiment,

 \implies nucleon amplitudes constrained by/used to constrain nuclear models

Lattice QCD acts as a disruptive technology to break degeneracy

Focus

Want to inform nuclear models with theoretically clean/robust form factors

I take two approaches to constrain nucleon form factor:

- Reanalysis of deuterium bubble chamber data
 - use z expansion parametrization, motivated by analyticity, to study systematic uncertainties
- Lattice QCD calculation
 - compute the axial matrix element from first principles

First step is to compute axial charge: $g_A = F_A(Q^2) \big|_{Q^2=0}$

Future extensions of this work will compute Q^2 dependence, fit to *z* expansion parametrization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ め

Deuterium Fitting - 1603.03048 [hep-ph]

 $r_A^2 = 0.46(22) \text{ fm}^2$, $\sigma_{\nu n \to \mu p}(E_{\nu} = 1 \text{ GeV}) = 10.1(0.9) \times 10^{-39} \text{ cm}^2$ compared with Bodek *et al.* [Eur. Phys. J. C 53, 349]:

$$r_A^2 = 0.453(13) \text{ fm}^2$$
, $\sigma_{\nu n \to \mu p}(E_{\nu} = 1 \text{ GeV}) = 10.63(0.14) \times 10^{-39} \text{ cm}^2$

z Expansion in GENIE

z expansion coded into Monte Carlo GENIE - turned on with user switch

Officially released in production version 2.12, will become default soon

Uncertainties on free-nucleon cross section as large as data-theory discrepancy \implies need to improve F_A determination to make headway on nuclear effects

Lattice QCD

Lattice QCD: Formalism

Numerical solution to path integral

$$\langle \mathcal{O}
angle = rac{1}{Z} \int \mathcal{D} \psi \, \mathcal{D} \overline{\psi} \, \mathcal{D} U \, \exp(-S) \, \mathcal{O}_{\psi} \, [U]$$

- Discretize spacetime
 #DOF finite
- Quark fields defined on sites $\implies Q(x)$
- Gauge fields defined between sites $\implies U_{\mu}(x)$
- Euclidean time \implies correlators $\propto e^{-Et}$
- Lattice spacing a provides UV cutoff
- Lattice size L provides IR cutoff

Fermilab Lattice/MILC Effort

Fermilab Lattice & MILC computing the axial charge $g_A = F_A(Q^2)|_{Q^2=0}$ using staggered quarks on the MILC HISQ 2+1+1 gauge ensembles

- ▶ no explicit chiral symmetry breaking in $m \rightarrow 0$ limit
- physical pion mass for multiple lattice spacings
- large volumes
- absolutely normalized
- high-statistics (computationally fast)

Effort is needed to handle:

- Complicated group theory
- Lots of baryon "tastes" in correlation functions

Group Theory

Extra baryon "tastes" show up in correlation functions, but use them to diagonalize action in spin-taste space

Full lattice group is: $(((\mathcal{T}_M\times \mathbb{Q}_8)\rtimes \textit{W}_3)\times \textit{D}_4)/\mathbb{Z}_2$

Lowest lying states within irreducible representations of lattice group:

 $N_{\rm ops}$ = $N_{\rm states}$ for lowest lying states in all irreps

Operators constructed from displacing quarks within unit cube:

Spectrum - Matrix of Correlation Functions

Prerequisite for studying Interactions

Interactions - Matrix of Correlation Functions

Aaron Meyer - Lattice QCD and Neutrino Physics

15 / 17

Interactions - Matrix of Correlation Functions

Aaron Meyer - Lattice QCD and Neutrino Physics

15 / 17

Interactions - New Strategy

 Factor of 10 fewer measurements, factor of 10 better statistics

 Aaron Meyer - Lattice QCD and Neutrino Physics
 16 / 17

Conclusions

 Axial form factor is essential for the success of future neutrino oscillation experiments

- Need robust determination of nucleon amplitudes with realistic errors to support neutrino oscillation program
- z Expansion is a form factor parametrization consistent with QCD, motivated by analyticity
- Spectrum and axial charge have been calculated with Lattice QCD (world first for staggered baryons!)
- Signal to noise now under control, improvements to statistics and more ensembles in progress
- Results from Lattice QCD can be made available to experimental community as soon as they are ready

Backup

Further Calculations of Interest

30

[A. Kronfeld]

Choices and Challenges

Current data:

- \blacktriangleright $m_{\text{valence}} = m_{\text{physical}}$
- ▶ *a* = 0.15 fm
- ► 32³ × 48
- \blacktriangleright ~ 3000 Two-point measurements
- $\blacktriangleright~\sim$ 3000 Three-point measurements

(Measurements \sim configurations)

Aaron Meyer - Lattice QCD and Neutrino Physics

20 / 17

Dipole Form Factor

Most analyses assume the Dipole axial form factor (Llewellyn-Smith, 1972):

$${\cal F}_A^{
m dipole}(Q^2) = {{\cal G} A \over \left(1+{Q^2 \over m_A^2}
ight)^2}$$

[Phys.Rept.3 (1972),261]

Dipole is an ansatz:

unmotivated in interesting energy region

 \implies uncontrolled systematics and therefore underestimated uncertainties

Large variation in m_A over many experiments (dubbed the "axial mass problem"):

- $m_A = 1.026 \pm 0.021$ (Bernard *et al.*, [arXiv:00107088])
- $m_A^{\text{eff}} = 1.35 \pm 0.17$ (MiniBooNE, [arXiv:1002.2680])

Essential to use model-independent parameterization of F_A instead

z Expansion

The z Expansion (1108.0423 [hep-ph]) is a conformal mapping which takes kinematically allowed region ($t = -Q^2 \le 0$) to within |z| < 1

- Model independent: motivated by analyticity arguments from QCD
- Only few parameters needed: unitarity bounds
- Sum rules regulate large-Q² behavior

AaAnalwisyin anXitti1603,03048[hmanh]nASPAyStes Betancourt, R. Gran, R. Hill

23 / 17

Axial Charge

Well-known from neutron β decay experiment: $n \rightarrow p + e^- + \bar{\nu}_e$

PDG value: $g_A = 1.2723(23)$

Lattice QCD has difficulty reproducing g_A :

M. Constantinou, LAT2014 (arXiv:1411.0078)

Disclaimer: multi-dimensional space projected into two dimensions

g_A Problem

Why is g_A so difficult?

- Signal-to-Noise Grows Exponentially
 - Signal $\propto \langle \stackrel{\bullet}{\Longrightarrow} \rangle \sim e^{-M_n t}$, noise² $\propto \langle |\stackrel{\bullet}{\Longrightarrow} |^2 \rangle = \langle \stackrel{\bullet}{\Longrightarrow} \rangle \sim e^{-3m_\pi t}$
 - Noise gets contribution from 3-pion term
- Finite size effects
 - self-interaction via πs which wrap around periodic BC
- Excited state contamination
 - Operators couple to ground state + excited states
 - Requires fitting $\sum_{n} e^{-E_n t}$ for many *n*
 - Rotation/tranlation symmetry broken by lattice

* 비난 * 四 * * * * * * * * * * * * *

Spectrum - Effective Mass

Aaron Meyer - Lattice QCD and Neutrino Physics

୍ର 26 / 17

Spectrum - Stability

Spect	rum - Syste	ematics $\frac{\mathcal{O}_i - \overline{\mathcal{O}}}{\delta \overline{\mathcal{O}}} \pm \frac{\delta \mathcal{O}_i}{\delta \overline{\mathcal{O}}}$, $\overline{\mathcal{O}} =$ nominal
		$\frac{\delta M_N / \overline{\delta M}_N}{2 - 2 - 1 \ 0 \ 1 \ 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ 1 \ - 2 \ - 2 - 1 \ 0 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - 2 \ - 2 - 1 \ - $
	nominal	default fit
	+1E state	fit with 7 even $+$ 5 odd states
	+10 state	fit with 6 even $+$ 6 odd states
	+1E+1O state	fit with 7 even $+$ 6 odd states
	$t_{ m min}\!+\!1$ diag	$t \in [3, 8]$ if $i = j$; $t \in [2, 7]$ if $i \neq j$
:.	$t_{\min}\!+\!1$ offdiag	$t \in [2, 8]$ if $i = j$; $t \in [3, 7]$ if $i \neq j$
Τ.	$t_{ m min}\!+\!1$ both	$t \in [3, 8]$ if $i = j$; $t \in [3, 7]$ if $i \neq j$
	$t_{ m max}{-1}$ diag	$t \in [2,7]$ if $i = j$; $t \in [2,7]$ if $i \neq j$
	$t_{ m max}{-1}$ offdiag	$t \in [2, 8]$ if $i = j$; $t \in [2, 6]$ if $i \neq j$
	$t_{ m max}{-1}$ both	$t \in [2,7]$ if $i = j$; $t \in [2,6]$ if $i \neq j$
	$t_{ m max}\!+\!1$ diag	$t \in [2,9]$ if $i = j$; $t \in [2,7]$ if $i \neq j$
	$t_{ m max}\!+\!1$ offdiag	$t \in [2, 8]$ if $i = j$; $t \in [2, 8]$ if $i \neq j$
	$t_{ m max}\!+\!1$ both	$t \in [2,9]$ if $i = j$; $t \in [2,8]$ if $i \neq j$
	$M_E \operatorname{prior}\ imes 1.5$.	priors on all even states widened by factor of 1.5
	M_O prior $ imes 1.5$	priors on all odd states widened by factor of 1.5
	source prior $\times 2.0$	priors on all source overlap factors widened by factor of 2.0
	sink prior $\times 2.0$	priors on all sink overlap factors widened by factor of 2.0

Aaron Meyer - Lattice QCD and Neutrino Physics

シック・単則 ふかく ふく (型を)

Spectrum - Systematics

Spectrum - Results

Taking nominal fits, statistics error only:

16 Irrep

State		Prior [δM] [GeV]	Posterior [δM] [GeV]
Ν	[0]	0.994(65) [-]	1.003(6) [-]
Δ	[0]	1.289(74) [0.295(34)]	1.286(22) [0.283(23)]
Δ	[1]	1.349(80) [0.060(31)]	1.337(21) [0.051(21)]
Δ	[2]	1.409(89) [0.060(39)]	1.419(48) [0.082(48)]
$N\pi$	[0]	1.252(65) [-]	1.255(27) [-]
N *	[0]	1.537(76) [0.284(39)]	1.538(13) [0.283(28)]

Correlation Function Normalization Strategy

Rather than computing g_A directly, instead compute ratio

$$\left. rac{\left< \textit{N} \right| \textit{Z}_{\textit{A}}\textit{A}_{\mu} \left| \textit{N} \right>}{\left< 0 \right| \textit{Z}_{\textit{A}}\textit{A}_{\mu} \left| \pi^{a} \right>}
ight|_{Q^{2}=0} \propto rac{\textit{g}_{\textit{A}}}{\textit{f}_{\pi}}$$

Benefits from statistical cancellation, absolutely normalized

Full computation to remove f_{π} dependence is

$$\beta g_{A} \bar{u}_{N} \gamma^{\mu} \gamma^{5} u_{N} = \frac{\langle N | \beta Z_{A} A^{\mu} | N \rangle}{\langle 0 | Z_{A} A^{\mu} | \pi \rangle} \frac{\langle 0 | 2 \hat{m} P | \pi \rangle}{M_{\pi}}$$

Blinding factor β included in three point functions, known only to few collaboration members

Aaron Meyer - Lattice QCD and Neutrino Physics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ め

Interactions - Mass Systematics

Aaron Meyer - Lattice QCD and Neutrino Physics

Interactions - Amplitude Systematics

Aaron Meyer - Lattice QCD and Neutrino Physics

Residuals

Neither z expansion, nor dipole can properly explain shape of data Difficult to extract form factor from scattering data, uncontrolled systematics introduced in process

Acceptance Corrections

Acceptance correction for fixing errors from hand scanning Q^2 dependent correction, correlated between bins:

For ANL, BNL, FNAL respectively, $\eta = -1.9, -1.0, +0.01$; minimal improvement of goodness of fit

Deuterium Corrections

Corrections assumed to be E_{ν} independent Two corrections tested: Singh Nucl. Phys. B 36, 419, Shen 1205.4337 [nucl-th]

Central values of Shen, Singh are consistent with each other Final fit done with Singh, inflated error bars

Normalization Degeneracy

Despite apparent similarity of dipole/z expansion cross sections, form factors quite different

Consequence of self-consistency: cross section prediction

$$rac{dN}{dE} \propto rac{1}{\sigma} rac{d\sigma}{dQ^2}$$

Cut of low- Q^2 data & floating normalization hide cross section differences

Nuclear Effects

Nuclear effects not well understood \rightarrow Models which are best for one measurement are worst for another Need to break F_A /nuclear model entanglement

(assumed $m_A = 0.99$ GeV)							
NuWro Model	RFG	RFG+	assorted				
$(\chi^2/{\sf DOF})$	[GENIE]	TEM	others				
leptonic(rate)	3.5	2.4	2.8-3.7				
leptonic(shape)	4.1	1.7	2.1-3.8				
hadronic(rate)	1.7[1.2]	3.9	1.9-3.7				
hadronic(shape)	3.3[1.8]	5.8	3.6-4.8				

(Minerva collaboration, 1305.2243,1409.4497[hep-ph])