Future Prospects of CMS & ATLAS

Baylor University for the CMS and ATLAS Collaborations

Kenichi Hatakeyama

Brookhaven Forum 2017: In Search of New Paradigms October 11-13, 2017

LHC Evolution

CMS Upgrades

- Phase 1 upgrade will complete with the HCAL endcap and barrel front-end electronics upgrade by LS2.
- Phase 2 upgrade includes: replacement of tracker ($|\eta| < 3.8$) & endcap calo. Barrel ECAL and muon system electronics. Track trigger@L1. Fast-timing (~30ps) detector etc.

CMS phase 2 upgrade summary:

Trigger/HLT/DAQ

Replace Tracker

- Rad. tolerant high granularity significantly less material
- 40 MHz selective readout (Pt≥2 GeV) in Outer Tracker for L1-Trigger
- Extend coverage to $\eta = 3.8$

ATLAS Upgrades

- Phase 1 upgrade will complete with installation of new muon small wheel, topological L1-trigger processors, & improvement of calo trigger granularity
- Phase 2 upgrade include new all-silicon inner tracker (up to $|\eta| \sim 4$), new trigger architecture & hardware at L0/L1, calorimeter electronics upgrade

Physics Projections - Strategies

□ Some variations for different physics analyses, but baseline is:

□ CMS:

- Extrapolate recent Run2 analyses to (300) 3000/fb. Consider effects of high pileup (PU) conditions and detector performance, based on CMS-TDR-15-002
- Scenarios for systematics
 - Scenario 1+: theory and experimental uncertainties same as in the corresponding Run2 analyses. High PU and detector upgrades accounted for.
 - □ Scenario 2+: theory uncertainty halved. Experimental uncertainty 1/√L until they reach an estimated lower limit. High PU & upgrades are accounted for.
- Or full analysis with parametrized detector performance (Delphes)
- □ ATLAS:
 - Generator-level + smearing function
 - Use the generator-level MC samples. Overlay jets from pileup library to simulate pileup effects
 - □ Trigger efficiency functions to emulate trigger effects
 - Detector response: smear p_T and energy of reconstructed physics objects. Apply reconstruction efficiencies for electrons, muons, and jets
 - □ Analysis algorithms derived from Run-2 analyses

Higgs Physics

Higgs Production / Coupling

300 fb⁻¹

3000 fb⁻¹

ATL-PHYS-PUB-2014-016

ATLAS Simulation Preliminary

(comb.)

(incl.)

(comb.)

(comb.)

0

 $H \rightarrow ZZ$ (comb.)

 $H \rightarrow WW \text{ (comb.)}$

 $H \rightarrow \tau \tau$ (VBF-like)

Η→γγ

 $H \rightarrow Z\gamma$

 $H \rightarrow b\overline{b}$

H→µµ

 $\sqrt{s} = 14 \text{ TeV}$: [Ldt=300 fb⁻¹; [Ldt=3000 fb⁻¹]

CMS-PAS-FTR-16-002 CMS-PAS-HIG-16-020 (reference)

Fiducial cross section in the diphoton channel, likely exp. systematics dominated

Uncertainty on signal strength (hashed region = effect of "current" theoretical uncertainties)

0.2

0.4

 $\Delta \mu / \mu$

ATL-PHYS-PUB-2014-017

- □ W, Z couplings to 3%
- \Box µ coupling to 7%
 - t,b,τ couplings to 8-12%

Anomalous Coupling, Differential Cross Section

Di-Higgs, Self-Coupling

.000000000

00000000

н

 λ_{HH}

- H

- \Box Next milestone in Higgs physics: access to the Higgs self-coupling λ
 - Cross section ~ 40 fb @14 TeV
 - Destructive interference

CMS-DP-2016-064

10/12/17

HH->bbWW->bbqqlv, ttHH

units

FCNC Top Decays

- Search for flavor-changing neutral-current (FCNC) t->Zq and t->Hq in tt events (ATL-PHYS-PUB-2016-019)
 - t->Zq-> $\ell\ell q$, t->Wb-> $\ell\nu b \rightarrow 3\ell+b$ jet
 - t->Hq->bbq, t->Wb-> $\ell\nu b \rightarrow 1\ell+3$ bjets

	SM	2HDM	MSSM
$BF(t \rightarrow cg)$	5· 10 ⁻¹²	10 ⁻⁸ - 10 ⁻⁴	10 ⁻⁷ – 10 ⁻⁶
$BF(t \rightarrow cZ)$	1· 10 ⁻¹⁴	10 ⁻¹⁰ - 10 ⁻⁶	10 ⁻⁷ - 10 ⁻⁶
$BF(t \to c \gamma)$	5·10 ⁻¹⁴	10⁻⁹ - 10 ⁻⁷	10 ⁻⁹ - 10 ⁻⁸
$BF(t \rightarrow cH)$	3· 10 ⁻¹⁵	10 ⁻⁵ - 10 ⁻³	10 ⁻⁹ - 10 ⁻⁵

Heavy Resonances

Dark Matter (DM)

10/12/17

Supersymmetry

- □ Search for SUSY is one of the main LHC goals
- □ Larger luminosity allows
 - Explore higher mass, low cross section & compressed mass spectra.
 - Upon discovery, measure its properties, SUSY spectrum

Largest relative gains in weak production processes

Stau & EWKino

Example Discovery Scenarios

- Discovery of gluino ($m_{gluino} \sim 1.6 \text{ TeV}$) signatures in jets + MET + b-tags in Run 3
- □ HL-LHC adds detailed measurements of:
 - Weakly interacting sector in gluino cascade decays
 - Distinctive kinematic features of the new physics.
 - Observations in additional final states (particles) not visible yet in Run 3.

Outlook

- □ We have gotten a variety of interesting physics results from LHC already, and we expect a lot more during the future LHC running
- Run 2, Run 3, and HL-LHC will provide a comprehensive physics program: Precision Higgs physics, Higgs rare decays, self-coupling, precision top physics, rare decays, new multi-TeV resonances/particles, SUSY up to 2-3 TeV...
- Detector upgrades (phase1 & phase2) are underway to enable this interesting physics program

Stay tuned!

Luminosity Profile

Nominal Scenario: luminosity leveled at 5 x 10^{34} Hz/cm², pile-up < μ > = 140 Ultimate Scenario: 7.5 x 10^{34} Hz/cm², pile-up < μ > = 200

Ð

Higgs Width

ATL-PHYS-PUB-2015-024

- □ Measure off-shell production of $H \rightarrow ZZ^* \rightarrow 4\ell$ with m(4ℓ)>220 GeV
- Use m(4ℓ) shape and matrix element to discriminate between signal and background
 - stat. uncertainties only: $\mu_{off-shell}=1.00^{+0.23}_{-0.27}$
 - stat.+syst. uncertainties: $\mu_{off-shell}=1.00^{+0.43}_{-0.50}$
- Off-shell production used to constrain the Higgs boson width
- \square For Γ = Γ_{SM} combining with on-shell measurement, (assuming off-shell measurement dominates):

 $\Gamma_{\rm H} = 4.2^{+1.5}_{-2.1} \text{ MeV (stat+sys)}$

□ Run 1: $\Gamma_{\rm H}$ < 22.7 MeV @ 95% CL (WW, ZZ)

Diboson Production

Stringent test of standard model predictions, restoring unitarity at high energies

	Phase I	Phase II	Phase I aged
noH 95% CL exclusion	0.14	0.14	0.20
LL scattering discovery significance	2.50	2.75	2.14

21

 W_L

 W_L

q

W

w

Top Quark Mass

- □ Fundamental parameter of the SM.
- \square Precise knowledge of M_{top} crucial for testing the consistency of the SM: it participates in quantum loop radiative corrections to M_W constraining M_H .

- J/Psi method currently dominated by stat uncertainty would become more important
- Some improvements in theory uncertainties will be crucial (underlying-event, fragmentations, scale and ME-PS matching, etc)

CMS-PAS-FTR-16-006

Model discrimination after discovery

- □ Ability to discriminate improves dramatically with HL-LHC
 - Separate between spin-1 (Z') or spin-2 (GKK) interpretation and other interpretation ranges from ~2 to 5sigma
 - 2D likelihood with dilepton angular and rapidity distributions or forward-backward asymmetry

 Z'_{Ψ} , M = 4 TeV/c²

Rare Decay: H->J/Psi gamma

Higgs coupling to charm is challenging П

ATL-PHYS-PUB-2015-043

120

140

100

80

60

ATLAS study of the H \rightarrow J/ $\psi\gamma$ \rightarrow µµ γ channel at high LHC luminosities, П sensitive to the Higgs-charm coupling via loops

 \Rightarrow SM expectation: BR($H \rightarrow J/\psi \gamma$) = (2.9 ± 0.2) × 10⁻⁶

		$J/\psi\gamma$ I	Final state			
	Expected Background				Signal	
	Inclusive QCD		Other Backgrounds			
	Mass Range [GeV]		$Z \rightarrow \mu^+ \mu^- \gamma$	$H_{\gamma^*\gamma} \to \mu^+ \mu^- \gamma$		
	80-100	115-135			Ζ	Н
Cut Based Analysis	7800 ± 500	3500 ± 400	780 ± 100	15.1 ± 1.4	50 ± 3	3.2 ± 0.1
Multivariate Analysis		1700 ± 200		13.7 ± 1.3		2.9 ± 0.1

Current expected limit with 3000 fb⁻¹: 15 times the expected SM Br

180

160 $m_{\mu\mu\gamma}$ (GeV)

HH->bbγγ

ATL-PHYS-PUB-2017-001

Discovery Scenarios: SUSY Models

HL-LHC measurements to understand a potential Run3 discovery

Exploring experimental signature space

□ Explored:

- Five different models
 - 3 models motivated by naturalness
 - 2 coannihilation (stop & stau coannihilation) models
- Nine different experimental signatures.

Analysis	Luminosity	Model				
	(fb^{-1})	NM1	NM2	NM3	STC	STO
all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	300					
	3000					
all-hadronic (M_{T2}) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
-	3000					
monojet \tilde{t}_1 search	300					
-	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

Exploring SUSY model space

- $< 3\sigma$ $3-5\sigma$ $>5\sigma$
- Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data.
- □ HL-LHC measurements can be crucial to illuminate a Run 3 discovery, and thus answer fundamental questions about gauge hierarchy or dark matter.